

()

ţ

()

CITY OF ENID ENID, OKLAHOMA

SANITARY SEWER MASTER PLAN

SEPTEMBER 2008

TABLE OF CONTENTS	
EXECUTIVE SUMMARY	i - xx
TECHNICAL MEMORANDUM NO. 1:	TENTS MMARY i - xx EMORANDUM NO. 1: DF THE EXISTING WATER POLLUTION CONTROL FACILITY on 1-1 a. 1-1 dorson 1-2 projections 1-3 Map 1-4 projections 1-4 Discharges and Pretreatment 1-4 Discharge Limitations 1-10 ischarge Limitations 1-11 vastewater Treatment Facility Overview 1-11 of Existing Treatment Plant and Condition Assessment 1-14 EMORANDUM NO. 2: DF THE EXISTING COLLECTION SYSTEM AND RECOMMENDED On 2-2 of Existing System 2-2 of Existing System Evaluation 2-1
EVALUATION OF THE EXISTING WATER POLLUTION CONTROL	FACILITY
Introduction	
Study Area	
Planning Horizon	
Population Projections	
Land Use Map	
Wastewater Characteristics	
Industrial Discharges and Pretreatment	
Design Information for the Plan year	1-10
Effluent Discharge Limitations	1-11
Existing Wastewater Treatment Facility Overview	
Evaluation of Existing Treatment Plant and Condition Assessment	1-14
TECHNICAL MEMUKANDUM NU. 2: EXALUATION OF THE EXISTING OOL FOCTION OVERTEM AND DEC	
EVALUATION OF THE EXISTING COLLECTION SYSTEM AND KEU IMDROVEMENTS	OMMENDED
INIP KOVENIEN IS	0.1
Existing Collection System	
Existing Conection System	
A doguogy of Existing System	
Future Collection System Evolution	
Conclusions	
Conclusions	
TECHNICAL MEMORANDUM NO. 3:	
WASTEWATER TREATMENT SYSTEM ALTERNATIVES	
Development Needs	
Description of Alternatives	
Evaluation Methodology	3-3

Evaluation Methodology	3-3
Process Alternatives	3-4
Preferred Alternatives	3-5
Recommended Alternative	3-8

APPENDICES

Appendix TM 1-1	Raw Data from Facility Records
Appendix TM 1-2	Information about Industries
Appendix TM 1-3	City of Enid OPDES Permit
Appendix TM 1-4	Template for Condition Rating
Appendix TM 1-5	Nitrification Clarifier (Traveling Bridge) Operational Issues
Appendix TM 2-1	Flow Meters
Appendix TM 2-2	Sanitary Sewer Inflows
Appendix TM 2-3	Sub-basin Calculations
Appendix TM 2-4	Storm Events
Appendix TM 2-5	I/I Calculations
Appendix TM 2-6	SWMM Model and Output

l

Appendix TM 2-7	February 2007 – Evaluation of Sanitary Sewer Pipeline Extension for the Oklahoma Ethanol Plant
Appendix TM 3-1	Cost Analysis Worksheets
LIST OF TABLES	
Table TM 1-1	Population Projection
Table TM 1-2	Developed Area within the City
Table TM 1-3	Per Capita Wastewater Generation Rate
Table TM 1-4	Historical Flow Peaking Data
Table TM 1-5	Influent Wastewater Quality
Table TM 1-6	Influent Loading Data for BOD ₅ , TSS and Ammonia
Table TM 1-7	Significant Industrial Users Information
Table TM 1-8	Wastewater Flow Projection for Year 2030
Table TM 1-9	OPDES Effluent Discharge Limitations
Table TM 1-10	Summary of Major Liquid Process Treatment Units and their Sizes
Table TM 1-11	Summary of Major Solids Handling Units
Table TM 1-12	Summary of Treatment Capacity and Condition of Major Liquid Process
	Treatment Units
Table TM 1-13	Treatment Capacity Summary
Table TM 2-1	Summary of Stations not Included in the Model Comparison

- Table TM 2-2Comparison of Modeled Values vs Actual Recorded Values for Dry Flow
Conditions
- Table TM 2-3
 Summary of Monitoring Point Infiltration Values
- Table TM 2-4 Pipelines and Associated Flow Data and Capacities
- Table TM 2-5Capital Improvement Summary
- Table TM 3-1Top Selected Options for Detailed Analysis
- Table TM 3-2
 Summary of Capital and Operations and Maintenance Cost
- Table TM 3-3Summary of Present Worth Cost
- Table TM 3-4 Capital Construction Cost for Recommended Alternative, Option 3B

LIST OF FIGURES

Figure TM 1-1	Enid Location Map
Figure TM 1-2	Sanitary Sewer Collection System Basin
Figure TM 1-3	2025 Land Use Map
Figure TM 1-4	Influent Wastewater Flow
Figure TM 1-5	Site Plan – Enid Wastewater Treatment Facility
Figure TM 1-6	Liquid Process Treatment Units – Current Process
Figure TM 1-7	Current Operation of Solids Handling facility
Figure TM 1-8	Proposed Improvements to Solids Handling Facility
Figure TM 2-1	Sanitary Sewer Basins Schematic
Figure TM 2-2	Sanitary Sewer Monitoring Locations
Figure TM 2-3	High Inflow and Infiltration Basins
Figure TM 2-4	Sanitary Sewer Investigation Schematic
Figure TM 2-5	Capital Improvement Map
Figure TM 3-1	Option 1A: 14 MGD Conventional Activated Sludge Treatment System
Figure TM 3-2	Option 1B: 14 MGD Sequencing Batch Reactor (SBR) System
Figure TM 3-3	Option 3A: 12 MGD Conventional Activated Sludge Treatment System
-	Expanded to 14 MGD
Figure TM 3-4	Option 3B: 12 MGD Sequencing Batch Reactor (SBR) System with Expansion to
	14 MOD

CONTENTS

Figure TM 3-5	Option 4A: Using Existing Treatment Facility and Building a new 7 MGD
	Conventional Activated Sludge Treatment System with Expansion to 14 MGD
Figure TM 3-6	Option 4B: Using Existing Treatment Facility and Building a new 7 MGD
	Sequencing Batch Reactor (SBR) System with Expansion to 14 MGD
Figure TM 3-7	Site Plan for Future Expansion

INTRODUCTION

The City of Enid is located in the north central part of Oklahoma in the Garfield County along the eastern edge of the Great Plains. Growth of industries in and around the City of Enid plays a vital role in the employment and economic development of Enid. The expansion and construction of two major industries as well as additional population growth resulting from these expansions has prompted the City of Enid to evaluate its existing sanitary sewer collection and treatment system and develop a Sanitary Sewer Master Plan to make the improvements to its existing sanitary sewer collection and treatment system.

PSA-Dewberry and its consulting engineer ENVIROTECH was retained to provide engineering services required to complete a master plan for the City of Enid sanitary sewer water collection and treatment system. The purpose of the master plan was to evaluate the existing system, project the future needs, and provide the improvement plan over the planning horizon. The master plan was developed through three major tasks which culminated in following Technical Memoranda:

- TM 1: Evaluation of the Existing Water Pollution Control Facility (WPCF)
- TM 2: Evaluation of the Existing Collection System and Recommended Improvements
- TM 3: Wastewater Treatment System Alternatives and Recommended Improvements

The following sections provide a summary of the above technical memoranda, including the capital improvement plan for the recommended improvements.

PLANNING HORIZON

The planning period or planning horizon is the time span over which the sanitary sewer collection and treatment facility needs are forecasted. Therefore, proposed facilities are planned to meet the system's needs projected over the planning timeframe. Most utility master plans are prepared for medium-term planning horizons, which range from 20 to 25 years. This period is based on the longest term in which reasonable detailed forecasts for growth and capacity can be made. For this master plan the planning horizon of 25 years has been chosen. Future wastewater loads and flows will be projected for the design year 2030.

POPULATION PROJECTIONS

Our review of the available population and community development data indicated that the City's recent population is relatively stable. For population projection, this report uses 0.005 rule adopted by Enid Vision 2025 Committee. The rule 0.005 assumes straight line growth compounded at one-half of one (0.5) percent per year. This is a reasonable assumption based on the recent trend in population growth and is not likely to change unless there are any significant shifts in the City's economic market sectors. The projection for the year 2030 based on this rule is 54,638 whereas the Oklahoma Department of Commerce projection for the same year is 50,860. This report will use the population figure of 54,638 for flow projections and wastewater facility expansions.

LAND USE

Land use map for the Enid Metropolitan area is shown in the City of Enid Metropolitan Area Comprehensive Plan 2025. Enid Metropolitan area includes area within the City limits as well as outside. Most of the land outside the City limits is designated as agricultural land. The developed and undeveloped

area within the City limits as of July 2002 as shown in the Enid Metropolitan Area Comprehensive Plan is tabulated below in **Table ES 1-1**.

Table ES 1-1: Developed Area within the City									
Land use	Total Area (acre)	Developed (acre)	Undeveloped (acre)						
Residential	10,595	6,707	3,888						
Commercial	2,186	1,400	786						
Industrial	3,678	1,127	2,551						
Agricultural	10,916	384	10,532						
Special use	1,352	811	541						

For the industrial land development calculations, it is more prudent to use the employment growth rate than the population growth. As per the U.S. Census Bureau information, the work force in the City of Enid has grown from 19,100 to 20,680, equivalent to 0.84% annual growth between the year 1990 and 2000. Assuming 1% employment growth rate, in the design year 2030 there will be a 30% aggregate industrial growth. However as the nature of the new industries and their water consumption and wastewater production rates are highly variable, this report assumes development of all undeveloped area within industrial land use category (100% development). This allows for conservative projection of industrial flows and provides flexibility in allowing diverse nature of industries within the City.

WASTEWATER CHARACTERISTICS AND PLANT FLOW PROJECTION

It is important to determine the flow rates and understand the nature of wastewater in order to evaluate the existing wastewater treatment facility and propose alternative treatment technologies appropriate for the City of Enid. The wastewater treatment facility plant records were evaluated to determine the historic loadings for flow, organic, suspended solids, and ammonia nitrogen. This information was then used along with population projections, land use and future industrial users information to determine the design loadings.

Flow Analysis

Plant flow records for the years 1996 through 2004 were obtained from the plant operations staff. Daily average wastewater flows (DAF) have fluctuated for the past nine years with the years 1999 and 2003 being the highest at 9.44 MGD and lowest with 5.91 MGD, respectively. Wastewater flows (DAF) for the past nine years have averaged 6.92 MGD with a standard deviation of 1.02 MGD.

The total per capita wastewater generation rate (GPCD) have fluctuated for the past nine years with the years 1999 and 2003 being the highest at 209 GPCD and lowest with 127 GPCD, respectively. The per capita wastewater generation rate for the past nine years has averaged 151 GPCD.

Our review of the available population and community development data indicated that the City's population tends to be relatively stable and there has been a steady reduction in the wastewater flow rate over the past five (5) years. The review of the existing documents indicate that the City has studied the effect of infiltration and inflow (I/I) on its collection system and implemented an aggressive program to

significantly reduce those flows. If these I/I control strategies continue to be implemented, the DAF to the facility and per capita generation rate should stabilize and may actually decrease. Since the City's implementation program to correct I/I in the collection system (years 2000 to present) the per capita flow have decreased and stabilized at an average of 133 GPCD. Therefore, for the purposes of this study, the average per capita wastewater generation rate of 130 GPCD has been assumed in addition to any anticipated future industrial flows.

It is also important to determine the peaking factors for the influent wastewater. Peaking factors are used to determine the size of the various treatment processes. Our review of historical flow data related to peaking factors for the total service area revealed that the average peaking factors for the maximum month and maximum day for the past nine (9) years are 1.14 and 1.51, respectively. For the purposes of this report, the peaking factor used for maximum month and maximum day are 1.25 and 2.0, respectively.

The City of Enid has eleven (11) major institutions/hospitals or industries within its drainage boundary. Their combined average flow discharge to the City's collection system is about 0.726 MGD at an average Five Day Biochemical Oxygen Demand (BOD₅) concentration of 645 mg/l and Total Suspended Solids (TSS) of 389 mg/l. Land use map for the City of Enid for the year 2025 classifies about 3,678 acres of land for industrial development. Currently, existing industries occupied 1,127 acres of land leaving approximately 2,551 acres for future industrial development. Non-domestic wastewater flow rates from industrial sources vary with the type and size of industry, the degree of water reuse, and onsite wastewater treatment methods, if any. Typical design values for estimating the flows from industrial areas that have no or little wet-process type industries are 1,000-1,500 gal/acre-day for light industrial developments. Typical design values for medium industrial developments are 1,500 to 3,000 gal/acre-day. Currently, average wastewater contribution from the existing industries is estimated to be 643 gal/acre-day. As the natures of future industries are unknown, this report assumes a design value of 1,200 gal/acre.day for future industrial flow projection.

Conversations with City of Enid staff have indicated that one of the existing industries, Advance Food is planning to expand in 2007. The City also anticipates the establishment of two new Ethanol plants in the area. Expansion of Advance Food industry will likely discharge an additional flow of 0.5 mgd at 664 mg/l BOD5 and 382 mg/l TSS by year 2007. The proposed discharges from new Ethanol plants are expected to be 0.144 MGD and 0.15 MGD respectively at the concentration of 1,000 mg/l BOD5 and 350 mg/l TSS in the year 2008.

Analysis of wastewater characteristics

The City conducts extensive measurements of influent wastewater quality prior to the existing WPCF. These influent quality parameters include Five Day Biochemical Oxygen Demand (BOD₅), Total Suspended Solids (TSS), Ammonia (NH₃), Dissolved Oxygen (DO), and Total Alkalinity. The influent wastewater quality data reveals that the average per capita BOD₅ in the past nine (9) years is 0.30 lbs per capita per day. The per capita BOD₅ loading for domestic wastewater is typically in the range of 0.18 to 0.26 pounds (lb) of BOD₅ per capita per day. This suggests that there is significant BOD₅ loading from industrial sources.

The per capita suspended solids and total kjeldahl nitrogen (TKN) loadings for domestic wastewater are typically in the range of 0.20 to 0.33 and 0.022 to 0.044 lbs per capita per day, respectively. The influent data for the past nine (9) years reveals that the average per capita loadings of suspended solids and ammonia nitrogen in influent wastewater are 0.314 and 0.019 lbs per capita per day, respectively. The suspended solids and nitrogen loading in the influent wastewater are within suggested normal range.

The BOD5 concentration for an equivalent flow of 130 GPCD and a BOD5 loading of 0.302 lb per capita per day equates to 278 mg/l. The suspended solids concentration for the same flow at per capita solids loading of 0.314 lb per capita per day is 289 mg/l. The ammonia nitrogen concentration for the equivalent flow of 130 GPCD at 0.019 lb per capita per day equates to 17 mg/l.

Based on the analysis of influent loadings as presented above, this master plan will use the concentrations of BOD5, TSS and ammonia nitrogen as 300 mg/l, 300 mg/l and 25 mg/l respectively for the purpose of evaluating possible treatment alternatives.

Wastewater Flow Projection for Year 2030

Based on an analysis of the flow information presented above and the additional anticipated growth, the design information that will be used for evaluation of treatment alternatives is summarized in **Table ES 1-2.**

TABLE ES 1-2: Wastewater Flow Projection for Year 2030						
Estimated Population	54,638					
Design Per Capita for Wastewater Generation	130 GPCD					
Domestic Wastewater Flow	7.10 MGD					
Industrial Flow Advance Food Plant Expansion Ethanol Plant (OE) Ethanol Plant (Orion) From Future Industrial Growth (2551 acres @ 1200 gpd/acres)	0.50 MGD 0.15 MGD 0.15 MGD 3.06 MGD 3.86 MGD					
Average Daily Wastewater Flow	10.96 MGD					
Maximum Month Flow (factor 1.25)	14.00 MGD					
Peak Daily Flow (factor 2.0)	28.00 MGD					
Influent BOD5	300 mg/l					
Influent TSS	300 mg/l					
Influent NH4-N	25 mg/l					

EFFLUENT DISCHARGE LIMITATIONS

The Oklahoma Department of Environmental Quality (ODEQ) has issued an OPDES permit to the City of Enid on August 1, 2003. The current discharge permit will expire on July 31, 2008. The OPDES permit is based on a plant design flow of 8.5 MGD and allows the treatment facility to discharge the effluent through two outfalls into Boggy Creek.

EXISTING WASTEWATER TREATMENT EVALUATION

The City of Enid Wastewater Treatment Facility began its operation in 1954 with an initial capacity of 3.5 MGD conventional activated sludge plant, known as South Plant. In 1970, the City of Enid expanded its treatment facility to 8.50 MGD by building another 5.0 MGD conventional activated sludge plant known

as North Plant to the north of the existing 3.5 MGD South Plant. In 1991, the City of Enid built a 8.50 MGD Tertiary Treatment Plant for the removal of ammonia nitrogen from the effluent produced from the North and South Plants. The 1991 plant improvements also included upgrading of the existing sludge processing facilities. With the series of improvements described above, the existing wastewater treatment plant has a designed capacity of 8.50 MGD.

Plant Headworks

The plant headworks consist of two aerated grit chambers, two screen channels, a parshall flume and a lift station. The headwork units are designed for a peak flow of 21 MGD and split the flow to the North and South plants. The available capacities of individual treatment units are evaluated based on the current ODEQ regulations and standard design criteria and are presented in **Table ES 1-3**. In general, all units in the headworks appear to be in poor conditions. Some of the units like bar screen and parshall flume do not meet current design criteria. The plant headworks may require either major rehabilitation or replacement to meet the proposed flows in future.

South Plant

The South Plant was constructed in 1954 and consists of two primary sedimentation tanks, two aeration tanks, two secondary sedimentation tanks and other associated appurtenances such as air diffusers, blowers, sludge pumps, etc. The available capacities of individual treatment units are evaluated based on the current ODEQ regulations and standard design criteria and are presented in **Table ES 1-3**.

The Plant has operated well beyond its life expectancy without significant maintenance and improvements performed to its treatment units and equipment. The current improvements to the South Plant undertaken by the City of Enid are very critical to handle the current flow as well as industrial growth expected in near future and will extend the life of this plant for few more years before it is replaced.

North Plant

The North Plant was constructed in 1970 and consists of two primary clarifiers, two aeration tanks, two secondary clarifiers and other associated appurtenances such as air diffusers, blowers, sludge pumps, etc. The available capacities of individual treatment units are evaluated based on the cnrrent ODEQ regulations and standard design criteria and are presented in **Table ES 1-3**.

In regard to the condition of the North Plant, this facility was constructed in 1970 and has been in operation for over 30 years. The Plant is currently operating well even though it is operated well over its rated capacity (4.62 MGD). With some structural repairs to the walls of the primary clarifiers and the ongoing maintenance program for replacing worn out parts. The North Plant could have a useful life of another 10 to 15 years without major significant improvements.

Nitrification Plant

The Nitrification Plant was built in the year 1991 and was designed to treat 8.5 MGD of secondary treated effluent from the North and South Plants for the removal of ammonia nitrogen. The Nitrification Plant consist of a nitrification basin, four rectangular clarifiers and other associated appurtenances such as lime and methanol feeders, disc aerators, sludge pumping etc.

Table ES 1-3 Summary of Treatment Capacity and Condition of Major Liquid Process Treatment Units									
Unit Process	No. of units	Design Capacity		Treat Capaci ODEQ	ment ty, per criteria	Condition Rating			
		Ave. MGD	Peak MGD	Ave. MGD	Peak MGD	Peak MGD			
Headworks									
Grit chamber	2	-	21.0	-	21.0	Poor			
Bar screen	2	-	21.0	-	17.0	Poor			
Parshall flume	1	-	21.0		15.9	Poor			
Lift station	-	-	21.0		21.0	Poor			
(two 75 HP & two 100 HP)									
North Plant					· ·				
Primary clarifiers	2	5.0	-	5.0	- 1	Fair			
Aeration basins	2	5.0	-	4.66	-	Fair			
Final clarifiers	2	5.0	- '	4.62	9.24	Fair			
South Plant									
Primary sedimentation tank	2	3.5	- ·	3.5	-	Fair			
Aeration basins	2	3.5		3.23	_ ·	Fair			
Secondary sedimentation tank	2	3.5	-	3.5	7.0	Fair			
Nitrification Plant									
Nitrification basins	1	8.5	-	8.5	-	Good			
Nitrification clarifiers	4	8.5	<u> </u>	8.5	-	Good			

Based on the above evaluation, the Nitrification Plant can handle the average daily flow of 8.5 MGD as designed. However, conversations with plant personnel have revealed that solids carry over occur when the plant flow exceeds 7 MGD. They also have experienced problems with the operation of the traveling bridge on the nitrification clarifiers, especially during snow and ice periods. The Nitrification Plant, in overall, needs some improvements to correct all operational problems.

Solids Handling Units

The solids handling facility at the City of Enid originally consists of two anaerobic digesters, two aerobic digesters, two one-meter belt presses, and forty (40) sludge drying beds (total drying bed area 68,700 square foot). These sludge handling units were constructed at different times, some in 1956, some in 1978 and the rest in 1991.

Due to the age and deterioration of many existing solids process units, the bio-solids treatment system at the treatment facility was in jeopardy of becoming non-complaint. Therefore, the City of Enid made major improvements to its bio-solids treatment system in 2006. The improvements to the bio-solids treatment system included selective demolition and improvements to the existing aerobic digesters and equipment, selective demolition and converting the existing anaerobic digesters to aerobic digesters and equipment, new blower facility, modification to the existing blower facility, a new 2 meter belt filter press

and dewatered sludge conveyors, improvements to the filter press feed pump system, polymer dosing system, flow measurement equipments, controls, yard piping, electrical and instrumentation work, and other appurtenances. With the completion of these improvements, the solids handling capacity of the treatment facility will increase to about 15,490 pounds/ day on dry solids basis which is equivalent to solids produced from treating wastewater flow of about 10 MGD at the exiting liquid process treatment units.

EVALUATION OF EXISTING COLLECTION SYSTEM AND RECOMMENDED IMPROVEMENTS

Existing Collection System

The City of Enid sanitary sewer collection system for the study area is hydraulically divided into two watersheds, Watershed No. 1 and Watershed No. 2. Watershed No. 1 contains sixteen (16) collection basins which have been designated (1A) through (1P). Watershed No.2 contains eleven (11) collection basins which have been designated (2A) through (2K). All discharges in to the city collection system are conveyed to the City Water Pollution Control Facility located in the extreme southeast corner of the City.

A total of eleven (11) pump stations and force mains are located on the City of Enid's sanitary sewer collection system. Of the eleven (11) pump stations, only the pump station located at 541 South 54th Street appears on the model. The remaining pump stations either exist outside the mapped parameters of the City of Enid's sanitary sewer basins or are located far upstream and utilized for isolated residential districts and therefore, these pump stations are inconsequential to the system.

A total of three (3) modeled wet weather peak holding facilities are located in the City of Enid. The first holding facility is located at 658 West Willow on the 1-O line and a second facility is located at 1901 East Randolph on the 1-C line. Both facilities were modeled as a 500,000-gal. facilities with appropriate control structures. The third holding facility is located at the City of Enid's sanitary sewer treatment plant for wet weather overflow. The sanitary sewer department estimates the volume of this holding basin to be approximately 280-ac-ft.

Flow Metering and Analysis

For the determination of inflow and infiltration (I/I) in to the collection system, Flo Tote sanitary sewer monitoring devices were utilized to measure the flow at strategic locations throughout the City of Enid for both dry and wet weather conditions. The flow meters were initially placed on trunk and secondary trunk lines. As flow information was assimilated, the flow meters were relocated to tertiary lines that were suspected sources of inflow and infiltration.

The flow-monitoring program provided both dry and wet weather flows. Each meter remained in-place until the line experienced a significant wet weather flow before being relocated to isolate the suspected sources of inflow and infiltration. This data was utilized in conjunction with a hydraulic model to predict sanitary sewer flows throughout the City of Enid. In addition, the City of Enid provided the daily sanitary sewer treatment rates (i.e., amount of treated sewage from all sources) which are on file at the City of Enid's 54th Street treatment facility. For the project's duration, the facility treated an average of 6.8 MGD of sanitary sewage.

The City of Enid's sanitary sewer system was modeled utilizing the United States Environmental Protection Agency Sanitary Water Management Model (USEPA SWMM) (version 5.0.011), based on sanitary sewer collection system data and calculated dry flow usage rates provided by the City of Enid.

Following completion of the SWMM model, the model was calibrated utilizing flow documentation recorded by the Flo Tote sanitary sewer monitoring devices.

Adequacy of Existing System

An analysis of the SWMM model pipeline was conducted to identify problem areas during both dry and wet weather flow conditions. Although the current system is old, it is in a fairly well-preserved condition. Much of the system continues to receive less than 200-gal./pipe dia./mi./day of infiltration. With the exception of a few isolated lines, infiltration exceeds 200-gal./pipe dia./mi./day by relatively small amounts. Additional sanitary sewer investigations will assist in decreasing the amount of inflow and infiltration into the system. However, some upgrades are necessary in the immediate future to accommodate wet flows and new industrial flows as the City of Enid develops.

Dry Flow Condition Analysis:

During periods of no precipitation, Line 1 Basin A (1A) and Line 1 Basin P (1P) pipes appear to be flowing at or near capacity and therefore, the City of Enid intends to construct an additional pipeline adjacent to the current 1P pipe for increased flow capacity. Although the 1A pipeline performs at or above capacity during dry flow conditions, plans should be implemented to increase this pipeline's capacity as well.

There is some confusion regarding the 1N pipeline that extends toward North Enid. Two (2) lines converge in the vicinity of the 1N008 manhole, but neither City of Enid nor ENVIROTECH engineers could determine the exact path of the sanitary sewer manholes. In the current model set-up, the manhole connecting the two (2) branches of the 1N pipeline surcharges during dry flow conditions.

The 1N pipeline in the vicinity of North Van Buren receives inordinately high flow rates for the businesses and residents served in the area. This pipeline was recently upgraded to accommodate these higher flow rates. Although an additional investigation may help identify the source of these flows, the new pipeline can adequately manage these higher flow rates.

The 1-J pipeline trunk line flows above capacity during dry periods. Both the 1-J and 1-K Basins feed this pipeline. Plans should be made to increase the capacity of this pipeline.

Wet Flow Condition Analysis:

During precipitation events, flows in the sanitary sewer pipelines greatly increase due to Inflow and Infiltration (I/I). According to the wet condition model, the capacity of most pipelines is sufficient to accommodate the increased flow rates. However, flow back-ups occur in the 1A and 2A pipelines due to sanitary sewer treatment plant and pipeline capacity limitations associated with the additional flows. Due to the increased flows, additional back-ups will also occur in lower portions of the 1B, 1D, and 2B pipelines.

The 1N pipeline appears to experience additional surcharging during storm events in addition to the surcharging experienced during dry events. In addition, the 1-J pipeline remains surcharged for extended periods during wet events due to increased flow.

Inadequacies in the Existing System:

Currently, the City of Enid's sanitary sewer collection system experiences an annual peak dry flow of approximately 7-MGD. Several collection basins exhibit the need for investigation, rehabilitation, or increased capacity.

Currently, the 12-in. trunk line serving the 1P Basin is operating at capacity and therefore, system expansion should be considered to allow for continued growth in east Enid. Therefore, we recommend construction of a second, minimum 24-in.-dia. pipeline adjacent to the existing 12 in. dia. pipeline. This upgrade will accommodate flows from both the uew Advanced Foods facility and Ethanol plants. The cost for this upgrade will be approximately \$2.5 million.

The City of Enid has experienced overflow events in the 1A and 2A pipelines near the WPCF at Boggy Creek. Based on both the physical evidence and SWMM modeled flows, this treud will continue to occur and therefore, construction of a peak flow holding tank appears to be the most effective solution. Although additional study and design is necessary, we recommend utilizing the old sanitary sewer treatment facility as an appropriate site. The overflow tank's capacity should be approximately 800,000-gal. and the cost is estimated to be \$1.5 million.

The 1-J pipeline flows above capacity during dry periods and remains surcharged for long periods during wet events. Therefore, ENVIROTECH recommends that an investigation of the I/I sources utilizing smoke testing, door-to-door surveys, and video mouitoring, where appropriate, be conducted. In addition, the pipe capacity needs to be expanded and may include a few small pipe and manhole replacements to the entire pipeline replacement. Based on the results of the I/I study, this project will cost between \$100,000 and \$600,000.

Basin 2H receives little inflow during small storm events and exceedingly high amounts of inflow during large events. Since the pipeline is located near a stormwater channel, a possibility exists that the line is receiving inflow from the channel. Therefore, we recommend that a more detailed I/I study be conducted in this basin to include smoke testing and video monitoring, where appropriate.

The exact configuration of Basin 1N near the confluence with the 24-in. cross-town main is not known. In addition, the 1N basin receives high amounts of inflow during storm events. Therefore, we recommend that a more detailed investigation of the 1N basin be conducted to include smoke testing, door-to-door surveys, and video monitoring, where appropriate.

Basins 2G and 2K receive higher than EPA recommended rates of infiltration. Therefore, we recommend conducting additional sanitary sewer inflow and infiltration investigations in these basins to include smoke testing and video monitoring, where appropriate.

Future Collection System Evaluation

Recent trends in the City of Enid's expansion efforts reflect growth to the east, northwest and west, with each direction of growth representing a different type of development. Industry in east Enid has expanded as a result of construction of the Advanced Foods Processing Plant and the proposed Ethanol production facilities. Residential development is steadily expanding northwest of Enid while a combination of commercial and residential development dominates westward expansion along Owen K. Garriott Road. As a result of this growth, recommendations for expanding the affected sanitary sewer basins are summarized in the following sections of this report.

Hydraulic Capacity Evaluation - Year 2010 (9-MG)

Basins 2H and 2K Expansion Recommendations: Residential expansion northwest of Enid poses minimal short-term problems regarding the sanitary sewer system's capacity. Although Basins 2H and 2K have not yet reached total flow volume capacity, additional residential growth may require system expansion in the future. Expansion recommendations for Basins 2H and 2K are as follows:

BASIN 2H. Since several collection lines will eventually reach capacity, alternative collection lines may be required to service the expanding community. The 12-in. line that services Subbasin 2H-2 will most likely reach capacity and subsequently, the 18-, 21-, 24- and 27-in. collection pipelines will also near capacity. In addition, some of these lines may require improvement. The cost to upgrade the 12-in. pipeline alone is estimated to be \$500,000. Additional upgrades to the 18- and 21-in. collection pipelines will cost approximately \$1.3 million.

BASIN 2K. The 12-in. collection line that services Basin 2K and flows north-south down Cleveland Road will eventually reach capacity. This will subsequently affect the same 24- and 27-in. collection lines referenced above for Basin 2H, resulting in surcharging and backup in the pipelines. Depending upon peak flow rates, the 30-in. Frantz Street line may also require improvement. The cost to upgrade the 12-in. pipeline is estimated to be \$1.3 million. Additional upgrades to the 24- and 27-in. pipelines will cost approximately \$1.8 million. The cost to improve the 30-in. Frantz Street pipeline is estimated between \$2 million and \$7 million, depending on the extent of pipeline replacement required.

Basin 2G Expansion Recommendations. Continued commercial and residential growth westward along Owen K. Garriott Road may be impeded by the existing sanitary sewer system that services this area. Currently, the Basin 2 pipeline that transverses the southern portion of the City has sufficient capacity to easily accommodate expansion both west and northwest of Enid. However, once the pipelines reach Oakwood Road, the sizes decrease to 12- and 8-in.-dia. beyond Bob's Farm residential development. Therefore, it is recommended that the pipeline network capacity be expanded from the Bob's Farm complex westward along Oakwood Road to accommodate additional growth. This can be accomplished by either expanding the 12-in. pipeline that services Bob's Farm further west, or installing a second 12-in. pipeline westward on the north side of Owen K. Garriott Road. The cost to complete this work is estimated to be \$800,000. In addition, the 12- and 18-in. collection pipelines that service the Bob's Farm pipeline will require improvement. The cost to upgrade the 12- and 18-in. collection pipelines is estimated to be \$2 million.

Hydraulic Capacity Evaluation - Year 2015 (11-MGD)

In the event the City of Enid continues to develop/expand and flows increase to 11-MGD, several of the main lines will begin to back-up and flows will push into residential lines. Most lines above 18-in.-dia., including some select lines below 18-in.-dia., will require upgrading to accommodate the increased flows. Alternatively, additional collection lines paralleling existing lines would be required to alleviate the increased flows.

These upgrades represent improvements that must be made to the system in addition to those already summarized above.

Sanitary Sewer Main Expansion: Several sanitary sewer mains that transverse the City will experience increased flows and therefore, many will need to be replaced and include (a) 1A and 2A main lines south

of the City; (b) north-south 36-in. main from 11TH Street to Van Buren and Willow; (c) Frantz Street 30in. cross-town main; and (d) 2D line servicing Vance Air Force Base (VAFB). The cost for this expansion is estimated to be in the \$20 million range.

The secondary collection pipelines that will require improvements are as follows:

The Oakwood pipeline will require an additional \$1 million expansion north of Owen K. Garriott Road.

The north-south 36-in. main will require that a collection pipe be extended to the north along Van Buren. This line will most likely require construction of an additional pump station and therefore, the expansion will cost approximately \$2.5 million.

The 1N pipeline will require improvement, both east and north, at an approximate cost of \$2 million.

The Basin 2D 10-in. pipeline that services southeast Van Buren will require improvement at an approximate cost of \$2 million.

Although additional flows north of Basin 1C will burden the existing pipelines, they should maintain below full-capacity.

Peak Storage Basins: As a result of high flow rates, the occurrence of stormwater seepage will be significant and therefore, construction of two (2) additional stormwater peak storage basins should be considered. One (1) tank should be located on south Cleveland Road where the Oakwood and Cleveland sanitary sewer systems converge; and the second tank should be located where the 2D and 2A pipelines merge. Each facility should detain approximately 800,000- to 1-million-gal. Estimated Cost to Construct Both Facilities will be \$4 million.

WASTEWATER TREATMENT SYSTEM ALTERNATIVES AND RECOMMENDED IMPROVEMENTS

The wastewater treatment system alternatives are developed based on the needs identified during the analysis and evaluation of previous reports and facility plans, the inspection and evaluation of the existing units and facilities at the Water Pollution Control Facility, and interviews/meetings with City personnel.

Description of Alternatives

The alternatives are developed with the objective of meeting the projected design capacity of the WPCF for the year 2030 is 14 MGD. The projected design capacity for the years 2010, 2015 and 2020 will be 9.00 MGD and 10.50 MGD and 12.00 MGD, respectively. The above projection include domestic flows from projected population, future flows from the expansion of Advance Foods, two new Ethanol Plants and other industries which are unknown at this time. The options for Plant expansions will be phased in stages that provide flexibility during expansion. The alternatives were developed based on the premise that the existing WPCF with the exception of bio-solids processing facility will be decommissioned either in 2010 or in 2020 after utilizing its useful life. The existing renovated sludge processing facility capable of processing the sludge generated from a 10 MGD wastewater treatment facility will be expanded to 14 MGD as and when necessary based on the plant capacity of the given alternative. The alternatives considered are as follows:

Option 1: New 14 MGD treatment facility

This Option consists of building a new 14 MGD treatment plant by in the year 2010 that would cater to the projected ultimate flow for 2030. The bio-solids processing facility would be expanded from the current capacity of 10 MGD to 14 MGD in the year 2020.

Option 2: New 14 MGD treatment facility with an ability to treat industrial wastes directly without pretreatment

This Option consists of building a new 14 MGD treatment plant to treat wastewater with a high organic loading. This Option was developed with the purpose of receiving the industrial wastes within the City without significant pretreatment. Option 2 is identical to Option 1 with the exception of its design to treat the high strength wastewater. Under this Option, the existing bio-solids processing facility will be upgraded immediately as a result of increased bio-solids production from the high strength wastewater.

Option 3: New 12 MGD treatment facility with expansion to 14 MGD

This Option consists of building a new 12 MGD treatment plant in the year 2010 and expanding to 14 MGD in the year 2020 to meet the projected ultimate flow. The expansion to 14 MGD and upgrading of the existing bio-solids processing facility will occur in year 2020.

Option 4: Using existing treatment facility and building a new 7 MGD treatment facility with expansion to 14 MGD

This Option consists of building a new treatment plant in two stages, 7 MGD treatment facility in the year 2010 and expanding it to 14 MGD in the year 2020. Building a first stage 7 MGD plant will allow for the replacement of existing headworks and South Plant. The second stage expansion to 14 MGD plant will allow for the replacement of existing North Plant and BNR Plant.

Option 5: New 9 MGD treatment facility for domestic flows and a separate new 5 MGD treatment facility for industrial flows

This Option consists of building two new treatment plants at two different sites, the first, a new 9 MGD treatment facility in the year 2010 for treating domestic flows and a second a 5 MGD treatment facility in the year 2010 for treating industrial flows.

Option 6: New 9 MGD treatment facility for domestic flows and a separate new 2.5 MGD treatment facility for industrial flows with expansion to 5 MGD

This Option is similar to Option 5 except that the 5 MGD treatment facility for industrial flows is expanded in two stages of 2.5 MGD (2.5 MGD each, in the year 2010 and 2020 respectively) treatment capacity each.

Evaluation of Alternatives

The Options developed in the previous sections were presented to the City staff and after discussions on each of these Options, the following three (3) Options to proceed further with detailed analysis.

CABLE ES 1-4: Top Selected Options for Detailed Analysis.	

Option	Description
1	New 14 MGD treatment facility
3	New 12 MGD treatment facility with expansion to 14 MGD
4	Using existing treatment facility and building new 7 MGD treatment facility with expansion to 14 MGD

Each of the selected Options in **Table ES 1-4** were further divided into two Options based on the two chosen process types namely, conventional activated sludge process and sequential batch reactor process, and analyzed in detail for capital and operation and maintenance costs. Process selection is very important step in the design of wastewater treatment plant as it provides an opportunity to implement the treatment system that suits local environmental conditions, construction and operation costs, energy considerations, operator's skills, process flexibility, etc. In this study, a conventional activated sludge process and sequential batch reactor process were considered and the top three selected options were expanded to six alternatives, each Option using two different processes, conventional activated sludge and sequencing batch reactor processes. These Options are as follows.

Option 1A: New 14 MGD treatment facility using conventional activated sludge process

This process is a two stage treatment process, first stage for BOD removal and the second stage for the removal of ammonia. The Option is designed to handle the projected ultimate design flow of 14 MGD, and replaces the existing WPCF facility in totality with the exception of the biosolids processing facility.

Option 1B: New 14 MGD treatment facility using sequencing batch reactor process

The designed capacity of this plant is the same as Option 1A except it uses SBR process. The BOD and ammonia removal are accomplished in several steps using the same basin/tank.

Option 3A: New 12 MGD treatment facility using conventional activated sludge process with expansion to 14 MGD

This Option uses conventional activated sludge process. The preliminary treatment unit consisting of screen, grit removal, parshall flume and lift station, primary clarifier and UV disinfection system are designed for an ultimate design flow of 14 MGD and the remaining treatment units are designed for 12 MGD with the Option to expand to 14 MGD in the year 2020. This Option also replaces the existing WPCF facility in totality with the exception of bio-solids processing facility.

Option 3B: New 12 MGD treatment facility using sequencing batch reactor process with expansion to 14 MGD

The designed capacities and expansion phasing of this Option is the same as Option 3A except it uses SBR process.

Option 4A: Using the existing treatment facility and building a new 7 MGD treatment facility using conventional activated sludge process with expansion to 14 MGD

This Option uses conventional activated sludge process. The preliminary treatment unit consisting of screen, grit removal, parshall flume and lift station, and UV disinfection system are designed for ultimate design flow of 14 MGD and the remaining treatment units are designed for 7 MGD with the Option to expand to them to 14 MGD in the year 2020. This Option will still use the North Plant until 2020. As a result it will require some rehabilitation work to existing primary and secondary clarifiers in the North Plant and construction of new nitrification clarifiers at existing BNR system.

Option 4B Using the existing treatment facility and building a new 7 MGD treatment facility using sequencing batch reactor process with expansion to 14 MGD

The designed capacities and expansion phasing of this Option is the same as Option 3A except it uses SBR process.

Summary of capital cost and operation and maintenance cost for each of the above six Options is shown in **Table ES 1-5**.

OPTION	DESCRIPTION	CAPITAL COST				O&MCOST			
in an in sugar Line sugar Augustan			2010		2020	2	010 - 2020 	2	020 - 2030
1A	14 MGD New Plant Conventional Activated Sludge Process	\$	48,316,100	\$	4,935,100	\$	1,717,680	\$	1,888,480
1B	14 MGD New Plant SBR Process	\$	46,580,700	\$	4,935,100	\$	1,442,030	\$	1,612,830
ЗА	12 MGD New Plant Conventional Activated Sludge Process W/ Expansion to 14 MGD	\$	42,796,500	\$	11,077,500	\$ \$	1,514,290	\$	1,888,480
3B	12 MGD New Plant SBR Process W/ Expansion to 14 MGD	\$	42,121,600	\$	9,430,200	\$	1,289,790	\$	1,612,830
4A	Using Existing Treatment Facility and building new 7 MGD New Plant Conventional Activated Sludge Process W/ Expansion to 14 MGD	\$	33,039,300	\$	26,421,000	\$	1,627,910	\$	1,888,480
4B	Using Existing Treatment Facility and building new 7 MGD New Plant SBR Process W/Expansion to 14 MGD	\$	31,930,500	\$	24,026,400	\$	1,577,340	\$	1,612,830

TABLE ES 1-5: Summary of capital and operation and maintenance cost

From the capital and operations costs listed in **Table ES 1-5**, the Present Worth Cost for each Option was calculated. A summary of the Present Worth Costs can be seen below in **Table ES 1-5**. The following assumptions were used in the Present Worth Cost Analysis.

- 1. Present Worth Analysis was performed for the year 2006
- 2. Evaluation period used is 20 years, between years 2010 and 2030
- 3. Capital costs were expected to occur in two stages, year 2010 and 2020. Capital cost for the year 2020 includes additional expansion to meet the ultimate condition.
- 4. Annual operations and maintenance costs were divided in to two time periods, one for the period 2010-2020 and the other for the period 2020-2030 as the expansion at 2020 would increase the operation and maintenance cost.
- 5. Inflation factor of 4.5% per year was used for Present worth Analysis.

TABLE ES 1-6: Summary of present worth cost

Option	Description	Present Worth Cost
1 A	14 MGD New Plant Conventional Activated Sludge Process	\$ 62,646,975
1 B	14 MGD New Plant SBR Process	\$ 58,184,959
3 A	12 MGD New Plant Conventional Activated Sludge Process W/ Expansion to 14 MGD	\$ 59,985,628
3 B	12 MGD New Plant SBR Process W/ Expansion To 14 MGD	\$ 55,862,804
4 A	Using Existing Treatment Facility and Building a 7 MGD New Plant Conventional Activated Sludge Process W/ Expansion to 14 MGD	\$ 60,842,593
4 B	Using Existing Treatment Facility and Building a 7 MGD New Plant SBR Process W/ Expansion To 14 MGD	\$ 57,106,473

Normally the recommended alternative selection is based upon the Present Worth Cost Analysis described and summarized above. The Present Worth Cost information presented in **Table ES 1-6**, worth indicates that Option 3B has the lowest present worth cost among all of the alternatives evaluated. Therefore it is recommended that Option 3B be considered by the City of Enid for implementation. This Option is discussed in more detail in the following section.

Recommended Alternative

The recommendations below are based on an extensive evaluation of the existing treatment units and the introduction of new treatment concepts. During this evaluation, the basis for selection was the cost

effectiveness of the system process. Generally, the alternative with the lowest present worth cost was recommended. In this evaluation, *Option 3B* has the lowest present worth cost, and therefore fore it is recommended that *Option 3B* be considered by the City of Enid for implementation.

The proposed improvements under *Option 3B* will provide the City of Enid Water Pollution Control Facility with the following attributes:

- Replaces the existing WPCF facility in totality with the exception of the bio-solids processing facility;
- Less / no disruption to current plant operations while new facility is being built;
- Improved effluent quality;
- Elimination of primary, secondary clarifiers and return sludge recirculation, elimination of short circuiting;
- Ability to handle shock in hydraulic and organic loading;
- Ability to remove nutrients;
- Easy to expand and replicate the additional reactors;
- Less land requirements than other processes.

The improvements recommended under *Option 3B* consist of expanding the plant in two stages as follows:

Improvements at 2010:

- New headworks including screening, grit removal and flow measurement to handle ultimate peak flow of 28 MGD;
- New low lift pump station to handle ultimate peak flow of 28 MGD;
- SBR reactors to treat an average daily flow of 12 MGD;
- New sludge holding basins;
- Disinfection system;
- Effluent flow measurement structure;
- Influent/effluent outfall; site work, piping, electrical, instrumentation & controls;
- Decommissioning of the existing WPCF facility in totality except bio-solids processing facility.

Improvements at 2020:

- One additional SBR reactor to increase the design capacity of the SBR reactors from 12 MGD to 14 MGD of average daily flow;
- Expanding the capacity of the existing bio-solids processing facility from 10 MGD to 14 MGD by building two new aerobic digesters and additional dewatering system consisting of belt press, polymer dosing system, sludge conveyor, etc.;
- Sitework, piping, electrical, instrumentation & controls.

The approximate capital construction cost to build all recommended improvements has been estimated to be \$42,121,600 and \$9,430,200 for the years 2010 and 2020, respectively. **Table ES 1-7** shows the breakdown of these estimated capital costs for the recommended improvements. The estimated construction costs are based on August 2006, Engineering News Record (ENR) construction cost index (7722).

Unit Description	Capital Construction Cost				
	2010	2020			
Mobilization	\$ 773,900	\$ 224,800			
Sitework	\$ 2,220,600	\$ 680,600			
Headworks					
Screening	\$ 510,400	-			
Grit Removal	\$ 783,100	-			
Parshall Flume	\$ 240,500	-			
Low Lift Pump Station	\$ 1,383,900	• · · · ·			
SBR Reactors	\$ 16,590,200	\$ 2,370,100			
Sludge Holding Basins	\$ 1,174,100				
Disinfection System	\$ 1,975,300	-			
Aerobic Digesters	-	\$ 1,295,800			
Dewatering System	-	\$ 1,200,300			
Electrical	\$ 2,251,500	\$ 608,800			
Instrumentation & Controls	\$ 1,187,700	\$ 293,600			
Piping	\$ 2,560,000	\$ 580,000			
Influent / Effluent outfall	\$ 750,000	-			
SUB TOTAL	\$ 32,401,200	\$ 7,254,000			
Non-Construction Cost (15%)	\$ 4,860,200	\$ 1,088,100			
Contingency (15%)	\$ 4,860,200	\$ 1,088,100			
TOTAL	\$ 42,121,600	\$ 9,430,200			

 TABLE ES 1-7: Capital construction cost for recommended alternative, Option 3B

The annual operation and maintenance cost for the years 2010-2020 and 2020-2030 are \$1,289,790 and \$1,612,830 respectively.

SUMMARY OF RECOMMEDED IMPROVEMENTS

To guide the City of Enid in implementation of recommended improvements, the phasing and cost for recommended improvements are summarized and is shown in **Table ES 1-8**. The improvements shown are based on the evaluation of the existing system and the projected future needs. As with any master plan, as the city grows and the needs change, the master plan should be continually updated to accommodate such changes.

TABLE ES 1-8: Summary of recommended improvements

IMPROVEMENT DESCRIPTION		ESTIMATED COST INVESTMENTS						
		2007		2010		2015		2020
Wastewater Treatment System Improvements						_		
Construction of new 12 MGD wastewater treatment system			\$ 4	42,121,600				
Expansion to 14 MGD							\$	9,430,200
Wastewater Collection System Improvements								
Basin 1P Expansions								
Construction of new 24-inch line	\$	2,500,000						
Basin 1A and 2A Peak Holding Tank								
Peak holding tank, 800,000 gallon	\$	1,500,000	l]	
Basin 1J and 1K Expansions	\$	300,000		· .	ļ			
Basin 2H and 2K Expansions							1	
Basin 2H - 12 inch line upgrade			\$	500,000	l			
Basin 2H - 18 and 21 inch line upgrade			\$	1,300,000				
Basin 2K - 12 inch line upgrade			\$	1,300,000	1			
Basin 2K - 24 and 27 inch upgrade		2	\$	1,800,000				
Basin 2K - 30 inch Frantz Street pipeline	.		\$	4,000,000				
Basin 2G Expansions		- 1			ļ		1	
12 inch line westward on north of Owen K. Garriot Road	1		\$	800,000				
12 and 18 inch line upgrade - Bob's Farm			\$	2,000,000			1	
Sanitary Sewer Main Expansion	1				\$ 2	20,000,000		
1A and 2A main lines south of City			Ì		1			
North-south 36-in. main (11TH Street to Van Buren & Willow)			1			· .		
Frantz Street 30-inch cross-town main	·						1	
2D line servicing Vance Air Force Base (VAFB).					ľ			
Sanitary Sewer Collection Mains					1:			
Oakwood pipeline					\$	1,000,000		
North-south 36-inch extension (along Van Buren)			1		\$	2,500,000		
1N pipeline improvement			1		\$	2,000,000		
Basin 2D 10-inch pipe improvement (southeast of Van Buren)					\$	2,000,000		
Peak Storage Basins								
South Cleveland Road			ļ		\$	2,000,000		
At 2D and 2A pipeline merge	ļ				\$	2,000,000)	-
· · · · · ·								

EVALUATION OF THE EXISTING WATER POLLUTION CONTROL FACILITY

INTRODUCTION

The purpose of this technical memorandum is to summarize the work efforts performed in connection with the evaluation of the existing City of Enid Water Pollution Control Facility (WPCF). This technical memorandum will also serve as a basis for the development of treatment alternatives during this study. The specific components of this technical memorandum include a review of the plant records, an analysis of wastewater flows and its characteristics, limitations on the effluent discharges and evaluation of existing liquid treatment and sludge treatment units.

In preparation for this task, previous documents were reviewed for background information and they are listed below:

- Facility Plan Wastewater Collection and Treatment System, Eagle Consultants, Inc., April 2000
- Wastewater Facility Plan for Bio-Solids System, Dewberry, April 2004
- Enid Metropolitan Area Comprehensive Plan, Enid Vision 2025 Committee, April 2005
- Sanitary Sewer Collection System Study Final Report Phase III and IV, Wilson & Company, July 1990
- Inflow and Infiltration Program: 1990-1993 Summary Report, Envirotech Services, Inc., August 1993
- Sanitary Sewer System Master Plan, City of Enid Engineering Department, January 1996
- Year 2000 Flow Monitoring Report, Rowe Porterfield, LLC, July 2000
- Chapter 656. Water Pollution Control Facility Construction Standards, Oklahoma Department of Environmental Quality, 2001.

STUDY AREA

The City of Enid is located in the north central part of Oklahoma in the Garfield County along the eastern edge of the Great Plains as seen in **Figure TM 1-1**. The study area consists of the incorporated limits of the City of Enid and those unincorporated areas that drain or utilize the City's sanitary sewer collection system. The sanitary sewer collection system for the study area is hydraulically divided into two watersheds, Watershed No. 1 and Watershed No. 2. Watershed No. 1 contains sixteen collection basins

Figure TM 1-1: Enid Location Map

which have been designated (1A) through (1P). Watershed No.2 contains eleven collection basins which have been designated (2A) through (2K). The location and boundaries of the 27 collection basins are illustrated on the basin location map presented in **Figure TM 1-2**. All discharges in to the city collection system are conveyed to the City Water Pollution Control Facility located in the extreme southeast corner of the City.

The topography of the study area varies from gently rolling to flat prairie. Drainage ways regularly dissect the level prairie at approximately mile intervals. The predominant drainage direction is from northwest to southeast. The major streams in the county generally have wide floodplains of up to 2 miles. The elevation in the County varies between 1300 feet to 1100 feet mean sea level.

The area's climate is sub-humid, continental and temperate with well defined seasons. The winter is cool to cold with average temperatures ranging from 50° F and 29° F for winter daily average and daily minimum, respectively, and a record low of -20° F. Likewise, the area's climate is hot in the summer with average temperatures ranging from 94° F and 70° F for summer daily average and daily minimum, respectively, and a record high of 118° F.

Average rainfall for the area is 29-inches and average snowfall is 8-inches. Rainfall is fairly constant throughout the year with 70 percent coming from April through September. The prevailing wind direction is from the south during the March to November time period with a significant northerly shift during the winter months. The highest monthly average is 13 mph during March and April. The yearly gross lake evaporation rate for the study area is 62-inches per year.

PLANNING HORIZON

The planning period or planning horizon is the time span over which the wastewater facility needs are forecasted. Therefore, proposed facilities are planned to meet the system's needs projected over the planning timeframe and the alternative's costs are amortized over this planning horizon which is typically referred to as the facility's life. Thus, the planning horizon is used as a method of equalization of the

various alternatives. It should be noted, the term "life" does not imply the useful life of the project, which is typically greater than the planning horizon.

Most utility master plans are prepared for medium-term planning horizons, which range from 20 to 25 years. This period is based on the longest term in which reasonable detailed forecasts for growth and capacity cau be made. For this facility plan the planuing horizon of 25 years has been chosen. Future wastewater loads and flows will be projected for the year 2030.

POPULATION PROJECTIONS

Our review of the available population and community development data indicated that the City's recent population is relatively stable. Population Projections were made utilizing the United States Census Bureau's data and growth rate used in Enid Metropolitan Area Comprehensive Plan 2000 - 2025. The projections were also compared with the Oklahoma Department of Commerce projections. The summary of this data is shown in **Table TM 1-1**.

· ·	Table TM 1-1 Population Projection									
Year	US Census Bureau Population		Oklahoma I of Com Proje	Department merce ctions	Projection for this Master Plan					
	Population	Percent increase	Population	Percent increase	Population	Percent increase				
1950	36,000									
1960	38,900	+ 0.81				ar en la compañía				
1970	44,986	+ 1.56								
1980	50,636	+ 1.26								
1990	45,309	- 1.06								
2000	47,045	+ 0.38								
2010			48,170	+ 0.24	49,451	+ 0.50				
2020		m	49,640	+ 0.31	51,980	+0.50				
2030			50,860	+ 0.25	54,638	+0.50				

For population projection, this report uses 0.005 rule adopted by Enid Vision 2025 Committee. The rule 0.005 assumes straight line growth compounded at one-half of oue percent per year. This is a reasonable assumption based on the recent trend in population growth and is not likely to change unless there are any significant shifts in the City's economic market sectors. The projection for the year 2030 based on this rule is 54,638 whereas the Oklahoma Department of Commerce projection for the same year is 50,860. This report will use the population figure of 54,638 for flow projections and wastewater facility expansious.

LAND USE MAP

Land use map for the Enid Metropolitan area as shown in the City of Enid Metropolitan Area Comprehensive Plan 2025 can be seen in **Figure TM 1-3**. Enid Metropolitan area includes area within the City limits as well as outside. Most of the land outside the City limits is designated as agricultural land. The developed and undeveloped area within the City limits as on July 2002 as shown in Enid Metropolitan Area Comprehensive Plan is tabulated below in **Table TM 1-2**.

Table TM 1-:	2: Developed Arc	ea within the City	as of July 2002
Land use	Total area (acre)	Developed (acre)	Undeveloped (acre)
Residential	10,595	6,707	3,888
Commercial	2,186	1,401	786
Industrial	3,678	1,127	2,551
Agricultural	10,916	384	10,532
Special use	1,352	811	541

For the industrial land development calculations, it is more prudent to use the employment growth rate than the population growth. As per the U.S. Census Bureau information, the work force in the City of Enid has grown from 19,100 to 20,680, equivalent to 0.84% annual growth between the year 1990 and 2000. Assuming 1% employment growth rate, in the design year 2030 there will be 30% aggregate industrial growth. However as the nature of the new industries and their water consumption and wastewater production rates are highly variable, this report assumes development of all undeveloped area within industrial land use category (100% development). This allows for conservative projection of industrial flows and provides flexibility in allowing diverse nature of industries within the City.

WASTEWATER CHARACTERISTICS

It is important to determine the flow rates and understand the nature of wastewater in order to evaluate the existing wastewater treatment facility and propose alternative treatment technologies appropriate for the City of Enid. The wastewater treatment facility plant records were evaluated to determine the historic loadings for flow, organic, suspended solids, and ammonia nitrogen. This information was then used along with population projections, land use and future industrial users information to determine the design loadings.

Flow Analysis

Plant flow records for the years 1996 through 2004 were obtained from the plant operations staff (See **Appendix TM 1-1**). Daily average wastewater flows (DAF) have fluctuated for the past nine years with the years 1999 and 2003 being the highest at 9.44 MGD and lowest with 5.91 MGD, respectively. Figure **TM 1-4** shows the actual fluctuation. Wastewater flows (DAF) for the past nine years have averaged 6.92 MGD with a standard deviation of 1.02 MGD.

The population of the service area for the years 1996 through 2004 and the per capita wastewater generation rate is shown in **Table TM 1-3**. The total per capita wastewater generation rate (GPCD) have fluctuated for the past nine years with the years 1999 and 2003 being the highest at 209 GPCD and lowest with 127 GPCD, respectively. The per capita wastewater generation rate for the past nine years has averaged 151 GPCD. It should be noted that this per capita wastewater generation rate includes residential, industrial and commercial wastewater as well as infiltration and inflow (I/I) into the collection system.

Our review of the available population and community development data indicated that the City's population tends to be relatively stable and there has been a steady reduction in the wastewater flow rate over the past five (5) years. The review of the existing documents indicate that the City has studied the effect of infiltration and inflow (I/I) on its collection system and implemented an aggressive program to significantly reduce those flows. If these I/I control strategies continue to be implemented, the DAF to the facility and per capita generation rate should stabilize and may actually decrease.

TABLE TM 1-3: Per Capita Wastewater Generation Rate							
Year	Total Service Population	Average Annual Flow (MGD)	Per capita flow rate (GPCD)				
1996	45,320	6.264	138				
1997	45,190	7.396	164				
1998	45,250	7.937	175				
1999	45,200	9.439	209				
2000	47,045	6.804	145				
2001	46,590	6.384	137				
2002	46,530	6.015	129				
2003	46,480	5.912	127				
2004	46,630	6.121	131				

The Oklahoma Department of Environmental Quality (ODEQ) construction standards indicate that new sewage systems shall be designed on the basis of an average daily per capita flow of sewage not less than 100 gpcd. The 100 gpcd is assumed to cover normal infiltration. However an additional allowance should be made if conditions are unfavorable. A total dry-weather base flow of 120 gpcd has been established by EPA as a historical average where infiltration is not excessive. This base flow includes 70 gpcd for domestic flows, 10 gpcd for commercial and small industrial flows, and 40 gpcd for infiltration.

Since the City's implementation program to correct I/I in the collection system (years 2000 to present), the per capita flow have decreased and stabilized at an average of 133 gpcd. Therefore, for the purposes of this study, the average per capita wastewater generation rate of 130 gpcd has been assumed in addition to any anticipated future industrial flows. Flows from existing industries, projections for industrial flows and impact of industrial discharges on the existing treatment facility are discussed separately in this report.

It is also important to determine the peaking factors for the influent wastewater. Peaking factors are used to determine the size of the various treatment processes. The historical flow data related to peaking factors for the total service area is presented in **Table TM 1-4**. It shows that the average peaking factors for the maximum month and maximum day for the past nine years are 1.14 and 1.51, respectively. However, this peaking factor may not be a true value, since during high flow conditions excess flow is conveyed to the equalization basin, and latter processed through the plant, when flows resumed to normal. For the purposes of this report, the peaking factor used for maximum month and maximum day are 1.25 and 2.0, respectively.

	TABLE TM 1-4: Historical Flow Peaking Data								
Year	Average Annual Flow (MGD)	Maximum Month Flow (MGD)	Maximum Day Flow (MGD)	Maximum Month Factor	Maximum Day Factor				
1996	6.264	7.064	11.922	1.13	1.90				
1997	7.396	7.866	8.846	1.06	1.20				
1998	7.937	9.637	14.724	1.21	1.86				
1999	9.439	12.780	15.407	1.35	1.63				
2000	6.804	8.207	11.387	1.21	1.67				
2001	6.384	7.250	8.362	1.14	1.31				
2002	6.015	6.358	8.887	1.06	1.48				
2003	5.912	6.401	7.380	1.08	1.25				
2004	6.121	6.400	7.800	1.05	1.27				

Analysis of wastewater characteristics

Presently, the City conducts extensive measurements of influent wastewater prior to the existing WPCF. Influent pollutant concentrations for the past nine (9) years are shown in **Table TM 1-5** and include the following pollutants Five Day Biochemical Oxygen Demand (BOD₅), Total Suspended Solids (TSS), Ammonia (NH₃), Dissolved Oxygen (DO), and Total Alkalinity. The mean and standard deviation are also shown.

TABLE TM 1-5: Influent Wastewater Quality								
Үеаг	Influent BOD5 (mg/l)	Influent TSS (mg/l)	Influent NH ₃ (mg/l)	Influent DO (mg/l)	Influent Alkalinity (mg/l)			
1996	333	274	15.8	2.3	368			
1997	245	257	14.6	1.2	359			
1998	222	261	12.8	1.1	356			
1999	196	227	11.1	1.0	354			
2000	206	222	15.9	1.1	357			
2001	268	283	16.7	-				
2002	230	254	17.4	-	-			
2003	220	248	18.3	-	-			
2004	271	234	17.5	1.3	359			
Mean	243	251	15.6	1.3	359			
Stan. Dev	42	21	2.4	0.5	5			

Historical loading data for BOD5, suspended solids and ammonia nitrogen for the last nine years and the equivalent per capita contribution of each is shown in Table TM 1-6. The per capita BOD5 loading is typically in the range of 0.18 to 0.26 pounds (lb) of BOD5 per capita per day (Metcalf & Eddy). The influent loading data reveals that the average per capita BOD5 in the past 9 years is 0.30 lbs per capita per day which suggests that there is significant BOD5 loading from industrial sources.

The per capita suspended solids and total kjeldahl nitrogen (TKN) loadings are typically in the range of 0.20 to 0.33 and 0.022 to 0.044 lbs per capita per day, respectively (Metcalf & Eddy). The average per capita loadings of suspended solids and ammonia nitrogen in influent wastewater are 0.314 and 0.019 lbs per capita per day, respectively. The suspended solids and nitrogen loading in the influent wastewater are within suggested normal range.

The BOD5 concentration for an equivalent flow of 130 gpcd and a BOD5 loading of 0.302 lb per capita per day equates to 278 mg/l. The suspended solids concentration for the same flow at per capita solids loading of 0.314 lb per capita per day is 289 mg/l. The ammonia nitrogen concentration for the equivalent flow of 130 gpcd at 0.019 lb per capita per day equates to 17 mg/l.

TABLE TM 1-6: Influent Loading Data for Organic(BOD), Solids and Ammonia Nitrogen								
Year	B	BOD ₅		TSS		NH ₃		
	lb/d	lb/d/capita	lb/d	lb/d/capita	lb/d	lb/d/capita		
1996	17,397	0.384	14,314	0.316	825	0.018		
1997	15,112	0.334	15,852	0.351	901	0.020		
1998	14,695	0.325	17,277	0.382	847	0.019		
1999	15,429	0.341	17,870	0.395	874	0.019		
2000	11,690	0.248	12,597	0,268	902	0.019		
2001	14,269	0.306	15,058	0.323	888	0.019		
2002	11,538	0.248	12,742	0.274	871	0.019		
2003	10,847	0.233	12,228	0.263	902	0.019		
2004	13,834	0.297	11,945	0.256	892	0.019		
Mean	13,868	0.302	14,443	0.314	878	0.019		

Based on the analysis of influent loadings as presented above, this facility plan will use the concentrations of BOD5, TSS and ammonia nitrogen as 300 mg/l, 300 mg/l and 25 mg/l respectively for the purpose of evaluating possible treatment alternatives.

INDUSTRIAL DISCHARGES AND PRETREATMENT

Growth of industries in and around the City of Enid plays a vital role in the employment and economic development of Enid. Enid Metropolitan and Comprehensive Plan 2000-2025 has established polices for future land use patterns such as residential, manufacturing/industrial uses, commercial, recreational and mixed uses. For the purpose of this report, the land use map of the Enid Metropolitan and Comprehensive Plan 2000-2025 will serve as a basis for projection of industrial flows.

The City of Enid has eleven major institutions/hospitals or industries within its drainage boundary. Their combined average flow discharge to the City's collection system is about 0.726 MGD at an average BOD₅ concentration of 645 mg/l and TSS of 389 mg/l. The individual flows and wastewater characteristics for each industry are summarized in **Table TM 1-7**.

	TABLE TM 1-7: SIGNIFICANT INDUSTRIAL USERS INFORMATION							
No.	Industrial	Avg Daily	Average	BOD ₅	Average	TSS		
	User	Flow		lli a fal	//	llh a fal		
		(MGD)	<u>mg/i</u>	lbs/a	mg/i			
1	INTEGRIS HOSPITAL	0.052	294	127.5	99	42.9		
2	LANDFILL LEACHATE	0.028	59	13.8	315	73.6		
3	CHEM-CAN	0.010	5,040	420.3	159	13.3		
4	BROADWAY TEXACO	0.004	10	0.3	8	0.3		
5	ADVANCE-E WILLOW	0.030	661	165.4	144	36.0		
6	ADVANCE-RALEIGH RD	0.274	838	1,915.0	499	1,140.3		
7	ADVANCE-PINE ST	0.079	1,172	772.2	1,047	689.8		
8	ST MARY'S HOSPITAL	0.069	373	214.6	226	130.1		
9	VANCE AFB	0.171	173	246.7	151	215.3		
10	SEABOARD FARMS	0.005	642	26.8	254	10.6		
11	RED CARPET LANDFILL	0.004	77	2.6	20	0.7		
	TOTAL	0.726		3,905.2		2,352.8		
	Industrial Flow, Average:	0.726	MGD					
1 .	Composite BOD ₅ :	645	mg/l					
	Composite TSS:	389	mg/l					

Although the existing industries contribute about 10% of the total flow to the City of Enid Water Pollution Control Facility, the amount of organic load they contribute is about 30% of the total loading contributed to the City's WPCF. This was the main reason that the per capita BOD5 contribution based on the population equivalent as indicated earlier in this report was higher (0.30 lbs per capita per day) than typical ranges (0.18 to 0.26).

Industrial Pretreatment is a requirement of the Federal Clean Water Act for public wastewater treatment facilities treating over 5 MGD of wastewater. The Act is intended to protect sewerage facilities and worker's health, to prevent inhibition of the treatment processes and violations of surface water quality standards, and to maintain biosolids quality within USEPA's "Clean Sludge" criteria for trace metals. The City of Enid has an approved industrial pretreatment program that regulates the discharge of industrial users. The industrial pretreatment program has established local limits to certain pollutants like arsenic, cadmium, chromium, copper, lead, nickel, silver, zinc, mercury, cyanide, phenol & phenolic compounds pH, temperature and oil and grease. The City's industrial pretreatment program has not established any specific limit for oxygen-demanding pollutants (BOD5). However, it prohibits discharge of any pollutants including oxygen -demanding pollutants (BOD5) released in a discharge rate and/or pollutant concentration which will cause interference to the Publicly Owned Treatment Works (POTW). The City also reserves the right to increase the restrictions or to adopt more stringent limitations or requirements on industrial discharges that allows the City to protect its treatment system.

Land use map for the city of Enid for the year 2025 classifies about 3,678 acres of land for industrial development. Currently, existing industries occupied 1,127 acres of land leaving approximately 2,551 acres for future industrial development. Non-domestic wastewater flow rates from industrial sources vary

TECHNICAL MEMORANDUM NO. 1

with the type and size of industry, the degree of water reuse, and onsite wastewater treatment methods, if any. Typical design values for estimating the flows from industrial areas that have no or little wet-process type industries are 1,000-1,500 gal/acre-day for light industrial developments. Typical design values for medium industrial developments are 1,500 to 3,000 gal/acre-day (Metcalf & Eddy). Currently, average wastewater contribution from the existing industries is estimated to be 643 gal/acre-day. As the nature of future industries are unknown, this report assumes a design value of 1,200 gal/acre.day for future industrial flow projection.

Conversations with City of Enid staff have indicated that one of the existing industries, Advance Food is planning to expand in 2007. The City also anticipates the establishment of two new Ethanol plants in the area. Expansion of Advance Food industry will likely discharge an additional flow of 0.5 mgd at 664 mg/l BOD5 and 382 mg/l TSS by year 2007. The proposed discharges from new Ethanol plants are expected to be 0.144 MGD and 0.15 MGD respectively at the concentration of 1,000 mg/l BOD5 and 350 mg/l TSS in the year 2008. As these industries are expected to go online soon, the impacts of these proposed discharges on the existing wastewater treatment units were reviewed and addressed to the City separately in a letter memorandum. A copy of which is enclosed in **Appendix TM 1-2**.

The industrial flow projected for the year 2030 is shown in **Table TM 1-8.** However, the organic loading from the industries varies significantly based on its manufacturing activity. As a result, the City may have to review the industries discharge loading with respect to the total wastewater plant loading and impose the limit on organic loading as and when necessary to protect its WPCF from any interference to its treatment process.

DESIGN INFORMATION FOR THE PLAN YEAR 2030

Based on an analysis of the flow information presented above and the additional anticipated growth, the design information that will be used for evaluation of treatment alternatives is summarized in **Table TM 1-8.**

TABLE TM 1-8: Wastewater Flow Projection for Year 2030				
Estimated Population	54,638			
Design Per Capita for Wastewater Generation	130 gpcd			
Domestic Wastewater Flow	7.10 mgd			
Industrial Flow Advance Food Plant Expansion Ethanol Plant (OE) Ethanol Plant (Orion) From Future Industrial Growth (2551 acres @ 1200 gpd/acres)	0.50 mgd 0.15 mgd 0.15 mgd 3.06 mgd			
Average Daily Wastewater Flow	10.96 mgd			
Maximum Month Flow (factor 1.25)	14.00 mgd			
Peak Daily Flow (factor 2.0)	28.00 mgd			
Influent BOD5	300 mg/l			
Influent TSS	300 mg/l			
Influent NH4-N	25 mg/l			

EFFLUENT DISCHARGE LIMITATIONS

The Oklahoma Department of Environmental Quality (ODEQ) has issued an Oklahoma Discharge Elimination System OPDES permit to the City of Enid on August 1, 2003. The current discharge permit will expire on July 31, 2008 (See **Appendix TM 1-3**). The OPDES permit is based on a plant design flow of 8.5 MGD and allows the treatment facility to discharge the effluent through two outfalls into Boggy Creek. **Table TM 1-9** below shows the OPDES effluent discharge limitations on various effluent parameters.

Table TM 1-9: OPDES Effluent discharge limitations								
Effluent cbaracteristics	Outfall 002 only April – May		Outfall	002 only	Outfall 001 and or Outfall 002 November – March			
			June –	October				
	mg/l	Lbs/d	Mg/l	lbs/d	mg/l	lbs/d		
CBOD ₅	20	1417.8	15	1063.4	20	1417.8		
TSS	30	2126.7	30	2126.7	30	2126.7		
NH3-N	2	141.8	2	141.8	4.1	290.6		
DO	6	-	5	-	5	-		

*Outfall 001 and 002 are located west and east of the treatment facility respectively

The City of Enid is currently meeting the OPDES requirements with the existing treatment facility. It may be noted that the City of Enid has seasonal and stricter limitations on BOD_5 and NH_3 -N during certain portions of the year. Therefore, it is anticipated that there may not be any change in effluent limitation in the near future and the evaluation of treatment alternatives will be based on the current discharge limitations. However, ongoing conversations with ODEQ will continue to ensure that future limits are considered in the final recommendation for the City of Enid WPCF expansion.

EXISTING WASTEWATER TREATMENT FACILITY OVERVIEW

The City of Enid Wastewater Treatment Facility began its operation in 1954 with an initial capacity of 3.5 MGD conventional activated sludge plant, known as South Plant. In 1970, the City of Enid expanded its treatment facility to 8.50 MGD by building another 5.0 MGD conventional activated sludge plant (North Plant) to the north of the existing 3.5 MGD South Plant. In 1991, the City of Enid built a 8.50 MGD Tertiary Treatment Plant for the removal of ammonia nitrogen from the effluent produced from the North and South Plants. The 1991 plant improvements also included upgrading of the existing sludge processing facilities. With the series of improvements described above, the existing wastewater treatment plant has a designed capacity of 8.50 MGD.

The City of Enid Water Pollution Control Facility is located in the Northwest quarter of section 14, Township 22 North, Range 6 west of the Indian Meridian, Garfield County, Oklahoma. The treatment facility is positioned between the East Market Avenue and Boggy Creek. A site plan showing the actual

location of the process treatment units is shown in Figure TM 1-5. The process flow diagram showing the current operation of the individual treatment units is shown in Figure TM 1-6.

Existing Liquid Process Treatment Units

The wastewater generated in the City of Enid reaches the existing wastewater treatment facility through a 36-inch reinforced concrete pipe (RCP) gravity main from the west, a 33-inch RCP gravity main from the north and an 8-inch force main from the east. Flows in excess of the Treatment Facility capacity overflow in to an existing 10 million gallon storm water holding basin. Influent wastewater from the 36-inch and 33 gravity sewer mains and 8-inch sewer force main are combined in a manhole west of the treatment facility and conveyed to the plant headworks by gravity.

The plaut headworks consist of two aerated grit chambers, two screen channels, a parshall flume and a low lift pump station. Record information obtained from the City, revealed that the headwork units were designed for a peak flow of 21 MGD. Sizes of the individual units are shown in **Table TM 1-10**. Wastewater influent first passes through the grit chambers where the inorganic grit materials are removed. The forward flow from the grit chambers enters the bar screen for the removal of floating and other larger objects. One of the bar screen is mechanically cleaned with clear spacing of 1 inch and the other is a manually cleaned with clear bar spacing of 3 inches. The screened wastewater flows through an 18- inch throat width Parshall flume which measures the influent flow to the treatment plant. The forward flow from the parshall flume enters the low lift pump station wet well where influent is split and pumped to the North and South Plants for primary and secondary treatment. The raw sewage low lift pump station is equipped with two 75 HP and two 100 HP centrifugal pumps.

The South Plant is a conventional activated sludge treatment plant which has a treatment capacity of 3.5 MGD. The South Plant consist of two primary sedimentation tanks, two aeration tanks, two secondary sedimentation tanks and other associated appurtenances such as air diffusers, blowers, sludge pumps, etc. Sizes of the major individual units are shown in **Table TM 1-10**. The wastewater from the headworks low lift pump station flows through the primary sedimentation tanks for the removal of suspended solids. Following the primary clarification, the wastewater flows in to the conventional activated sludge aeration basins. Sufficient air is provided to the aeration basins through coarse bubble diffusers by centrifugal blowers. The treated effluent from the aeration basin flows through the secondary sedimentation tanks is conveyed to the low lift station. The settled solids from the secondary sedimentation tanks are returned to the aeration basins for maintaining desired level of mixed liquor suspended solids (MLSS). The excess sludge is pumped to the bio-solids processing facility for bio-solids stabilization and dewatering.

The North Plant is designed for an average flow of 5.0 MGD and uses conventional activated sludge process. The North Plant consists of two primary clarifiers, two aeration tanks, two secondary clarifiers and other associated appurtenances such as air diffusers, blowers, sludge pumps, etc. Sizes of the major individual units are shown in the **Table TM 1-10**. The influent from the headworks low lift pump station flows through the primary clarifiers for the removal of suspended solids. Following the primary clarificient air is provided to the aeration basins through coarse bubble diffusers by the centrifugal blowers. The treated effluent from the aeration basin is conveyed to the secondary clarifiers for solids separation and the clear supernatant flows to the low lift station. Solids separated from the secondary clarifiers are recirculated back to the aeration basins and the excess solids are pumped to the bio-solids processing facility for bio-solids stabilization and dewatering.

FIGURE TM 1-5: SITE PLAN - ENID WASTEWATER TREATMENT FACILITY

FIGURE TM 1-6: LIQUID PROCESS TREATMENT UNITS - CURRENT PROCESS

C

. . $\hat{\boldsymbol{C}}$

C

TECHNICAL MEMORANDUM NO. 1

The secondary treated effluent from the North and South Plants flows to a low lift pump station from where it is pumped to the nitrification plant for removal of ammonia nitrogen and effluent polishing. The low lift pump station is equipped with a total of four (4) pumps, one driven by a 75Hp, another by a 60HP motor and the remaining pumps each by a 30HP motor. The low lift pump station has a firm pumping capacity of about 25.3 MGD. The low lift pump station also has bypass arrangements with necessary piping and valves to discharge the secondary treated effluent directly to Outfall 001 west of the existing treatment plant, during the permitted seasonal period.

Table Thit Y to Banmany or and under MJ-r. R.									
Unit process	No. of Units	No. of Size of each unit					Design Capacity		
		Length, Ft	Width, ft	Dia., Ft	SWD, ft	Ave. MGD	Peak MGD		
Headworks									
Grit chamber	2	20	10	-	10	-	21		
Bar screen	2	-	5	-	6	-	21		
Parshall flume	1	-	1.5		-	-	21		
Lift pump station		-	-		-	-	21		
(two 75 HP & two 100 HP)					а. С				
North Plant									
Primary clarifiers	2	-	-	65	8.5	5	-		
Aeration basins	2	360	18	-	15	5	-		
Final clarifiers	2	-		70	10.5	5	-		
South Plant						l l			
Primary sedimentation tank	2	72	27	-	11	3.5	-		
Aeration basins	2	150	29	-	15.5	3.5	-		
Secondary sedimentation tank	2	97	30	- ·	7.5	3.5	-		
Nitrification Plant(BNR)						l			
Nitrification basins	1	-	- 1	-	12	8.5	_ ·		
Nitrification clarifiers	4	120	30	-	12	8.5	-		

Table TM 1-10 Summary of the major liquid process treatments units and their sizes

The nitrification plant was designed to treat 8.5 MGD of secondary treated effluent from the North and South Plants for the removal of ammonia nitrogen. The nitrification plant consist of a nitrification basin, four rectangular clarifiers and other associated appurtenances such as lime feeders, disc aerators, sludge pumping, etc. The nitrification basin is an oxidation ditch facility with three concentric channels equipped with disc aerators. The nitrified effluent from the nitrification basin flows to the four rectangular clarifies where solids are separated and the effluent is conveyed to the Farın Land lift pump station and to the existing outfall structure where the final effluent is disinfected and discharged to Boggy Creek through Outfall 002. The outfall structure has a 24-inch wide Parshall flume and sonic flow meter for recording flow discharges. The Farmland Industry lift pump station, located ahead of the outfall structure, conveys the final treated effluent to the Farm Land Industries for reuse.

PSA 🔮 Dewberry

Existing Solids Handling Units

The bio-solids (sludge) generated at the City of Enid Water Pollution Control Facility comes from the primary sedimentation tanks / primary clarifiers, secondary sedimentation tanks / secondary clarifiers and nitrification clarifiers. Originally when the South and North Plants were commissioned, the sludge generated from the liquid treatment process were stabilized either anaerobically or aerobically in the digesters and dewatered in the sludge drying beds before they were hauled off to an approved land fill. In 1991, the City of Enid upgraded its solids processing facility by changing the existing mode of operation of solids handling with new additional equipment for solids handling. **Figure TM 1-7** illustrates the current operation of solids treatment facility.

The primary sludge from the primary clarifiers and biological sludge from the secondary clarifiers and nitrification clarifiers are thickened in the gravity belt thickener. The concentrated solids from the gravity belt thickener are stored in the anaerobic digesters where it is stabilized. The stabilized sludge is fed in to the belt filter press for dewatering. The dewatered sludge from the belt filter press is transported to an approved land fill for final disposal. **Table TM 1-11** shows the available solids handling units and their sizes.

Table TM 1-11 Summary of the major solids handling units								
Solid handling unit	No. of Umits	Size and description						
Anaerobic digesters	2	70 ft diameter and 24.25 ft WSD each						
Aerobic digesters	2	65 ft diameter and 17 ft SWD each						
Gravity belt thickeners	2	Aquabelt type 85 ⁻ size II (Belt width 67.5")						
Belt filter press	2	Ashbrook winklepress 1.0 m belt filter press						
Sludge drying beds, south	12	Total bed area 29,700 sq.ft.						
Sludge drying beds, north	28	Total bed area 39,000 sq.ft.						

Data obtained from the plant records indicates that the amount of solids disposed to the landfill averages 7000 lb/day on dry basis (See Appendix TM 1-1). Assuming volatile suspended (VSS) solids concentration of 50% and VSS reduction of 40% in the digesters, the sludge generated at the plant averages 8,750 lb/day dry basis, which is equivalent to 1,265 pounds of sludge / MGD of flow. Typical sludge generation rate for an activated sludge plant with primary sedimentation ranges from 1,500 to 2,200 pounds of sludge / MGD of flow. The sludge production rate at the existing facility is slightly lower than typical suggested ranges, but this variation is not unusual as the solids production rate is influenced by many factors like the actual quantity of solids entering the plant, removal efficiencies of various processes, etc. However, this facility plan will use the sludge production rate of 1,500 pounds of sludge on dry basis/ day/MGD of flow for evaluation of treatment alternatives.

EVALUATION OF EXISTING TREATMENT PLANT AND CONDITION ASSESSMENT

As a part of the master planning process, it is important to evaluate the available capacity of each major treatment unit and its condition to address the deficiencies in the existing treatment system and plan for future expansions. For the purpose of the capacity evaluation, the current ODEQ criteria for the water pollution control facility construction have been used as a bench mark. The following paragraphs discuss the condition and available capacity of each treatment units.

LIQUID PROCESS TREATMENT UNITS

As discussed in the previous section, the wastewater reaching the City of Enid Water Pollution Control Facility is treated in four stages which include preliminary treatment, primary treatment, secondary treatment and tertiary treatment.

Headworks

Preliminary treatment at the City of Enid Pollution Control facility consists of grit chamber and bar screen located in the Headworks. The grit chamber was constructed in 1954 aud designed to handle a peak flow of 21 mgd. There is significant wear and tear on the grit chamber equipments. The bar screens were originally designed for a peak flow of 21 mgd but the maximum flow they can handle based on ODEQ design standards is 17 mgd. The clear open space between the bars in the manual cleaned bar screen is 3 inches which exceeds the ODEQ standard of 1.75 inches.

After the preliminary treatment, the influent flow is measured in the Parshall flume and is pumped to the North and South plants by the Low lift pump station. The Parshall flume has a throat width of 18 inches which has a recommended maximum flow of 15.9 MGD. Flows in excess of 15.9 MGD could result in submerged flow condition leading to inaccurate flow measurement. The headworks lift station is equipped with two 60 HP pumps and two 100 HP pumps and has a firm pumping capacity of 29.7 MGD. There appears to be some wear and deterioration on exposed surfaces of the low lift pump station and may require painting and water proof coating.

In general, all units in the headworks appear to be in poor conditions. Some of the units like bar screen and parshall flume do not meet current design criteria. The plant headworks may require either major rehabilitation or replacement to meet the proposed flows in future.

South Plant

Primary treatment and secondary treatment at the South plant consists of two primary sedimentation tanks, two aeration tanks, two secondary sedimentation tanks and other associated appurtenances such as air diffusers, blowers, sludge pumps, etc.

The primary sedimentation tanks are rectangular tanks of size 72 feet long by 27 feet wide and 11 feet side water depth (SWD) each and are equipped with traveling bridge mechanism for collection of sludge. There are no specific criteria in the ODEQ construction standards for primary sedimentation tanks. However, as per typical design criteria recommended in Metcalf & Eddy, the primary sedimentation tanks can handle an average design flow of 3.5 mgd. At the average design flow of 3.5 mgd, the overflow rate and detention time of each tank is 900 g/ft²/d and 2.2 hour, respectively which are within acceptable design ranges (Metcalf & Eddy).

The aeration basins are rectangular tanks of size 150 feet long, 29 feet wide and 15.5 feet SWD and are equipped with diffusers for oxygen distribution in to the basin. At the average design flow of 3.5 mgd, the organic loading rate, detention time and F/M ratio for each tank are 43 lbs of BOD₅/1000 ft³/d, 6.90 hours and 0.27, respectively. As per ODEQ design criteria, the allowable organic loading rate range for a conventional activated sludge process is 30 to 40 lbs of BOD₅/1000 ft³/d which restricts the treatment capacity of the aeration basins to an average flow of 3.23 mgd.

The secondary sedimentation tanks are rectangular tanks of size 97 feet long, 30 feet wide and 7.5 feet SWD each. The tanks are equipped with traveling bridge mechanism for collection of sludge. Based on the overflow rate recommended by the ODEQ design criteria of 600 g/ft²/d, the average flow that can be

handled by these tanks is 3.5 mgd. However the overflow rate at peak hourly flow shall not exceed 1,200 $g/ft^2/d$ which restrict the peak flow to the tanks to 7.0 mgd.

Based on the above evaluation, the average flow that the South Plant can handle based on current ODEQ standards is **3.23 mgd** due to the overloading of the organic load on the aeration basins. The overflow rate on the secondary sedimentation tanks will be a limiting factor on handling the peak hourly flow. Peak flows exceeding 7.0 mgd will overload the secondary sedimentation tanks on the South Plant and deteriorate the effluent quality. **Table TM 1-12** summarizes the capacity of each treatment unit as per current ODEQ design criteria. **Table TM 1-12** also summarizes current condition rating. A template of the facility condition rating protocol can be seen in **Appendix TM 1-4**.

In regards to the condition of the South Plant, this facility was built in 1954 and has been in operation for nearly 50 years before it was taken out of service few years ago. The plant has operated well beyond its life expectancy without any significant maintenance and improvements performed to its treatment units and equipment. The concrete walkways and gratings have also deteriorated to the point that staff safety around these structures could be compromised. Therefore, major improvements will be required to bring the South Plant back in to operation. This will include, but not limited to the installation of new pumps, valves, slide and sluice gates, pipe sections, replacing tracks at the primary and secondary clarifiers and other items. The work will also require the rewiring at the existing MCC's inside the building, including labels, alarm indicators and other miscellaneous items required to get the equipment running and provide the proper alarming and SCADA to the main Control Panel. The other item, which is of more concern, is the safety of plant personnel around these structures. As previously indicated, several walkways are in need of hand railing, most of the gratings are corroded and need replacing, specially the wooded grates around the aeration basins. The wood appeared to be deteriorated through the years and will need to be replaced to handle the proper load. The south gallery where most of the electrical controls and pumps are housed is also, in need of maintenance, including the replacement of flow meters and gauges. The piping inside the gallery appeared to be corroded and the original painting for the most part is flaking off and will need to be repainted. The ventilation system appeared to be working. However, it will need to be verified that it is designed to provide the proper ventilation or number of air changes per minute required under confined spaces to satisfy ODEQ standards. The concrete walkways are cracked and for the most deteriorated to the point that the gravel is exposed and pealing off from the concrete slab. These areas will require resurfacing with concrete products to re establish its original integrity.

The Plant has operated well beyond its life expectancy without significant maintenance and improvements performed to its treatment units and equipment. The current improvements to the South Plant undertaken by the City of Enid are very critical to handle the current flow as well as industrial growth expected in near future and will extend the life of this plant for some more years before it is replaced.

North Plant

Primary treatment and secondary treatment at the North Plant consists of two primary clarifiers, two aeration tanks, two secondary clarifiers and other associated appurtenances such as air diffusers, blowers, sludge pumps, etc. The North Plant was constructed in 1970. Most of the equipment/mechanical parts are in good condition due to regnlar maintenance. However, concrete structures for the primary clarifiers are showing hairline cracks that will need to be repaired to preserve their structural integrity.

PSA 🏶 Dewberry

TECHNICAL MEMORANDUM NO. 1

Primary treatment in the North Plant is accomplished through two primary clarifiers of size 65 feet diameter and 8.5 feet SWD each. The primary clarifiers are equipped with circular clarifier mechanisms for scum and sludge removal. The concrete structures are water tight although the walls reflect hair line cracks primarily in the area where the effluent launders are connected. At an average design flow of 5.0 mgd, the overflow rate and detention time of each tank is 753 g/ft²/d and 2.0 hours, respectively which are within acceptable design ranges (Metcalf & Eddy).

Secondary treatment is provided in the aeration basins and secondary clarifiers. The aeration basins are rectangular tanks of size 360 feet long by 18 feet wide with 15 feet SWD. At the average design flow of 5.0 mgd, the organic loading rate, detention time and F/M ratio for each basin are 43 lbs of BOD₅/1000 ft³/d, 7.0 hours and 0.28, respectively. Based on ODEQ design criteria, the allowable organic loading rate range for a conventional activated sludge process is 30 to 40 lbs of BOD₅/1000 ft³/d, which restricts the treatment capacity of the aeration basins to an average flow of about 4.66 mgd.

The secondary clarifiers are circular tanks of diameter 70 feet and 10.5 feet SWD each. The average flow that can be handled by these tanks at the overflow rate recommended by the ODEQ design criteria of 600 g/ft²/d is **4.62 mgd**. The peak hourly flow that can be handled by the clarifiers at the overflow rate of 1,200 g/ft²/d recommended by ODEQ is 9.23 mgd.

Based on the above evaluation, the average flow that the North Plant can handle based on current ODEQ standards is **4.62 mgd** due the overloading of the secondary clarifiers. The overflow rate on the secondary clarifier is the limiting factor on handling the average aud peak hourly flows. Flows exceeding 4.62 mgd (average) and 9.24 mgd (peak) will result in increased hydraulic loading on the secondary clarifiers and minimize the solids removal efficiency. **Table TM 1-12** summarizes the treatment capacity of each treatment units as per current ODEQ design criteria and current condition rating.

In regard to the condition of the North Plant, this facility was constructed in 1970 and has been in operation for over 30 years. The plant is currently operating well even though it is running well over its rated capacity (4.62 mgd). With some structural repairs to the walls of the primary clarifiers and the ongoing maintenance program for replacing worn out parts. The North Plant could have a useful life of another 10 to 15 years without major significant improvements.

Table TM 1-12 Summary of treatment capacity and condition of major liquidprocess treatment units								
Unit process	No. of uuits	Design capacity		Treat capacit ODEQ	Condition rating			
		Ave. MGD	Peak MGD	Ave. MGD	Peak MGD	Peak MGD		
<u>Headworks</u>					01.0	Deem		
Grit chamber	2	-	21.0	-	21.0	Poor		
Bar screen	2	- ·	21.0	-	17.0	Poor		
Parshall flume	1	-	21.0	-	15.9	Poor		
Lift station		-	21.0	- .	21.0	Poor		
(two 75 HP & two 100 HP)								
North Plant				50		Dain		
Primary clarifiers	2	5.0	- ·	5.0	-	Fair Fair		
Aeration basins	2	5.0	- .	4.66		Fair		
Final clarifiers	2	5.0	-	4.62	9.24	Fair		
South Plant								
Primary sedimentation tank	2	3.5	-	3.5	- ·	Fair		
Aeration basins	2	3.5	-	3.23	-	Fair		
Secondary sedimentation tank	2	3.5	-	3.5	7.0	Fair		
Nitrification Plant								
Nitrification basins	1	8.5	-	8.5	-	Good		
Nitrification clarifiers	4	8.5	<u> </u>	8.5	<u> </u>	Good		

Nitrification Plant (Biological Nutrient Removal – BNR)

The nitrification plant was built in 1991 and was designed to treat 8.5 MGD of secondary treated effluent from North and South Plants for the removal of ammonia nitrogen. The nitrification plant consist of a nitrification basin, four rectangular clarifiers and other associated appurtenances such as lime feeders, disc aerators, sludge pumping etc. The concrete structures appeared to be in good condition. However, there are some mechanical problems with some of the equipment which are explained later in this section.

The nitrification basin is an oxidation ditch type facility with three concentric channels equipped with disc aerators. Each channel is 20 feet wide with 12 feet SWD. The volume of outer, middle and inner channels is 122,440 ft³, 92,280 ft³ and 62,120 ft³, respectively. The total detention time in the nitrification basin at an average design flow of 8.5 mgd is 5.85 hours. ODEQ does not have specific design criteria for nitrification plants.

PSA 🔮 Dewberry

The nitrification clarifiers are rectangular type with basin dimensions of 120 feet long, 30 feet wide and 12 feet SWD each. The clarifiers are equipped with a traveling bridge used for collection of sludge settled at the basin bottom. At an average design flow of 8.5 mgd, the hydraulic overflow rate from each of the clarifier is $590 \text{ g/ft}^2/\text{d}$ which is within acceptable ranges (Metcalf & Eddy).

Based on the above evaluation, the nitrification plant can handle the average daily flow of 8.5 mgd as designed. However, conversations with plant personnel have revealed that solids carry over occurs when the plant flow exceeds 7 mgd. They also have experienced problems with the operation of the traveling bridge on the nitrification clarifiers, especially during snow and ice periods. This operational issue has been separately addressed in a memorandum circulated to the City of Enid staff (See **Appendix TM 1-5**). The Nitrification plant, in overall, needs some improvements to correct all operational problems.

Existing Liquid Treatment Plant Capacity

Based on the above analysis of the existing treatment units, the total treatment capacity of the existing Water Pollution Control Facility including the North and South treatment facilities is **7.85 MGD**. The capacities of each plant are summarized in **Table TM 1-13** below. However, it should be noted that the South Plant has not been in operation for the last few years due to the major rehabilitation required for its equipments and other appurtenances. As a result, the total design capacity of the existing facility is rated as only 4.62 MGD.

The influent wastewater to the existing WPCF currently averages 6.12 MGD. Since the South Plant is not in use, the North Plant and Nitrification Plant are operated well above its design capacity to make up for the loss of the South Plant, and have no redundancy in case of an emergency.

TABLE TM 1-13: City of Enid Pollution Control Facility Treatment Capacity Summary					
	Average Daily Flow, MGD				
North Treatment Plant	4.62				
South Treatment Plant	3.23				
Nitrification Plant	8.50				
Total Capacity	7.85				

SOLIDS HANDLING UNITS

Due to the age and deterioration of the existing solids process units, the bio-solids treatment system at the treatment facility is in jeopardy of becoming non-complaint. Therefore, in 2004, the City of Enid retained the services of Dewberry to evaluate its solids operation and prepare a bio-solids facility plan. This facility plan evaluated various alternatives for producing CLASS B bio-solids with the option of land filling for final disposal. The most cost-effective and preferred alternative recommended in the bio-solids facility plan was to use the existing digesters for aerobic digestion and belt filter press for dewatering the digested sludge. The process schematic depicting the proposed improvements is shown in **Figure TM 1-8**.

PSA 🔮 Dewberry

The proposed improvements to the bio-solids treatment system consists of the following: selective demolition and improvements to the existing aerobic digesters and equipment, selective demolition and converting the existing anaerobic digesters to aerobic digesters and equipment, new blower facility, modification to the existing blower facility, a new 2m belt filter press and dewatered sludge conveyors, improvements to the filter press feed pump system, polymer dosing system, flow measurement equipments, controls, yard piping, electrical and instrumentation work, and other appurtenances to produce Class B bio-solids.

The proposed improvements are expected to be completed at the end of the year 2006. With the completion of the above proposed improvements, the solids handling capacity of the treatment facility will increase to about 15,490 pounds/ day on dry solids basis which is equivalent to solids produced from treating wastewater flows of about 10 MGD at the exiting liquid process treatment units.

PSA ♥ Dewberry

APPENDICES

APPENDIX TM 1-1

RAW DATA FROM PLANT RECORDS

Historical Flow Peaking Data Year Average Maximum Maximum Maximum Maximum **Month Flow** Annual **Day Flow** Month Day Flow (mgd) (mgd) (mgd) Factor Factor 1996 6.264 7.064 11.922 1.13 1.90 1997 7.396 7.866 8.846 1.06 1.20 9.637 14.724 1.21 1.86 1998 7,937 15.407 1.35 1.63 1999 9.439 12.780 1.21 1.67 6.804 8.207 11.387 2000 6.384 7.250 8.362 1.14 1.31 2001 1.06 1.48 6.015 6.358 8.887 2002 7.380 1.08 1.25 5.912 6.401 2003 1.27 1.05 7.800 6.400 2004 6.121 1.14 1.51 6.919 Average.

	Influent Wastewater Characteristics									
Year	Influent	Influent	Influent	Influent	Influent					
	BOD₅	TSS	NH3	DO	Alkalinity					
	(mg/l)	_(mg/l)	(mg/l)	(mg/l)	(mg/l)					
1996	333	274	15.80	2.30	368					
1997	245	257	14.60	1.20	359					
1998	222	261	12.80	1.10	356					
1999	196	227	11.10	1.00	354					
2000	206	222	15.90	1.10	357					
2001	268	283	16.67	-	-					
2002	230	254	17.36	–	-					
2003	220	248	18.30	-	-					
2004	271	234	17.48	1.26	356					
Mean	243	251	15.56	1.34	359					
Std. Dev.	42	21	2.4	0.54	5					

.

ł

 \bigcirc

· · ·

Per capita	Per capita wastewater genaration rate								
Year	Total Service population	Average Annual Flow (mgd)	Percapita rate gpcd						
1996	45,320	6.264	138						
1997	45,190	7.396	164						
1998	45,250	7.937	175						
1999	45,200	9.439	209						
2000	47,045	6.804	145						
2001	46,590	6.384	137						
2002	46,530	6.015	129						
2003	46,480	5.912	127						
2004	46,630	6.121	131						

,

. | . |

Sludge Production Records at the Existing Facility

YR GALLONS CF PER MONTH CF:PER DAY 1 Jan-95 2590575 346334 1172 2 Feb-95 2790340 373040 13323 3 Mar-95 289700 386003 12867 4 Apr-95 2887300 386003 12867 5 May-95 1704900 239960 7741 6 Jun-95 584000 79412 2847 7 Jul-95 1658612 221800 7158 10 Oct-95 1658812 221800 7158 11 No-96 1219722 161895 53963 12 Dec-95 1658812 221800 7158 14 Feb-96 1153731 164242 5509 15 Max-96 130850 198937 6417 14 Feb-96 1551451 208750 6734 15 Max-96 132851 208495 6963 16 Apr-96	SHEET	MONTH	TOTAL SLUDGE	TOTAL SLUDGE	TOTAL SLUDGE		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		/YR ME	GALLONS	CF PER MONTH	CF PER DAY		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	n kan nin stille	<u>, en en la lange en der fan i det keine rejitter bet</u>	<u>neza en el Ballage de la compacta de la Carriera el Carrière el l</u>	ngestigen i Ministrik körene insigen i Anerike ogintisterik (MARKA			
2 Feb-95 279340 37340 1322 3 Mar-95 3041700 406644 3113 4 Apr-95 287300 386003 12867 5 May-95 1744900 239660 7741 2647 7 Jul-95 1273545 170260 5492 5492 8 Aug-95 1273545 170260 5492 5492 9 Sep-96 1 5397 5442 5396 5492 5493 5492 5549 5496 5492 5492 5492 5493 5496 5493 5496 5493 5493 5493 5493 5493 5493 5544 5493 5544 5544 5544 5544 5543 5543 <td< td=""><td></td><td>lan-95</td><td>2590575</td><td>346334</td><td>11172</td></td<>		lan-95	2590575	346334	11172		
3 Mar.96 501700 40844 3518 4 Apr.95 2887300 386003 12867 5 May.95 1744000 2289600 7744 6 Jun.95 594000 79412 2647 7 Jul.95 1275545 170200 5492 8 Aug.95 1275545 170200 5492 9 Sep.95 122072 161865 5346 10 Oct.45 1659812 221800 7158 11 Nov-95 1210972 161865 5346 12 Dec.95 148050 198937 6417 3 Jan.96 137331 194269 5944 14 Feb.96 1153731 194249 5909 15 Mar.96 1054483 140974 4699 16 Apr.96 1054483 140974 4699 17 May.96 1276847 208707 99833 20	2	Feb-95	2790340	373040	13323		
4 Apr:95 2287300 386003 12867 5 May.95 1794900, 239860, 7741 6 Jun.95 1273545 170280, 5492 8 Aug.95 1273545 170280, 5492 9 C.Sep.95, 1559812 221900, 7158 10 Oct.95 1659812 221900, 7158 12 Doc.95 148050, 199937, 6417 13 Jan.962, 137331, 184292, 5599 14 Feb.96 1153731, 154242, 5509 15 Mar.96, 130850, 174933, 6734, 16 Apr.96, 1661461, 206750, 6734, 18 Jun.96, 1562531, 20889, 6983 20 Aug.96, 2175010, 29077, 9693, 21 Sep.98, 2175010, 29077, 9693, 22 Oct.96, 219146, 22924, 9449, <	3	Mar-95	3041700	406644	13118		
5 May-96 1794900 239960 7741 6 Jun-95 594000 79412 2647 7 Jul-95 1273645 170260 5492 8 Aug-95 - - - 9 Sep-95 - - - 10 Oct-95 1559812 221900 7158 11 Nov-95 1210972 161895 5396 12 Dec-95 1480050 19937 6417 13 Jan-96 1378331 164249 55944 14 Feb-96 1153731 154242 5509 15 Mar-96 1561451 208750 6734 16 Apr-96 1561451 208750 6734 18 Jun-96 162731 204845 7226 20 Aug-96 13294371 177732 57333 21 Sep-96 270503 36185 12083 23 Nov-96 270	4	Apr-95	2887300	386003	12867		
6 Jun-95 594000 79412 2647 7 Jul-95 1273645 170260 5492 8 Aug-95 10 5492 5492 9 Sep-95 1210972 161895 5396 10 Oct-95 1488060 198937 6417 13 Jan-96 1157331 154242 5509 14 Feb-96 1153731 154242 5509 15 Mar-96 1308950 174993 6734.43 16 Apr-96 1054483 140974 4699 17 May-96 1562531 208855 6863 18 Jun-96 1687081 226546 7276 20 Aug-96 13294371 177732 9693 23 Nov-96 2706903 361885 12063 24 Dec-96 4016038 536903 17319 25 Jan-97 132000 260294 9286 26	5	May-95	1794900	239960	7741		
7 Jul-95 1273645 170260 5492 8 Aug-95 7 9 Sep-95 7 10 Oct-95 1659812 221900 7158 11 Nov-955 12109722 161895 5396 12 Dec-95 148050 198937 6417 13 Jan-96 1376331 154242 5509 15 Mar-96 100960 174993 6734 16 Apr-96 1054331 120272 6734 4669 17 Mar-96 1562531 208896 6663 18 Jun-96 1662531 208896 6663 20 Aug-96 13294371 1777322 57333 21 Sep-96 2175102 26733 361885 22063 22 Oct-86 2176903 361885 21083 22874 23 Nov-96 2776903 361885 21083 2287 24 Dec-96 401038 556903 17319 228 2386 21083	6	Jun-95	594000	79412	2647		
8 Aug-95 9 Sep-95 9 Sep-95 10 Oct-95 1659812 221000 7158 11 Nov-95 1210972 1618961 5396 12 Dec-95 148050 198937 6417 13 Jan-96 1378331 184269 5944 14 Feb-96 1153731 154242 5509 15 Mar-96 1309960 74993 6734 16 Apr-96 1561451 208750 6734 18 Jun-96 1687081 225546 7276 20 Aug-96 13204971 1777322 57333 21 Oct-96 21175010 290777 9693 22 Oct-96 210903 361885 202933 23 Nov-96 2705903 361885 202933 24 Dec-96 4016038 559603 17319 25 Jari-97 3080938 411890 12267	7.4.5	Jul-95	1273545	170260	5492		
9Sep.9510Oct-851659812221900715811Nov-951210972161895539612Dec-951488050198937641713Jan-961378331184269594413Jan-96137833118426950915Mar-961308950174993673416Apr-961561451208750673417Mar-961662531208895696318Jun-961682531208895696319Jul-961687081225546727620Aug-961329437117773225733321Sep-962191146292934944922Oct-962191146292934944923Nov-9527069033618851206324Dec-9640160382536801731925Jan-973080354118901328726Feb-971947000260294926627Mar-97153000200366688730Jun-97971000129818418832Aug-971005000134893435133Sep-571017000135963453234Oct-97872000118578388735Nov-97872000118578388236Dec-971157000128337407535Nov-97872000135963453234Oct-97 <td>8</td> <td>Aug-95</td> <td></td> <td>ing and the first of the second s</td> <td><u>a na ang ang ang ang ang ang ang ang ang</u></td>	8	Aug-95		ing and the first of the second s	<u>a na ang ang ang ang ang ang ang ang ang</u>		
10 $Oct-95$ 1659812 221900 7158 11 $Nov-95$ 1210972 161895 5396 12 $Dec-95$ 1488050 198937 6417 13 $Jan-96$ 1378331 184269 5944 14 $Feb-96$ 1153731 154242 5509 15 $Ma-96$ 1308960 174993 6734 16 $Apr-96$ 1054433 140974 4699 17 $May-96$ 15614514 0207500 6734 18 $Jun-96$ 1562531 208956 6963 20 $Aug-96$ 1324371 1777322 57333 23 $Sep-966$ 21176016 290777 96993 24 $Dec-96$ 4016038 536903 17319 25 $Jan-97$ 2308000 260294 9296 26Feb-97 1947000 280294 9296 27 $Mar-97$ 1530000 200935 66983 28 $Ap-97$ 1503000 200935 66983 29 $May-97$ 3210000 176044 5687.336 30 $Jun-97$ 973000 130800 4336 31 $Jul-97$ 945000 126337 4075 35 $Nov-68$ 1107000 12887.3436 33 $Sep-87.1017000$ 12687.3436 4188.322 34 $Oct-97$ 945000 126337 4075 35 $Nev-97.168641$ 15963.3436 4532.3536 36 $Dec-97.1157000$	9	Sep-95					
11. Nov-95 121072/ 161885 5396 12 Dec-95 148050 19837 6417 13 Jan-96" 1378331 184269 5944 14 Feb-96 1153731 154242 5509 15 Mar-96 130850 174993 6734 16 Apr-96 1561431 206750 6734 18 Jun-96 1562531 20885 6963 19 JUl-96 1667081 225546 7276 20 Aug-96 13294371 1777322 57333 21 Sep-96 2175103 290777 9693 22 Oct-95 2181146 292834 9449 23 Nov-96 2708903 361885 20503 17319 25 Jan-97 3080938 411890 13287 26 26 Feb-97 1947000 260244 9296 229 May-97 30100 130080 4336	10	Oct-95	1659812	221900	7158		
12Dec-951488050198937641713Jan-961378331184289594414Feb-961153731154242550915Mar-961064483140974469916Apr-961064483140974469917May-961561481208750673418Jun-961562531208895606319Jul-961667081225546777620Aug-96129437117773225733321Sep-982175010290777969322Oct-96219114629234944923Nov-9627069033618853206324Dec-9640160385369031731925Jan-9730609364118901328726Feb-971947000200284929627Mar-971321000176044566730Jun-97973000130080433631Jul-97971000129813448833Sep-9710170094135988453234Oct-97945000126337407535Nov-9787200016576388636Dec-971157000154679499037Jan-986900012537407535Nov-97872000116576388636Dec-971157000154679499037Jan-9869000125374075	14111	Nov-95	1210972	161895	5396		
13 Jan-96 1378331 184269 5944 14 Feb-96 1153731 154242 5509 15 Mar-96 1308950 174993 6734 98 16 Apr-96 1561451 208750 26734 98 18 Jun-96 1562531 20895 6963 98 19 Jul-96 1687081 225546 7276 9733 20 Aug-96 13294371 177732 57333 9449 21 Sep-96 2175010 20777 9693 9243 9449 22 Oct-96 2191146 292934 9449 93 17319 24 Dec-96 4016038 536903 17319 13287 25 Jan-97 2112006 282353 9708 13287 26 Feb-97 1947000 260254 9266 130836 4351 28 Apr-97 1520000 130080 4336 1318	12	Dec-95	1488050	198937	6417		
14Feb-961153731154242550915Mar-961308960174993673416Apr-961054483140974469917May-961561451208750673418Jun-961562531208895696319JU-96167081225546727620Aug-961329437117773225733321Sep-96217501029077969322Oct-962191146292934944923Nov-9627069033618851206324Dec-9640160385369031731925Jan-9730693954118901328726Feb-971947000260294929627Mar-9721120002823539708.28Apr-971503000200936669829May-971321000176604569730Jun-97973000130800433631Jul-9797300013080433632Aug-97100900134893435133Sep-971017000128813443834Oct-97845000116578388636Dec-97115700154679499037Jan-981196861160008516239Mar-981196861160008516244May-981226000163944528737Jan-98192800116578	13	Jan-96	1378331	184269	5944		
15Mar-961308950174993673416Apr-961054483140974469917May-961561481208750673418Jun-96156253120895696319Jil-961687081225546727620Aug-961329437117773225733321Sep-9621715010290777969322Oct-962191146292934944923Nov-9527069033618851206324Dec-9640160385369031731925Jan-971947000280294929627Mar-97112000280294929628Apt-97150300020036669829May-971321000176604569730Jun-97971000130800433631Jul-9797100013080433632Aug-971009000134893445133Sep-971017090134893453234Oct-97945000126337407535Nov-97872000116578388636Dec-971157000154679499037Jan-9889200119251384738Feb-986600008235315139Mar-98119686116008516244May-98122800163904528742Jun-981228001639045287 <td>14</td> <td>Feb-96</td> <td>1153731</td> <td>154242</td> <td>5509</td>	14	Feb-96	1153731	154242	5509		
16Apr-961054483140974469917May-961561451208750673418Jun-961562531208955696319Jul-961687081225546727620Aug-961329437117773225733321Sep-962175010290777969322Oct-96219114629234944923Nov-9627069033618851205324Dec-9640160385369031731925Jan-973060384118901328726Feb-971947000260294929627Mar-972112000282353910328Apr-971503000200336669829May-971321000176604568730Jun-9797300013080433631Jul-97971000122813448832Aug-97100900013493455133Sep-971017000135963453234Oct-97945000126337407535Nov-97872000116578388636Dec-9711570015479499037Jan-981228000163904528744May-981228000163904528736Dec-9711500015471547237Jul-981228000163904528738Feb-9860000842353151 </td <td>15</td> <td>Mar-96</td> <td>1308950</td> <td>174993</td> <td>6734</td>	15	Mar-96	1308950	174993	6734		
17May-961561451208750673418Jun-961562531208895696319Jul-961687081225546727620Aug-961329437117773225733321Sep-962175010290777969322Oct-962191146292934944923Nov-9627069033618851206324Dec-9640160385369031731925Jan-9730803364118901328726Feb-971947000282353910828Apr-97150300200936669829May-971321000176604569730Jun-9797300013080433631Jul-9797100012813448832Aug-971009000134893435133Sep-971017000135963453234Oct-97945000126337407535Nor-97872000116578388636Dec-971157000154679499037Jan-98892000119251384738Feb-9866000088235315139Mar-98119686416008516244May-981228000164171547245Sep-9871400095455318246Oct-9863000084225271747Nor-98512347684962283 <td>16</td> <td>Apr-96</td> <td>1054483</td> <td>140974</td> <td>4699</td>	16	Apr-96	1054483	140974	4699		
18Jun-961562531208895696319Jul-961887081225546727620Aug-961329437117773225733321Sep-96217501020077969322Oct-962191146292934944923Nov-9627069033618851206324Dec-9640160385369031731925Jan-9730809364118901328726Feb-971947000260294929627Mar-972112000282353910828Ap-971503000200936669829May-971321000176604569730Jun-97973000130080433631Jul-97971000129813448832Aug-971009000134893453233Sep-9710170094135993453234Oct-97945000126337407535Nov-97872000116578388636Dec-971157000154679499037Jan-9866000088235315139Mar-981196864160008516240Apr-981226000164171547243Jul-981226000164171547243Jul-981226000164171547243Jul-981226000164171547243Jul-981226000164171 <t< td=""><td>172</td><td>May-96</td><td>1561451</td><td>208750</td><td>6734</td></t<>	172	May-96	1561451	208750	6734		
19Jul-96 1687081 225546 7276 20Aug-96 13294371 1777322 57333 21Sep-96 21750103 290777 9693 22Oct-96 2191146 292334 9449 23Nov-96 2706903 361885 12063 24Dec-96 4016038 536903 17319 25Jan-97 3089356 411890 13287 26Feb-97 1947000 260294 9296 27Mar-97 1503000 200936 6698 28Apr-97 1503000 200936 6698 30Jun-97 973000 130080 4336 31Jul-97 971000 129813 4488 32Aug-97 1007000 134893 4532 33Sep-97 1017000 134893 4532 34Oct-97 945000 12637 4075 35Nov-98 892000 116578 3888 36Dec-97 1157000 154679 4990 37Jan-98 892000 119251 3847 38Feb-98 660000 8235 3151 39Mar-98 1122800 164171 5472 40Apr-98 1226000 134158 4328 44May-98 1226000 134174 5287 45Sep-98 714000 95455 3182 46Oct-98 630000 84225 2717 <tr< td=""><td>18</td><td>Jun-96</td><td>1562531</td><td>208895</td><td>6963</td></tr<>	18	Jun-96	1562531	208895	6963		
20Aug-961329437117773225733321Sep-962175010290777969322Oct-96219114629934944923Nov-9627069033618851206324Dec-9640160385369031731925Jan-9730803364118901328726Feb-971947000260294929627Mar-972112009282353910828Apr-971503000200936669829May-971321002,81176604569730Jun-97973000130080433631Jul-97971000129813448832Aug-971009000134893435133Sep-971017000135963453234Oct-97945000126337407535Nov-97872000116578388836Dec-971157000154679499037Jan-9866000082325315139Mar-981196864160008516240Apr-981226000163174547241May-981226000134153432845Sep-9871400095455318246Oct-9863000084225271747Nov-9851234768496221048Dec-9851234768496221049Jan-999210001231283972	1940	Jul-96	1687081	225546	7276		
21 Sep-96 2175010 290777 9693 22 Oct-96 2191146 292934 9449 23 Nov-96 2706903 361885 12063 24 Dec-96 4016038 536903 17319 25 Jan-97 3080936 411890 13287 26 Feb-97 1947000 260294 9296 27 Mar-97 1503000 20936 6698 28 Apr-97 1503000 20936 6698 29 May-97 1321000 176604 5697 30 Jun-97 973000 130080 4336 31 Jul-97 971000 12813 4488 32 Aug-97 1017000 134993 4351 33 Sep-97 1017000 14579 4990 34 Oct-97 945000 126337 4075 35 Nov-97 872000 119251 3847 36 <t< td=""><td>20</td><td>Aug-96</td><td>13294371</td><td>1777322</td><td>57333</td></t<>	20	Aug-96	13294371	1777322	57333		
22 $Oct-96$ 2191146 292934 9449 23 $Nov-96$ 2706903 361885 12063 24 $Dec-96$ 4016038 536903 17319 25 $Jan-97$ 3060936 411890 13287 26 $Feb-97$ 1947000 260294 9296 27 $Mar-97$ 2112009 282353 9108 28 $Apr-97$ 1503000 200936 6698 29 $May-97$ 1321000 176604 5687 30 $Jun-97$ 973000 130080 4336 31 $Jul-97$ 971006 128813 4188 32 $Aug-97$ 1007000 135963 4532 33 $Sep-97$ 1017000 135963 4532 34 $Oct-97$ 945000 126337 4075 35 $Nov-97$ 872000 110578 3886 36 $Dec-97$ 1157000 154679 4990 37 $Jan-98$ 660000 8235 3151 39 $Mar-98$ 11926614 160008 5162 40 $Apr-98$ 1226000 163904 5287 42 $Jun-98$ 1226000 164171 5472 43 $Jul-98$ 949000 126872 4093 44 $Aug-98$ 1003500 134158 4328 45 $Sep-98$ 714000 95455 3182 45 $Sep-98$ 714000 95455 3182 46 $Oct-98$ <t< td=""><td>21</td><td>Sep-96</td><td>2175010</td><td>290777</td><td>9693</td></t<>	21	Sep-96	2175010	290777	9693		
23 Nov-96 2706903 361885 12063 24 Dec-96 4016038 536903 17319 25 Jan-97 3080936 411890 13287 26 Feb-97 1947000 260294 9296 27 Mar-97 2112000 282353 9108 28 Apr-97 1503000 200336 6698 29 May-97 1321000 176604 5697 30 Jun-97 973000 130080 4336 31 Jul-97 971000 129813 4488 32 Aug-97 1009000 134893 4351 33 Sep-97 1017009 135963 4532 34 Oct-97 945000 126337 4075 35 Nov-97- 872000 116578 3886 36 Dec-97 115700 154679 4990 37 Jan-98 660000 88235 3151 39	22	Oct-96	2191146	292934	9449		
24 Dec-96 4016038 536903 17319 25 Jan-97 3080936 411890 3287 26 Feb-97 1947000 260294 9296 27 Mar-97 2112009 282353 9108 9108 28 Apr-97 1503000 200936 6698 29 May-97 1321000 176604 5687 30 Jun-97 973000 130080 4336 31 Jul-97 971000 129813 4488 32 Aug-97 1009000 134893 4351 33 Sep-97 1017000 135963 4632 34 Oct-97 945000 126337 4075 35 Nov-97 872000 116578 3886 386 36 Dec-97 1157000 154679 4990 37 Jan-98 892000 119251 3847 38 Feb-98 660000 8235 3151 <td>23</td> <td>Nov-96</td> <td>2706903</td> <td>361885</td> <td>12063</td>	23	Nov-96	2706903	361885	12063		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24	Dec-96	4016038	536903	17319		
26Feb-971947000 260294 9296 27 Mar-972112000 282353 9108 28 Apr-971503000 200936 6698 29 May-9713210001766045697 30 Jun-979730001300804336 31 Jul-979710001298134188 32 Aug-9710090001348934351 33 Sep-9710170001263374075 35 Nov-978720001165783886 36 Dec-971157001546794990 37 Jan-98660000882353151 39 Mar-9811968641600085162 40 Apr-9819030002544128480 41 May-9812260001639045287 42 Jun-9812280001641715472 43 Jul-989490001268724093 44 Aug-9810035001341584328 45 Sep-98714000954553182 46 Oct-98630000842252717 47 Nov-98512347684962283 48 Dec-98512347684962210 49 Jan-999210001231283972 50 Feb-999894951322854724	25	Jan-97	3080936	411890	13287		
27 Mar-97 2112000 282353 9108 28 Apr-97 1503000 200936 6698 29 May-97 1321000 176604 5697 30 Jun-97 973000 130080 4336 31 Jul-97 971000 129813 4188 32 Aug-97 1003000 134893 4351 33 Sep-97 1017000 135963 4532 34 Oct-97 945000 126337 4075 35- Nov-97 872000 116578 3886 36 Dec-97 1157000 154679 4990 37 Jan-98 680000 8235 3151 39 Mar-98 1196864 160008 5162 40 Apr-98 1903000 254412 8480 41 May-98 1226000 163904 5287 42 Jun-98 1228000 164171 5472 43 <td< td=""><td>26</td><td>Feb-97</td><td>1947000</td><td>260294</td><td>9296</td></td<>	26	Feb-97	1947000	260294	9296		
28 Apr-97 1503000 200936 6698 29 May-97 1321000 176604 5697 30 Jun-97 973000 130080 4336 31 Jul-97 971000 129813 4188 32 Aug-97 1009000 134893 4351 33 Sep-97 1017000 135963 4532 34 Oct-97 945000 126337 4075 35 Nov-97 872000 116578 3886 436 36 Dec-97 1157000 154679 4990 4990 37 Jan-98 892000 119251 3847 3847 38 Feb-98 660000 8235 3151 39 Mar-98 1196864 160008 5162 40 Apr-98 1903000 254412 8480 441 May-98 1226000 164171 5472 4093 444 Aug-98 1003500 134158 4328 445	35 01 27 4344	Mar-97	2112000	282353	14 9108 9108		
29 May-97 1321000 176604 5697 30 Jun-97 973000 130080 4336 31 Jul-97 971000 129813 4488 32 Aug-97 1009000 134893 4351 33 Sep-97 10170001 135963 4532 34 Oct-97 945000 126337 4075 357 Nov-97 872000 116578 3886 36 Dec-97 1157000 154679 4990 37 Jan-98 892000 119251 3847 38 Feb-98 660000 88235 3151 39 Mar-98 1196864 160008 5162 40 Apr-98 1903000 254412 8480 41 May-98 1226000 164171 5472 42 Jun-98 1228000 164171 5472 43 Jul-98 949000 126872 4093 44 <td< td=""><td>28</td><td>Apr-97</td><td>1503000</td><td>200936</td><td>6698</td></td<>	28	Apr-97	1503000	200936	6698		
30 Jun-97 973000 130080 4336 31 Jul-97 971000 129813 4188 4188 32 Aug-97 1009000 134893 4351 33 Sep-97 1017009 135963 4532 34 Oct-97 945000 126337 4075 35 Nov-97 872000,* 116578 3886 3836 36 Dec-97 1157000 154679 4990 374 38 Feb-98 660000 88235 3151 39 Mar-98 1196864 160008 5162 40 Apr-98 1903000 254412 8480 41 May-98 1226000 163904 5287 42 Jun-98 1228000 164171 5472 43 Jul-98 949000 126872 4093 44 Aug-98 1228000 164171 5472 43 Jul-98 949000 126872	29	May-97	1321000	176604	5697		
31 Jul-97 971000 129813 4188 32 Aug-97 1009000 134893 4351 33 Sep-97 1017009 135963 4532 34 Oct-97 945000 126337 4075 35 Nov-97 872000 116578 3886 36 Dec-97 1157000 154679 4990 37 Jan-98 892000 119251 3847 38 Feb-98 660000 88235 3151 39 Mar-98 1196864 160008 5162 40 Apr-98 1226000 163904 5287 42 Jun-98 1228000 164171 5472 43 Jul-98 949000 126872 4093 44 Aug-98 1003500 134158 4328 45 Sep-98 714000 95455 3182 46 Oct-98 630000 84225 2717 47 Nov-	30	Jun-97	973000	130080	4336		
32 Aug-97 1009000 134893 4351 33 Sep-97 1017000 135963 4532 3 34 Oct-97 945000 126337 4075 35 Nov-97 872000,3 116578 3886 3886 36 Dec-97 1157000 154679 4990 37 Jan-98 892000 119251 3847 38 Feb-98 660000 88235 3151 39 Mar-98 1196864 160008 5162 40 Apr-98 1903000 254412 8480 41 May-98 1226000 163904 5287 42 Jun-98 1228000 164171 5472 43 Jul-98 949000 126872 4093 44 Aug-98 1003500 134158 4328 45 Sep-98 714000 95455 3182 45 46 Oct-98 630000 84225 2	31	Jul-97	971000	129813	4188		
33 Sep-97 1017000 135963 4532 34 Oct-97 945000 126337 4075 35 Nov-97 872000 116578 3886 36 Dec-97 1157000 154679 4990 37 Jan-98 892000 119251 3847 38 Feb-98 660000 88235 3151 39 Mar-98 1196864 160008 5162 40 Apr-98 1903000 254412 8480 41 May-98 1226000 163904 5287 42 Jun-98 1228000 164171 5472 43 Jul-98 949000 126872 4093 44 Aug-98 1003500 134158 4328 45 Sep-98 714000 95455 3182 46 Oct-98 630000 84225 2717 47 Nov-98 512347 68496 2283 48 Dec-9	32	Aug-97	1009000	134893	4351		
34 Oct-97 945000 126337 4075 35 Nov-97 872000,4 116578 3886 40 36 Dec-97 1157000 154679 4990 37 Jan-98 892000 119251 3847 38 Feb-98 660000 88235 3151 39 Mar-98 1196864 160008 5162 40 Apr-98 1903000 254412 8480 41 May-98 1226000 163904 5287 42 Jun-98 1228000 164171 5472 43 Jul-98 949000 126872 4093 44 Aug-98 1003500 134158 4328 45 Sep-98 714000 95455 3182 46 Oct-98 630000 84225 2717 47 Nov-98 512347 68496 2283 48 Dec-98 512347 68496 2210 49 <td>33</td> <td>Sep-97</td> <td>1017000</td> <td>135963</td> <td>4532</td>	33	Sep-97	1017000	135963	4532		
35 Nov-97 872000 116578 3886 38 36 Dec-97 1157000 154679 4990 37 Jan-98 892000 119251 3847 38 Feb-98 660000 88235 3151 39 Mar-98 1196864 160008 5162 40 Apr-98 1903000 254412 8480 41 May-98 1226000 163904 5287 42 Jun-98 1228000 164171 5472 43 Jul-98 949000 126872 4093 44 Aug-98 1003500 134158 4328 45 Sep-98 714000 95455 3182 46 Oct-98 630000 84225 2717 47 Nov-98 512347 68496 2283 48 Dec-98 512347 68496 2210 49 Jan-99 921000 123128 3972 50	34	Oct-97	945000	126337	4075		
36 Dec-97 1157000 154679 4990 37 Jan-98 892000 119254 3847 38 Feb-98 660000 88235 3151 39 Mar-98 1196864 160008 5162 40 Apr-98 1903000 254412 8480 41 May-98 1226000 163904 5287 42 Jun-98 1228000 164171 5472 43 Jul-98 949000 126872 4093 44 Aug-98 1003500 134158 4328 45 Sep-98 714000 95455 3182 46 Oct-98 630000 84225 2717 47 Nov-98 512347 68496 2283 48 Dec-98 512347 68496 2210 49 Jan-99 921000 123128 3972 50 Feb-99 989495 132285 4724	-35-	Nov-97	872000 4	116578	3886		
37 Jan-98 892000 119251 3847 38 Feb-98 660000 88235 3151 39 Mar-98 1196864 160008 5162 40 Apr-98 1903000 254412 8480 41 May-98 1226000 163904 5287 42 Jun-98 1228000 164171 5472 43 Jul-98 949000 126872 4093 44 Aug-98 1003500 134158 4328 45 Sep-98 714000 95455 3182 46 Oct-98 630000 84225 2717 47 Nov-98 512347 68496 2283 48 Dec-98 512347 68496 2210 49 Jan-99 921000 123128 3972 50 Feb-99 989495 132285 4724	36	Dec-97	1157000	154679	4990		
38 Feb-98 660000 88235 3151 39 Mar-98 1196864 160008 5162 40 40 Apr-98 1903000 254412 8480 41 May-98 1226000 163904 5287 42 Jun-98 1228000 164171 5472 43 Jul-98 949000 126872 4093 44 Aug-98 1003500 134158 4328 45 Sep-98 714000 95455 3182 46 Oct-98 630000 84225 2717 47 Nov-98 512347 68496 2283 48 Dec-98 512347 68496 2210 49 Jan-99 921000 123128 3972 50 Feb-99 989495 132285 4724	37	Jan-98	892000	.119251	3847-		
39 Mar-98 1196864 160008 5162 40 Apr-98 1903000 254412 8480 41 May-98 1226000 163904 5287 42 Jun-98 1228000 164171 5472 43 Jul-98 949000 126872 4093 44 Aug-98 1003500 134158 4328 45 Sep-98 714000 95455 3182 46 Oct-98 630000 84225 2717 47 Nov-98 512347 68496 2283 48 Dec-98 512347 68496 2210 49 Jan-99 921000 123128 3972 50 Feb-99 989495 132285 4724	38	Feb-98	660000	88235	3151		
40Apr-981903000254412848041May-981226000163904528742Jun-981228000164171547243Jul-98949000126872409344Aug-981003500134158432845Sep-9871400095455318246Oct-9863000084225271747Nov-9851234768496228348Dec-9851234768496221049Jan-99921000123128397250Feb-999894951322854724	39	Mar-98	1196861	160008	5162		
41 May-98 1226000 163904 5287 42 Jun-98 1228000 164171 5472 43 Jul-98 949000 126872 4093 44 Aug-98 1003500 134158 4328 45 Sep-98 714000 95455 3182 46 Oct-98 630000 84225 2717 47 Nov-98 512347 68496 2283 48 Dec-98 512347 68496 2210 49 Jan-99 921000 123128 3972 50 Feb-99 989495 132285 4724	40	Apr-98	1903000	254412	8480		
42 Jun-98 1228000 164171 5472 43 Jul-98 949000 126872 4093 44 Aug-98 1003500 134158 4328 45 Sep-98 714000 95455 3182 46 Oct-98 630000 84225 2717 47 Nov-98 512347 68496 2283 48 Dec-98 512347 68496 2210 49 Jan-99 921000 123128 3972 50 Feb-99 989495 132285 4724	41	May-98	1226000	163904	5287		
43 Jul-98 949000 126872 4093 44 Aug-98 1003500 134158 4328 45 Sep-98 714000 95455 3182 46 Oct-98 630000 84225 2717 47 Nov-98 512347 68496 2283 48 Dec-98 512347 68496 2210 49 Jan-99 921000 123128 3972 50 Feb-99 989495 132285 4724	42	Jun-98	1228000	164171	5472		
44 Aug-98 1003500 134158 4328 45 Sep-98 714000 95455 3182 382 46 Oct-98 630000 84225 2717 47 Nov-98 512347 68496 2283 48 Dec-98 512347 68496 2210 49 Jan-99 921000 123128 3972 50 Feb-99 989495 132285 4724	43	Jul-98	949000	126872	4093		
45 Sep-98 714000 95455 3182 46 Oct-98 630000 84225 2717 47 Nov-98 512347 68496 2283 48 Dec-98 512347 68496 2210 49 Jan-99 921000 123128 3972 50 Feb-99 989495 132285 4724	44	Aug-98	1003500	134158	4328		
46 Oct-98 630000 84225 2717 47 Nov-98 512347 68496 2283 48 Dec-98 512347 68496 2210 49 Jan-99 921000 123128 3972 50 Feb-99 989495 132285 4724	45	Sep-98	714000	95455	3182		
47 Nov-98 512347 68496 2283 48 Dec-98 512347 68496 2210 49 Jan-99 921000 123128 3972 50 Feb-99 989495 132285 4724	46	Oct-98	630000	84225	2717		
48 Dec-98 512347 68496 2210 49 Jan-99 921000 123128 3972 50 Feb-99 989495 132285 4724	47	Nov-98	512347	68496	2283		
49 Jan-99 921000 123128 3972 50 Feb-99 989495 132285 4724	48	Dec-98	512347	68496	2210		
50 Feb-99 989495 132285 4724	49	Jan-99	921000	123128	3972		
	50	Feb-99	989495	132285	4724		

	Mar-99	582500	77874	2512
52	Apr-99	416384	55666	1856
53	May-99	416384	55666	1796
54	Jun-99	416384	55666	1856
55	Jul-99	571262	76372	2464
56	Aug-99	112452	15034	485
AL-+5700	Sep-99	100381 ····	in≦in is 13420 + ≠/+ + -	14.00 million 447
58	Oct-99	152188	20346	656
598.40	Nov-99	States - Research - California		
60	Dec-99	349400	46711	1507
618	Jan-00	362932	48520	24-14 Mar 1565 Law Mile
62	Feb-00	326268	43619	1558
635	Mar-00	1172410	156739 and a state	5056 July 4
64	Apr-00	500448	66905	2230
Wei 6542	May-00	500448	66905	• 2158 / • · ·
66	Jun-00	1480739	197960	6599
6743	Jul-00	1280750	171223	5523
68	Aug-00	716337	95767	3089
	Sep-00	775500-0-5 ···	103676	3456
70	Oct-00	985500	131751	4250
2 2 7 1 4 5 1	Nov-00	945500	126404	14213 4213 4213
72	Dec-00	962000	128610	4149
10 × 73 ×	Jan-01			2050
74	Feb-01	638865	85410	3050
75	Mar-01	989544	70440	4207
76	Apr-01	524446	[/U113	233/
	May-01	664603	6000 ⁰	
78	Jun-01	455591	00900	
	AVG.	1,352,242	180,781	5,951

AVG.	1,352,242	180,781		
Quantit	y of Solids Landfilled			
Year	ton/year	lb/d		
1996	1513	8290		
1997	1679	9200		
1998	1062	5819		
1999	-	-		
2000	1164	6378		
2001	1284	7036		
2002	1067	5847		
	1188	6510		
2003	1100	0010		

.

APPENDIX TM 1-2

INFORMATION ABOUT INDUSTRIES

								• •	
		FLOWS,	BOD5, TSS	3 AT SIGNI	FICANT IN	DUSTRIAL U	SERS 2004	AVERAGE	
TRIAL	AVG DAILY	AVG	BOD5	AVG	TSS				
	FLOW	BOD5	LBS	TSS	LBS		1		
	(MGD)								

NO,	INDUSTRIAL	AVG DAILY	AVG	BOD5	AVG	TSS			
	USER	FLOW	BOD5	LBS	TSS	LBS			
		(MGD)	ļ	ļ	ļ				
				 					<u> </u>
}	1 INTEGRIS HOSPITAL	0.052	294	127.5	99	42.9		ļ	·`
· · ·									
		0.028	59	13.8	315	73.6			ļ. <u> </u>
	3 CHEM CAN	0.01	5040	420.2	150	12.2			
		0.01		420.3	109	10.0		<u>}</u>	<u> </u>
·	4 BROADWAY TEXACO	0.004	10	0.3	8	0.3	<u></u>	<u> </u>	
		0.004		0.0		0.0		<u> -</u>	<u> </u>
	5 ADVANCE-E WILLOW	0.03	661	165.4	144	36.0			1
									<u> </u>
· ··	6 ADVANCE-RALEIGH RD	0.274	838	1915.0	499	1140.3			
					· ·				<u> </u>
	7 ADVANCE-PINE ST	0.079	1172	772.2	1047	689.8			
	8 ST MARY'S HOSPITAL	0.069	373	214.6	226	130.1		· .	
] 		{					· <u> </u>) 	[
 	9 VANCE AFB	0.171	173	246.7	151	215.3		 	
 			<u> </u>			10.0			
	10 SEABOARD FARMS	0.005	642	26.8	254	10.6		}	·
		0.001			20	07		<u> </u>	
·	1 RED CARPET LANDFILL	0.004		2.0				<u> </u>	<u> </u>
	TOTAL	0.726	0330	3005.2	2922	2352.8		{	<u>}</u>
		0.720	3000	0300.2		2002.0		<u> </u>	<u> </u>
		0.066	849	355.0	266	213.9			<u>+</u>
		0.000	0-10					├	<u> </u>
	2004 AVG FLOW AT POTW	6.12	271		234				<u></u>
					<u></u>			<u> </u>	
	SILL PERCENT OF TOTAL FLOW	11.86	[├				[<u> </u>	[
<u> </u>									
	+		<u>_</u> _		·				

September 13, 2005

Mr. Robert Hitt, P.E. Director of Development Services City of Enid P.O. Box 1768 Enid, Oklahoma 73702

Re: City of Enid

Sanitary Sewer Master Plan Agreement "Additional Organic Loading from Advance Foods and New Ethanol Plant"

Dear Mr. Hitt,

On Monday September 12, 2005, we were notified by your staff on the anticipated discharge from the proposed ethanol plant. As a result of this anticipated discharge and in addition to Advance Foods, we felt that it would be necessary to reevaluate the treatment capacity of the existing Water Pollution Control Facility.

Currently, the Influent flow and its BOD5 and TSS concentrations to the existing Water Pollution Control Facility average at 6.24 mgd, 280 mg/l and 226 mg/l, respectively. As you know both the North and South treatment plants were designed for an average BOD and TSS concentrations of 300 mg/l and 250 mg/l, respectively. In addition, our current evaluation of these two plants based on current ODEQ design standards has revealed that the North and South treatment plant are rated at 4.62 mgd and 3.23 mgd, respectively. Based on this information the total combined design capacity of the existing Water Pollution Control Facility for the City of Enid is about 19,641 pounds per day for BOD5 and 16, 367 pounds per day for TSS.

With the anticipated discharge limits proposed by Advance Foods of 0.5 mgd, 664 mg/l BOD and 382 mg/l TSS and the new ethanol plant flow of 0.12 mgd, 1000 mg/l BOD and 350 mg/l TSS, we have estimated that the influent flow and raw wastewater characteristics for BOD and TSS to the existing facility will increase to 6.853 mgd, 320 mg/l and 240 TSS, respectively. Under these conditions the projected loading to the existing Water Pollution Control Facility will be approximately 18,313 pounds per day for BOD and 13,689 pounds per day for TSS.

From the information shown above it appears that the existing facility has the capacity to handle the additional loading, since the projected loading is slightly lesser. However, the BOD5 concentration of the projected influent flow (320 mg/l) is greater than the designed BOD5 concentration (300 mg/l) for the existing facility. Operating under these conditions could impact the effluent quality of the treatment plant and possibly exceed the current NPDES permit.

In order to maintain the influent BOD5 and TSS concentrations to the existing facility within the original design parameters, the BOD5 and TSS discharge concentration from these two industries will have to set at 500 mg/l, each. However, Conversations with your staff have also, revealed that Advance Foods is anticipating doubling production in the next two years that will add an additional flow of 0.5 mgd to the existing facility which will worsen conditions and exceed the BOD5 design parameter and possibly impact the effluent quality of the existing facility. With and anticipated additional flow of 1.0 mgd from Advance Foods and 0.12 mgd from the new ethanol plant, the ultimate combined flow to the existing plant will average at 7.4 mgd. Under this scenario the existing facility will be operating at about 94% capacity of its current rated capacity.

Based on the anticipated additional loadings described above and the operation of the existing Water Pollution Control Facility with both the North and South plants and the use of the Biological nutrient removal train as an effluent polishing process, we recommend that the City's pretreatment program shall ensure that any future pretreatment discharge limit for BOD5 does not exceed 300 mg/l until further expansion to the treatment plant is evaluated and designed.

Should you have any questions, please feel free to contact me.

Very truly yours,

Dewberry Design Group Incorporated

Jose A. Pereira, P.E. Associate

Cc:

James McClain, Public Service Director City of Enid Muralikumar Katta-Muddanna, Project Engineer City of Enid Barry Brummit, Pretreatment Director City of Enid Joyce Hight, Superintendent City of Enid Vel Subramanian, Dewberry

APPENDIX TM 1-3

CITY OF ENID OPDES PERMIT

AUTHORIZATION TO DISCHARGE UNDER THE OKLAHOMA POLLUTANT DISCHARGE ELIMINATION SYSTEM

PART I.

In compliance with the Oklahoma Pollutant Discharge Elimination System Act (OPDES Act). Title 27A O.S., § 2-6-201 *et seq.* and the rules of the State of Oklahoma Department of Environmental Quality (DEQ) adopted there under (See OAC 252:605); the Federal Clean Water Act, Public Law 95-217 (33 U.S.C. 1251 *et seq.*), Section 402; and NPDES Regulations (40 CFR Parts 122, 124 and 403),

City of Enid (State ID No. S-20931) P.O. Box 1768 Enid, Oklahoma 73702

is hereby authorized to discharge treated wastewater from a facility located at approximately

NE¼ of SW¼ of NW¼ of Section 14 Township 22 North, Range 6 West, I.M. Garfield County, State of Oklahoma

to receiving water: Boggy Creek, tributary to Skeleton Creek, tributary to the Cimarron River at a point located approximately

Outfall 001 Outfall 002

Latitude: 36° 23' 11.904" N 36° 23' 11.148" N (GPS: NAD-27 CONUS) Longitude: 97° 48' 58.968" W 97° 48' 49.787" W (GPS: NAD-27 CONUS) Planning Segment No. 620910 (Water body ID # 620910030250)

in accordance with effluent limitations, monitoring requirements and other conditions set forth in Parts 1, 11, 111 and IV hereof.

This permit replaces and/or supersedes the previous permit modification issued on March 1, 2001

The issuance date of this permit is July 31, 2003

This permit shall become effective August 1, 2003

This permit and authorization to discharge shall expire at midnight, July 31, 3008

For the Oklahoma Department of Environmental Quality:

ward hlimbers

Edward Dihrberg, P.E., Manager Municipal Permits Section Water Quality Division

Jon L. Craig, Director Water Quality Division

Enid – OK 0021628 Permit Part 1 – Page 2

A. Effluent Limitations

During the period beginning the effective date and lasting through date of expiration the permittee is authorized to discharge treated wastewater in accordance with the following limitations:

1. Conventional and Non-Conventional Pollutants

	Disc	harge Limitat	<u>Monit</u> Require	oring ements	
Effluent Characteristics	Mass (lbs/d) Concentration		ation (mg/l)	Measure-	
	30-day Average	0-day 30-day verage Average A		ment Frequency	Sample Type
Spring (April - May): Outfall 002 only	y			·	
Carbonaceous Biochemical Oxygen Demand - 5 Day (CBOD ₅) [80082]	1417.8	20.0	30.0	3/wcek	
Total Suspended Solids (TSS) [00530]	2126.7	30.0	45.0	2/week	12-hour
Ammonia (NH3-N) [00610]	141.8	2.0	3.0	1/week	composite
Dissolved Oxygen (DO) [00300] ^b Mir	11mum 6mg/l		·	3/week	Grab
Summer (June - October): Outfall 00	2 only				·
Carbonaceous Biochemical Oxygen Demand - 5 Day (CBOD ₅) [80082]	1063.4	15.0	22.5	3/week	12-hour
Total Suspended Solids (TSS) [00530]	2126.7	30.0	45.0	2/week	composite
Ammonia (NH3-N) [00610]	141.8	2.0	3.0	1/week	
Dissolved Oxygen (DO) [00300] ^b Min	nimum 5 mg/l		······································	3/week	Grab
Winter (November - March): Outfall	00] and/or Out	fall 002		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Biochemical Oxygen Demand - 5 Day (BOD ₅) [00310]	1417.8 °	20.0	30.0	3/week	12-hour
Total Suspended Solids (TSS) [00530]	2126.7	30.0	45.0	2/week	composite
Ammonia (NII3-N) [00610]	290.6 *	4.1	9.9 [Daily max]	3/week ^c	
Dissolved Oxygen (DO) [00300] ^h Min	3/week	Grab			

^a The combined mass loading from each outfall may not exceed this value if both outfalls are used simultaneously.

^b If simultaneously discharging from outfalls 001 and 002, grab samples will be taken from both outfalls, and the lower of the two dissolved oxygen values reported.

If the highest daily maximum ammonia level reported during this season for the first year after the effective date of these limits is less than or equal to 1.5 times the monthly average limit (i.e., 1.5 × 4.1 = 6.15 mg/l), the monitoring frequency may be reduced to 1/week for that season. Otherwise, the monitoring frequency continues at 3/week for that season for the remaining term of the permit.

There shall be no discharge of floating solids or visible foam in other than trace amounts.

The pII shall not be less than 6.5 standard units nor greater than 9.0 standard units at any time, it shall be monitored by grab samples collected 3/week.

Samples taken in compliance with the monitoring requirements specified above shall be taken at the discharge from the final treatment unit.

Flow (measured in million gallons per day) shall be monitored daily by totalized measurement and reported as a 30-day average and a daily maximum.

2. Whole Effluent Toxicity Reporting and Monitoring Requirements (Outfalls TX1, TX2).

During the period beginning the effective date of the permit and lasting through the expiration date, the permittee is authorized to discharge from Outfall TX1 and Outfall TX2 (functionally identical to Outfall 001 and Outfall 002). The discharge consists of biologically treated sanitary wastewater. Such discharges shall be limited and monitored by the permittee as specified below:

Whole Effluent Toxicity Reporting and Monitoring Requirements (Outfalls TX1 and TX2)

Effluent Characteristic					ting nents "	Monitoring Requirements	
	Test D		Parameter 3		7-day Min	Testing Frequency ^b	Sample Type
1	<i>Ceriodaphnia duhia</i> , 7-day chronic NOEC static renewal, freshwater	100%	Pass/Fail Survival [TLP3B]		Report		
[]			NOEC _L Survival [TOP3B]	Report	Report	2/season for TX1 [°] , and 1/quarter ^f for TX2	24-hr comp
			% Mortality at Critical Dilution [TJP3B]	Report	Report		
ьn			Pass/Fail Reproduction [TGP3B]		Report		
Ei-			NOECs Reproduction (TPP3B]	Report	Report		
ne Tes			% Coeff of Variation [TQP3B]	Report	Report		
	Pimephales promelas (Fathead minnow), 7-day chronic NOEC static renewal, freshwater		Pass/Fail Survival [TLP6C]		Report		
E		100%	NOECL Survival [TOP6C]	Report	Report	2/season for TX1 [°] , and	1
۲ ۳			% Mortality at Critical Dilution [TJP6C]	Report	Report		24-lu
[Pass/Fail Growth [TGP6C]		Report	1/quarter f	comp
			NOECs Growth [TPP6C]	Report	Report	for TX2	
1			% Coeff of Variation [TQP6C]	Report	Report		
Retesting	Retest #1 [22415] ^c				Report	As	24-hr
	Retest #2 [22416] ^c				Report	required ^d	comp

See Part II, Section A, Whole Effluent Toxicity Testing, for additional monitoring and reporting conditions.

Reporting periods commence with the effective date of the permit. A valid WET test shall be reported for each species for each reporting period. Results of retests conducted pursuant to prior test failure shall <u>not</u> be submitted on DMRs in lieu of routine test results (see Part II, Section A, Item 2.a).

Applies to either or both test species, according to results of test failure triggering monthly retests.

Monthly retesting required only if the routine test for reporting period (for either species) fails.

When discharging, no frequency reduction will be applied to TX1 for biomonitoring (November – March).

The frequency of testing may be reduced to twice per year for TX2, if requested and if there are no lethal or sublethal failures in WET testing during the first two years of the permit. See the provision for WET testing monitoring frequency reduction after the first two years (Part 11, Section A, Item 5).

Whole effluent toxicity reporting and monitoring requirements apply beginning the effective date of the permit.

<u>WET testing summary reports</u>: Reports of all WET testing initiated, regardless of whether such tests are carried to completion, shall follow the requirements of Part II. Section Λ , Item 4.

L

Enid – OK0021628 Permit Part I – Page 4

Whole effluent toxicity concurrent testing provision: Concurrent analysis of total ammonia and pH is required on all effluent samples, including static renewals, collected for Falhead minnow WET testing or retesting. Reporting of results shall be in accordance with the following requirements.

Concurrent Effluent Testing - Reporting Requirements

Effluent	Concentration ^a			Monitoring Requirements		
Characteristic	Daily Min	Montly Avg	Daily Max	Monitoring Frequency	Sample Type	
Ammonia, total ISTORET 00610]	Report ^b	Report ^b	Report ^b	2/season for TX1 ^e , and	24 hr composite	
pl1 (std units) [STORET 00400]	Report ^b		Report ^b	1/quarter ^d for TX2	Note ^c	

Concentration units are mg/l unless otherwise specified.

Report only those effluent samples collected for Fathead minnow WET testing.

Measured in each composite effluent sample, including static renewals, just prior to first use .

The frequency of testing can be reduced to twice per year for TX2, if requested and if there are no lethal or sublethal failures in WET testing during the first two years of the permit.

When discharging (November - March).

3. Priority Pollutants

a. Monitoring Requirements for Copper for Outfall 002 (period effective beginning eighteen months before the expiration date of the permit and to last one year).

During the period stated above, the permittee shall monitor for one year the effluent for copper and report the results as follows:

	<u>D</u> i	scharge Limitati	ons	Monitoring Requirements		
<u>Effluent</u>	Mass (lbs/day)	Concentration(ug/l)		Measurement		
Characteristics	Monthly Avg.	Monthly Avg.	Daily Maximum	Frequency	Sample Type	
Copper, Total	Report	Report	Report	1/month	24-hr composite	

If any individual test result is less than the minimum quantification level (MQL) of 10 ug/l for copper (monthly and/or daily maximum), a value of zero (0) may be used for the discharge monitoring report (DMR) calculations and reporting requirements.

b. Monitoring Requirements for Hardness (Outfall 999)

During the period beginning eighteen months before the expiration of the permit, the permittee shall monitor the upstream hardness for one year, and report the results as follows:

	U	Upstream Monitoring			Monitoring Requirements		
Upstream	Mass (lbs/day)	Concentration(mg/l)		Measurement	•		
Characteristics	Monthly Avg.	Monthly Avg.	Daily Maximum	Frequency	Sample Type		
Hardness	NΛ	NΛ	Report	1/month	Grab		

Enid – OK0021628 Permit Part 1 – Page 5

B. Sanitary Sewer Overflows

Any bypass in the collection system [sanitary sewer overflow (SSO)] shall be reported in accordance with Part III.B.6. of this permit.

In addition, all reports shall be summarized and reported in tabular format with the Discharge Monitoring report (DMR) for the month in which the bypasses occurred.

Enid – OK0021628 Permit Part II – Page 1

PART II. OTHER PERMIT REQUIREMENTS

A. WHOLE EFFLUENT TOXICITY TESTING (7-DAY CHRONIC NOEC, STATIC RENEWAL, FRESHWATER)

1. SCOPE AND METHODOLOGY

a. The permittee shall test the effluent for toxicity in accordance with the provisions in this section. Applicability to multiple outfalls is described in Item 3.d.5 of this section. The permittee shall biomonitor for *Ceriodaphnia dubia* and *Pimephales promelas* in accordance with the WET testing frequencies prescribed in Part 1. Intervals between test initiation dates shall be a function of the required testing frequency, as follows:

1	Monthly retests: Quarterly:	No less than 20 days and no more than 40 days. No less than 2 months and no more than 4 months. No less than 4 months and no more than 8 months.		
1	Semi-annually:			
	APPLICABLE TO OUTFALL(S):		001 and 002	
	REPORTED ON DMR AS	OUTFALL(S):	TX1 and TX2	
	CRITICAL DILUTION:		100%	
	EFFLUENT DILUTION SI	ERJES (ALL TESTS):	32%, 42%, 56%, 75%, and 100%	
	COMPOSITE SAMPLE TY	TPE:	Defined at Part I	
	TEST SPECIES/METHOD	40 CFR 136		

Ceriodaphnia dubia chronic static renewal 7-day survival and reproduction test, Method 1002.0, EPA/600/4-91/002 or the most recent update thereof. A minimum of ten (10) replicates consisting of one (1) organism each must be used in the control and in each effluent dilution of this test. This test should be terminated when 60% of the surviving females in the control produce three broods or at the end of eight days, whichever comes first. If these criteria are not met at the end of 8 days, the test must be repeated.

Pimephales promelas (Fathead minnow) chronic static renewal 7-day larval survival and growth test, Method 1000.0, EPA/600/4-91/002, or the most recent update thereof. A minimum of five (5) replicates with eight (8) organisms per replicate must be used in the control and in each effluent dilution of this test.

b. CHRONIC LETHAL EFFECT TEST FAILURE

The NOEC_L (No Observed Lethal Effect Concentration) is defined as the greatest effluent dilution at and below which lethality that is statistically different from the control (0% effluent) at the 95% confidence level does not occur. Chronic lethal test failure (chronic

Enid – OK0021628 Permit Part II – Page 2

 $NOEC_1$ test) is defined as a demonstration of a statistically significant lethal effect at test completion to a test species at or below the critical dilution.

c. CHRONIC SUBLETHAL EFFECT TEST FAILURE

The NOEC_s (No Observed Sublethal Effect Concentration) is defined as the greatest effluent dilution at and below which sublethality (inhibited reproduction in the *Ceriodaphnia dubia* test or inhibited growth in the Fathcad minnow test) that is statistically different from the control (0% effluent) at the 95% confidence level does not occur. Chronic sublethal test failure (chronic NOEC_s test) is defined as a demonstration of a statistically significant sublethal effect at test completion to a test species at or below the critical dilution.

d. <u>REOPENER CLAUSE</u>

This permit may be reopened to require whole effluent toxicity limits, chemical specific effluent limits, additional testing, and/or other appropriate actions to address toxicity.

2. TESTING REQUIREMENTS DUE TO CHRONIC TEST FAILURE

Upon becoming aware of the failure of any test, the permittee shall notify the DEQ Water Quality Division Toxics Coordinator immediately, and in writing within 5 working days of the test failure, with a summary of the results of and any other pertinent circumstances associated with the failed test.

Whenever there is a lethal effect test failure for either species during routine testing, the frequency of testing for the affected species shall automatically increase to, or continue at, as appropriate, the WET testing frequency prescribed in Part I for the remaining life of the permit. In addition, two (2) additional monthly tests (retests) of the affected species are required. The two additional tests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute either of the two additional tests for routine toxicity testing. Additional tests are not required for a sublethal effect test failure. A full laboratory report for the failed routine test and both additional tests, if required, shall be prepared and submitted to the DEQ in accordance with procedures outlined in Item 4 of this section.

b. PERSISTENT LETHALITY

- If either of the two additional tests result in an NOEC₁, value less than the critical dilution, persistent lethality is exhibited, and the permittee shall initiate a Toxicity Reduction Evaluation (TRE) as specified in Item 5 of this section. The TRE initiation date will be the test completion date of the first failed retest.
- (2) The retesting requirements in Item 2.a are suspended upon submittal of the TRE Action Plan.

c. INTERMITTENT LETHALITY

If both additional tests result in an $NOEC_1$ value greater than or equal to the critical dilution, persistent lethality is not exhibited. However, if any routine test lethal effect failure occurs within 18 months of a prior lethal effect test failure, intermittent lethality is

Enid – OK0021628 Permit Part II – Page 3

exhibited, and the permittee may be required by the DEQ to initiate a TRE, as described in Item 5 of this section, based on the severity and pattern of such lethal effect over time.

I. PERSISTENT SUBLETHALITY

Barring persistent lethality, if two consecutive routine tests result in a sublethal effect failure for a species, persistent sublethality is exhibited, and the permittee:

- (1) Shall increase the frequency of testing for the affected species to, or continue at, as appropriate, the WET testing frequency prescribed in Part I for the remaining life of the permit; and
- (2) May be required by the DEQ to initiate a TRE, as specified in Item 5 of this section, based on the severity and pattern of such sublethal effect over time.

3. REQUIRED TOXICITY TESTING CONDITIONS

a. <u>Test Acceptance</u>

The permittee shall repeat a test, including the control and all effluent dilutions, if the procedures and quality assurance requirements defined in the test methods or in this permit are not satisfied, including the following additional criteria:

- (1) The toxicity test control (0% effluent) must have survival equal to or greater than 80%.
- (2) The mean number of *Ceriodaphnia dubia* neonates produced per surviving female in the control (0% effluent) must be 15 or more.
- (3) Sixty (60) percent of the surviving *Ceriodaphnia dubia* control females must produce three broods.
- (4) The mean dry weight of surviving Fathead minnow larvae at the end of the 7 days in the control (0% effluent) must be 0.25 mg per larva or greater.
- (5) The percent coefficient of variation between replicates shall be 40% or less in the control (0% effluent) for the young of surviving females in the Ceriodaphnia dubia reproduction test and for the growth and survival endpoints of the Fathead minnow test.
- (6) The percent coefficient of variation between replicates shall be 40% or less in the critical dilution, unless significant lethal or sublethal effects are exhibited for the young of surviving females in the *Ceriodaphnia dubia* reproduction test and for the growth and survival endpoints of the Fathead minnow test.
- (7) As documented at test termination, no more than forty (40) percent of the Ceriodaphnia dubia test organisms in the control (0% effluent) or any effluent dilution shall be male.

Test failure may not be construed or reported as invalid due to a coefficient of variation value of greater than 40% in the critical dilution. A repeat test shall be conducted within the reporting period of any test determined to be invalid.

b. Statistical Interpretation

- (1) For the *Ceriodaphiia dubia* survival test, the statistical analyses used to determine if there is a significant difference between the control and the critical dilution shall be Fisher's Exact Test as described in EPA/600/4-91/002, or the most recent update thereof.
- (2) For the Ceriodaphnia dubia reproduction test and the Fathead minnow larval survival and growth test the statistical analyses used to determine if there is a significant difference between the control and the critical dilution shall be in accordance with the methods for determining the No Observed Effect Concentration (NOEC) as described in EPA/600/4-91/002, or the most recent update thereof.
- (3) If the conditions of test acceptability are met in Item 3.a above and the percent survival of the test organism is equal to or greater than 80% in the critical dilution concentration and all lower dilution concentrations, the test shall be considered to be a passing test, and the permittee shall report an $NOEC_1$ of not less than the critical dilution for the DMR reporting requirements found in Item 4 below.

Dilution Water

- (1) Dilution water used in the toxicity tests will be receiving water collected as close to the point of discharge as possible but unaffected by the discharge. The permittee shall substitute synthetic dilution water of similar pH, hardness and alkalinity to the closest downstream perennial water where the toxicity test is conducted on an effluent discharge to a receiving stream classified as intermittent or to a receiving stream with no flow due to zero flow conditions.
- (2) If the receiving water is unsatisfactory as a result of instream toxicity (fails to fulfill the test acceptance criteria of Item 3.a.), the permittee must submit the test results exhibiting receiving water toxicity with the full test report required in Item 4 below and may thereafter substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - (a) A synthetic dilution water control which fulfills the test acceptance requirements of Item 3.a. was run concurrently with the receiving water control;
 - (b) The test indicating receiving water toxicity was carried out to completion; and
 - (c) The synthetic dilution water had a pH, hardness and alkalinity similar to that of the receiving water or closest downstream perennial water not adversely affected by the discharge, provided the magnitude of these parameters will not cause toxicity in the synthetic dilution water.

d. Samples and Composites

(1) The permittee shall collect three flow-weighted 24-hour composite samples representative of the flows during normal operation from the outfall(s) listed at Item 1.a above. Unless otherwise specified in Part I of the permit, a 24-hour composite sample consists of a minimum of 12 effluent portions collected at equal time intervals

Enid - OK0021628 Permit Part II - Page 5

representative of a 24-hour operating day and combined proportional to flow or a sample continuously collected proportional to flow over a 24-hour operating day.

- (2) The first composite effluent sample shall be used to initiate each test and must be collected so that its holding time (between collection of the last portion of the sample and test initiation) does not exceed 36 hours. Collection of the second and third composite effluent samples must be timed so as to permit an approximately equal use distribution of the three composite samples for daily static renewals. In no case:shall the holding time of the second and third composite sample and third composite sample and third composite samples (between collection of the last portion of the second and third composite samples (between collection of the last portion of the sample and its first use) exceed 72 hours. All samples shall be chilled to 4 °C during collection, shipping and/or storage.
- (3) The permittee shall collect the 24-hour composite samples such that the effluent samples are representative of any periodic episode of chlorination, biocide usage or other potentially toxic substance discharged on an intermittent basis.
- (4) If the flow from the outfall(s) being tested ceases during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions and the sample holding time are waived during that sampling period. However, the permittee must collect an effluent composite sample volume during the period of discharge that is sufficient to complete the required toxicity tests with daily renewal of effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate days if the discharge occurs over multiple days. The effluent composite sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full test report required in Item 4 of this section.
- (5) <u>MULTIPLE OUTFALLS</u>: If the provisions of this section are applicable to multiple outfalls, as specified in Part I of the permit, the permittee shall combine the composite effluent samples in proportion to the average flow from the outfalls listed in Item 1.a of this section for the day the sample was collected. The permittee shall perform the toxicity test on the flow-weighted composite of the outfall samples.

<u>REPORTING</u>

4.

- a. The permittee shall prepare a full report of the results of all tests conducted pursuant to this section in accordance with the Report Preparation Section of EPA/600/4-91/002, or the most current publication, for every valid or invalid toxicity test initiated, whether carried to completion or not. The permittee shall retain each full report pursuant to the records retention provisions of Part III of this permit. The permittee shall submit full test reports for all tests initiated, regardless of whether the tests are carried to completion, to the DEQ no later than the 15th day of the month following completion of the test, including any test which is considered invalid, is terminated early for any reason, or which indicates receiving water toxicity.
- b. A valid test for each species (excluding retests) must be reported on the DMR for each reporting period specified in Part I of this permit unless the permittee is performing a TRE, which may increase the frequency of testing and reporting. A DMR must be submitted by the 15th day of the month following-completion of any valid test. The full report for the test (see Item 4.a above) shall be submitted along with the DMR. If a survival test failure is experienced for either test species, two copies of the blank DMR for the applicable

Enid - OK0021628 Permit Part II - Page 6

reporting period shall be made in advance of completing and submitting the DMR so that the DMR copies may be used to report results of the required retests. If more than one valid test (excluding retests) is performed on a species during a reporting period, the permittee shall report the lowest survival test results as the 7-day minimum for each species tested, and the arithmetic average of the results of the survival tests shall be reported as the 30-day average minimum. The sublethal test results reported for each species on the DMR are determined in the same manner. If the permittee performs only one valid test (excluding retests) on a species during the reporting period, then the results of that test shall be reported as both the 7-day minimum and the 30-day average minimum on the DMR. The 30-day average minimum does not apply to the pass/fail parameters (TLP3B, TGP3B, TLP6C and TGP6C) in Item 4.c below.

If any test results in anomalous NOEC_L or NOEC_S findings (i.e., it indicates an interrupted dose response across the dilution series), the DEQ recommends that the permittee contact its DEQ toxicity coordinator for a technical review of the test results prior to submitting the full test report and DMR. A summary of all tests initiated during the reporting period, including invalid tests, repeat tests and retests, shall be attached to the reporting period DMR for DEQ review. A test is a <u>REPEAT</u> test if it is performed as a result of a previously invalid test. A test is a <u>RETEST</u> if it is performed as a result of a previously failed test. Each time a DMR is submitted, put the new submittal date in the lower right-hand corner of the DMR.

- (1) The reporting period test summary attached to the DMR shall be organized as follows:
 - (a) Invalid tests (basis for test invalidity must be described)
 - (b) Valid tests (other than retests) initiated during current reporting period
 - (c) Valid retests for tests failed during previous reporting period (if not submitted in the previous reporting period test summary)
 - (d) Valid retests for tests failed during current reporting period
- (2) The following information shall be listed in the reporting period test summary for each valid test in categories (b) through (d) in Item 4.b(1) above:
 - (a) Test species
 - (b) Date of test initiation at laboratory
 - (c) Results of all concurrent effluent analyses specified in Part I of this permit
 - (d) All test result parameters for the test species specified in Item 4.c below.
- c. The permittee shall report the following results for all <u>VALID</u> toxicity tests (excluding retests) on the DMR(s) for that reporting period in accordance with Item 4.b above and Part III of this permit.

(1) Ceriodaphnia dubia

- (a) Parameter TLP3B: If the *Ceriodaphnia dubia* NOEC₁ for survival is less than the critical dilution, report a "1"; otherwise, report a "0".
- (b) Parameter TOP3B: Report the Ceriodaphnia dubia NOEC₁, value for survival.
- (c) Parameter TJP3B: Report the *Ceriodaphnia dubia* percent mortality in the critical dilution at test completion.
- (d) Parameter TGP3B: If the *Ceriodaphnia dubia* NOECs for reproduction is less than the critical dilution, report a "1"; otherwise, report a "0".
- (e) Parameter TPP3B: Report the Ceriodaphnia dubia NOECs value for reproduction.
- (f) Parameter TQP3B: Report the highest coefficient of variation (critical dilution or control) for *Ceriodaphnia dubia* reproduction.
- (2) *Pimephales promelas* (Fathead minnow)
 - (a) Parameter TLP6C: If the Fathead minnow NOEC₁ for survival is less than the critical dilution, report a "1"; otherwise, report a "0".
 - (b) Parameter TOP6C: Report the Fathead minnow NOEC_L value for survival.
 - (c) Parameter TJP6C: Report the Fathead minnow percent mortality in the critical dilution at test completion.
 - (d) Parameter TGP6C: If the Fathead minnow NOECs for growth is less than the critical dilution, report a "1"; otherwise, report a "0".
 - (e) Parameter TPP6C: Report the Fathead minnow NOECs value for growth.
 - (f) Parameter TQP6C: Report the highest coefficient of variation (critical dilution or control) for Fathead minnow survival and growth.
- d. The permittee shall report the following results for all <u>VALID</u> toxicity <u>retests</u> on the DMR(s) for that reporting period.
 - Retest #1 (STORET 22415): If the <u>first</u> monthly retest following failure of a routine test for either test species results in an NOEC_L for survival less than the critical dilution, report a "1"; otherwise, report a "0".
 - (2) Retest #2 (STORET 22416): If the <u>second</u> monthly retest following failure of a routine test for either test species results in an NOEC₁ for survival less than the critical dilution, report a "1"; otherwise, report a "0".

Results of all retests shall be reported on a copy of the DMR for the reporting period (see Item 4.b above) in which the triggering routine test failure is experienced by no later than the 15th day of the month following completion of the retest. The full report for the retest (see Item 4.a above) shall be submitted along with the retest DMR. Even if a retest cannot be conducted before the end of the reporting period for which it is required (due to test initiation interval requirements), the retest results shall still be reported for the reporting
period in which the triggering test failure is experienced. In this manner, both retests are reported for the same reporting period as the failed routine test. Each time a DMR is submitted, put the new submittal date in the lower right-hand corner of the DMR. If retesting is not required during a given reporting period, the permittee shall leave these DMR fields blank.

5. MONITORING FREQUENCY REDUCTION

- a. The permittee may apply for a testing frequency reduction upon the successful completion of the first two years of testing for one or both test species with no lethal or sublethal effects demonstrated at or below the critical dilution. Certification in accordance with Item 5.b of this section shall be submitted at the time of such application for monitoring frequency reduction. If granted, the monitoring frequency may be reduced to not less than once per 6 months (once each during the periods June 1 through September 30 and December 1 through March 31) for either test species.
- CERTIFICATION: The permittee must certify in writing that no lethal or sublethal test b. failures have occurred for the species for which the monitoring frequency reduction is being requested and that all tests meet all test acceptability criteria in Item 3.a. above. In addition. the permittee must provide a summary of all tests initiated during the period of certification including test initiation dates, species, test acceptability parameters, NOEC, values, percent mortality at the critical dilution, NOECs values, and coefficients of variation for the controls and critical dilutions. If the certification is approvable, the DEQ will issue a letter of confirmation of the monitoring frequency reduction. A copy of the confirmation letter will be forwarded to the DEQ's Permit Compliance System unit to update the permit reporting requirements. The DEQ may deny the certification if it determines that, during the period for which the certification is submitted, there were errors in meeting test acceptability requirements, errors in statistical interpretation affecting test results reported on DMRs, late submissions of test reports or submissions of substantively incomplete test reports. If the certification is denied, the permittee shall continue biomonitoring of the affected test species at a frequency of once per quarter until the permit is reissued.
- c. SUBLETHAL FAILURES DURING FIRST YEAR OF TESTING: If, during the first year of testing, only a sublethal effect is demonstrated to a test species, continued routine testing for that species is required for the remainder of the first year and, as necessary, into the following year(s) at the frequency prescribed in Part I until the effluent passes four consecutive routine tests for both lethal and sublethal test endpoints, at which time the permittee may apply for a monitoring frequency reduction in a manner consistent with Item 5.a above. Certification in accordance with Item 5.b of this section shall be submitted at the time of such application for monitoring frequency reduction. If granted, the monitoring frequency may be reduced in accordance with Item 5.a.
- d. SURVIVAL FAILURES AFTER A MONITORING FREQUENCY REDUCTION: If any test fails the survival endpoint at any time after the granting of a monitoring frequency reduction, two monthly retests are required in accordance with Item 2 of this section (unless the permittee is performing a TRE) and the monitoring frequency for the affected test species shall be increased to the WET testing frequency prescribed in Part I until the permit is reissued.

This monitoring frequency reduction applies only until the expiration date of this permit, at which time the monitoring frequency for both test species reverts to the WET testing frequency prescribed in Part I until the permit is reissued.

6. TOXICITY REDUCTION EVALUATION (TRE)

- a. Within nincty (90) days of confirming lethality in the retests for a test species, the permittee shall submit to the DEQ a Toxicity Reduction Evaluation (TRE) Action Plan and Schedule for conducting a TRE. The TRE Action Plan shall specify the approach and methodology to be used in performing the TRE. A Toxicity Reduction Evaluation is an investigation intended to determine those actions necessary to achieve compliance with water quality-based effluent limits by reducing an effluent's toxicity to an acceptable level. A TRE is defined as a step-wise process which combines toxicity testing and analyses of the physical and chemical characteristics of a toxic effluent to identify the constituents causing effluent toxicity and/or treatment methods which will reduce the effluent toxicity. The TRE Action Plan shall lead to the successful elimination of effluent toxicity at the critical dilution and include the following:
 - (1) Specific Activities. The plan shall detail the specific approach the permittee intends to utilize in conducting the TRE. The approach may include toxicity characterizations. identifications and confirmation activities, source evaluation, treatability studies, or alternative approaches. When the permittee conducts Toxicity Characterization Procedures the permittee shall perform multiple characterizations and follow the procedures specified in the documents "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA-600/6-91/003) and "Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents. Phase I" (EPA-600/6-91/005F), or alternate procedures. When the permittee conducts Toxicity Identification Evaluations and Confirmations, the permittee shall perform multiple identifications and follow the methods specified in the documents "Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations, Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081), as appropriate.

The documents referenced above may be obtained through the National Technical Information Service (NTIS) by phone at (703) 487-4650, or by writing:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161

(2) Sampling Plan (e.g., locations, methods, holding times, chain of custody, preservation, etc.). The effluent sample volume collected for all tests shall be adequate to perform the toxicity test, toxicity characterization, identification and confirmation procedures, and conduct chemical specific analyses when a probable toxicant has been identified. Where the permittee has identified or suspects specific pollutant(s) and/or source(s) of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical specific analyses for the identified and/or suspected pollutant(s) and/or source(s) of

effluent toxicity. Where lethality was demonstrated within 48 hours of test initiation, each composite sample shall be analyzed independently. Otherwise, the permittee may substitute a composite sample, comprised of equal portions of the individual composite samples, for the chemical specific analysis.

- (3) Quality Assurance Plan (c.g., QA/QC implementation, corrective actions, etc.).
- (4) Project Organization (e.g., project staff, project manager, consulting services, etc.).
- b. The permittee shall initiate the TRE Action Plan within thirty (30) days of plan and schedule submittal. The permittee shall assume all risks for failure to achieve the required toxicity reduction.
- c. The permittee shall submit to the DEQ a quarterly TRE Activities Report with the Discharge Monitoring Report in the months of (to be specified), containing information on toxicity reduction evaluation activities including:
 - (1) any data and/or substantiating documentation which identifies the pollutant(s) and/or source(s) of effluent toxicity;
 - (2) any studies/evaluations and results on the treatability of the facility's effluent toxicity; and
 - (3) any data which identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant lethality at the critical dilution.
- d. The permittee shall submit to the DEQ a Final Report on Toxicity Reduction Evaluation Activities no later than twenty-eight (28) months from confirming lethality in the retests, which provides information pertaining to the specific control mechanism selected that will, when implemented, result in reduction of effluent toxicity to no significant lethality at the critical dilution. The report will also provide a specific corrective action schedule for implementing the selected control mechanism.
- e. Quarterly testing during the TRE is a minimum monitoring requirement. The DEQ recommends that permittees required to perform a TRE not rely on quarterly testing alone to ensure success in the TRE, and that additional tests be performed to capture toxic samples for identification of toxicants. Failure to identify the specific chemical compound causing toxicity test failure will normally result in a permit limit for whole effluent toxicity per federal regulations at 40 CFR 122.44(d)(1)(v).

B. SEWAGE SLUDGE REQUIREMENTS

The sludge produced at the facility is presently sent to the Enid Municipal Landfill located in the NE of Sections 29, Township 22-N, Range 6 W. I.M., Garfield County, Oklahoma..

Sewage sludge disposal practices shall comply with the federal regulations for landfills, sludge, and solid waste disposal established at 40 CFR Part 257, 503 and the DEQ rules governing Sludge Management (OAC 252:648) as applicable.

The permittee shall give 120 days prior notice to DEQ of any change planned in the sewage sludge disposal practice.

In addition, the permittee shall comply with other sludge requirements specified in Part IV of this permit.

The permittee is required to maintain all records relevant to sewage sludge disposal for the life of the permit. These records shall be made available to DEQ upon request.

C. POLLUTION PREVENTION REQUIREMENTS

- 1. The permittee shall institute a program within 12 months of the effective date of the permit (or continue on existing one) directed towards optimizing the efficiency and extending the useful life of the facility. The permittee shall consider the following items in the program:
 - a. The influent loadings, flow and design capacity;
 - b. The effluent quality and plant performance;
 - c. The age and expected life of the wastewater treatment facility's equipment;
 - d. Bypasses and overflows of the tributary sewerage system and treatment works;
 - e. New developments at the facility;
 - f. Operator certification and training plans and status;
 - g. The financial status of the facility;
 - h. Preventative maintenance programs and equipment conditions and;
 - i. An overall evaluation of conditions at the facility.

2. The permittee shall prepare the following information on the sewage sludge generated by the facility.

- a. An annual quantitative tabulation of the ultimate disposition of all sewage sludge (including, but not limited to, the amount beneficially reused, landfilled, surface disposed, and incinerated).
- b. An assessment of technological processes and an economic analysis evaluating the potential for beneficial reuse of all sewage sludge not currently beneficially reused including a listing of any steps which would be required to achieve the sludge quality necessary to beneficially reuse the sludge.
- c. A description of, including the expected results and the anticipated timing for, all projects in process, in planning and/or being considered which are directed towards additional beneficial reuse of sewage sludge.
- d. An analysis of one composite sample of the sludge collected prior to ultimate re-use or disposal shall be performed for the pollutants listed in Part IV, Element 1, Section III, Table 3 of the permit.
- e. A listing of the specific steps (controls/changes) which would be necessary to achieve and sustain the quality of the sludge so that the pollutant concentrations in the sludge fall below the pollutant concentration criteria listed in Part IV, Element I, Section III, Table 3 of the permit.
- [A listing of, and the anticipated timing for, all projects in process, in planning, and/or being considered which are directed towards meeting the sludge quality referenced in (c) above.

Enid – OK0021628 Permit Part II – Page 12

The permittee shall certify in writing, within three years of the effective date of the permit, that all pertinent information is available. This certification shall be submitted to:

Oklahoma Department of Environmental Quality Water Quality Division Wastewater Discharge Permit Section P. O. Box 1677; 707 North Robinson Street Oklahoma City, Oklahoma 73101-1677

D.

CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS

- 1. The permittee shall operate an industrial pretreatment program in accordance with Section 402(b)(8) of the Clean Water Act, the General Pretreatment Regulations (40 CFR Part 403) and the approved POTW pretreatment program submitted by the permittee. The pretreatment program was approved on October 15, 1984 and modified on July 15, 1994 and March 1, 2001. A Publicly Owned Treatment Works (POTW) facility is defined in 40 CFR 403.3(o) "as any devices and systems used in storage, treatment, recycling and reclamation of municipal sewage and industrial wastes of a liquid nature. It also includes sewers, pipes and other conveyances only if they convey wastewater to a POTW Treatment Plant. The term also means the municipality as defined in section 502(4) of the Act, which has jurisdiction over the Indirect Discharges to and from such treatment works." The POTW pretreatment program is hereby incorporated by reference and shall be implemented in a manner consistent with the following requirements:
 - a. Industrial user information shall be updated at a frequency adequate to ensure that all IUs are properly characterized at all times;
 - b. The frequency and nature of industrial user compliance monitoring activities by the permittee shall be commensurate with the character, consistency and volume of waste. However, in keeping with the requirements of 40 CFR 403.8 (f)(2)(v), the permittee must inspect and sample the effluent from each Significant Industrial User at least once a year. This is in addition to any industrial self-monitoring activities;
 - c. The permittee shall enforce and obtain remedies for noncompliance by any industrial users with applicable pretreatment standards and requirements;
 - d. The The permittee shall control through permit, order, or similar means, the contribution to the POTW by each Industrial User to ensure compliance with applicable Pretreatment Standards and requirements. In the case of Industrial Users identified as significant under 40 CFR 403.3(1), this control shall be achieved through permits or equivalent individual control mechanisms issued to each such user. Such control mechanisms must be enforceable and contain, at a minimum, the following conditions:
 - (1). Statement of duration (in no case more than five years);
 - (2). Statement of non-transferability without, at a minimum, prior notification to the POTW and provision of a copy of the existing control mechanism to the new owner or operator;
 - (3). Effluent limits based on applicable general pretreatment standards, categorical pretreatment standards, local limits, and State and local law;

- (4). Self-monitoring, sampling, reporting, notification and record keeping requirements, including an identification of the pollutants to be monitored, sampling location, sampling frequency, and sample type, based on the applicable general pretreatment standards in 40 CFR 403, categorical pretreatment standards, local limits, and State and local law; and
- (5). Statement of applicable civil and criminal penalties for violation of pretreatment standards and requirements and any applicable compliance schedule. Such schedules may not extend the compliance date beyond federal deadlines.
- The permittee shall evaluate, at least once every two years, whether each Significant Industrial User needs a plan to control slug discharges. If the POTW decides that a slug control plan is needed, the plan shall contain at least the minimum elements required in 40 CFR 403.8 (f)(2)(v);
- f. The permittee shall provide adequate staff, equipment, and support capabilities to carry out all elements of the pretreatment program; and,
- g. The approved program shall not be modified by the permittee without the prior approval of the DEQ.
- The permittee shall establish and enforce specific limits to implement the provisions of 40 CFR Parts 403.5(a) and (b), as required by 40 CFR Part 403.5(c). Each POTW with an approved pretreatment program shall continue to develop these limits as necessary and effectively enforce such limits.

The permittee shall, within sixty days of the effective date of this permit, (1) submit a WRITTEN CERTIFICATION that a technical evaluation has been performed demonstrating that the existing technically based local limits (TBLL) are based on the current state water quality standards and are adequate to prevent pass through of pollutants, inhibition of or interference with the treatment facility, worker health and safety problems, and sludge contamination, OR (2) submit a WRITTEN NOTIFICATION that a technical evaluation revising the current TBLL and a draft sewer use ordinance which incorporates such revisions will be submitted within 12 months of the effective date of this permit.

All specific prohibitions or limits developed under this requirement are deemed to be conditions of this permit. The specific prohibitions set out in 40 CFR Part 403.5(b) shall be enforced by the permittee unless modified under this provision.

3. The permittee shall analyze the treatment facility influent and effluent for the presence of the toxic pollutants listed in 40 CFR 122 Appendix D (NPDES Application Testing Requirements) Table II at once per year and the toxic pollutants in Table III at least once every six months. If, based upon information available to the permittee there is reason to suspect the presence of any toxic or hazardous pollutant listed in Table V, or any other pollutant, known or suspected to adversely affect treatment plant operation, receiving water quality, or solids disposal procedures, analysis for those pollutants shall be performed at least once every six months on both the influent and the effluent.

The influent and effluent samples collected shall be composite samples consisting of at least 12 aliquots collected at approximately equal intervals over a representative 24 hour period and

composited according to flow. Sampling and analytical procedures shall be in accordance with guidelines established in 40 CFR 136. The effluent samples shall be analyzed to a level as required in item 6 below. Where composite samples are inappropriate, due to sampling, holding time, or analytical constraints, at least 4 grab samples, taken at equal intervals over a representative 24 hour period, shall be taken.

4. The permittee shall prepare annually a list of Industrial Users which during the preceding twelve months were in significant noncompliance with applicable pretreatment requirements. For the purposes of this Part, significant noncompliance shall be determined based upon the more stringent of either criteria established at 40 CFR Part 403.8(f)(2)(vii) [rev. 7/24/90] or criteria established in the approved POTW pretreatment program. This list is to be published annually in the largest daily newspaper in the municipality during the month of December.

In addition, during the month of December the permittee shall submit an updated status report to DEO containing the following information:

- a. An updated list of all significant industrial users. For each industrial user listed the following information shall be included (Note: A sample table, which includes the requested information has been provided on Page 20 for your convenience):
 - (1). Standard Industrial Classification (SIC) code and categorical determination;
 - (2). Control document status. Whether the user has an effective control document, and the date such document was last issued, reissued, or modified, (indicate which industrial users were added to the system (or newly identified) within the previous 12 months);
 - (3). A summary of all monitoring activities performed within the previous 12 months. The following information shall be reported:
 - total number of inspections performed;
 - total number of sampling visits made;
 - (4). Status of compliance with both effluent limitations and reporting requirements. Compliance status shall be defined as follows:
 - Compliant (C) no violations during the previous 12 month period;
 - Non-compliant (NC) one or more violations during the previous 12 months but does not meet the criteria for significantly noncompliant industrial users;
 - Significant Noncompliance (SN) in accordance with requirements described in d. above; and
 - (5). For significantly noncompliant industrial users, indicate the nature of the violations, the type and number of actions taken (notice of violation, administrative order, criminal or civil suit, fines or penaltics collected, etc.) and current compliance status. If ANY industrial user was on a schedule to attain compliance with effluent limits, indicate the date the schedule was issued and the date compliance is to be attained (Note: A sample table, which includes the requested information has been provided on Page 19 for your convenience);

- b. A list of all significant industrial users whose authorization to discharge was terminated or revoked during the preceding 12 month period and the reason for termination;
- c. A report on any interference, pass through, upset or POTW permit violations known or suspected to be caused by industrial contributors and actions taken by the permittee in response;
- d. The results of all influent and effluent analyses performed pursuant to "item 3 above". These results and comparisons to the appropriate technically based local limit allowances and effluent water quality standards may be presented in tabular form as per the sample table provided on Page 18 for your convenience;
- e. A copy of the newspaper publication of the significantly non-compliant industrial users giving the name of the newspaper and the date published;
- 5. The permittee shall provide adequate notice of the following:
 - Any new introduction of pollutants into the treatment works from an indirect discharger which would be subject to Sections 301 and 306 of the CWA and/or Sections 40 CFR 405-499 if it were directly discharging those pollutants; and
 - b. Any substantial change in-the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Adequate notice shall include information on (i) the quality and quantity of effluent to be introduced into the treatment works, and (ii) any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

6. All effluent monitoring conducted in accordance with "item 3 above" shall meet the Minimum Ouantification Levels (MQLs) shown in the attached tables.

Enid – OK0021628 Permit Part II – Page 16

MINIMUM QUANTIFICATION LEVELS (MQLs)

METALS AND CYANIDE	(ug/L)	EPA METHOD
Antimony (Total) ¹	60 .	200,7
: Arsenic (Total) ^I	10	206.2
Beryllium (Total) ¹	5	200.7
Cadmium (Total) ²	1	213.2
Chromium (Total) ¹	10	200.7
Chromium (3+) ¹	10	200,7
Chromium (6+) ¹	10	200.7
Copper (Total) ²	10	220.2
Lead (Total)2	5	239.2
Mercury (Total) ¹	0.2	245.1
Nickel (Total) ¹ (Freshwate	r] 40	200.7
Nickel (Total) ⁷ [Marine]	5	249.2
Selenium (Total)	5	270.2
Silver (Tolai) ²	2	272.2
Thallium (Tolal) ¹	10	279.2
Ziuc (Total) ¹	20	200.7
Cyanide (Total) ¹	to	335.2
<u>DIOXIN</u>	•	· ·
1,7,8-Tetrachloro-dibenzo-	.00001	1613
p-dioxin (TCDD) ⁵		
VOLATILE COMPOUNDS		
Acrolein ⁴	50	624
Acrylonitrile ⁴	50	624
Benzene ⁴	10	624
Bromoform	10	624
Carbon Tetrachioride ⁵	. 10	624
Chlorobenzene ⁵	10	624
Chlorodibromomethane*	10	624
Chloroethane ⁶	50	624
2-Chloroethyl vinyl ether ⁴	10	624
Chloroform ⁵	10	624
Dichlorobromometharm ⁵	10	624
1.1-Dichloroethane ⁵	10	624
1.2-Dichloroetbano*	10	624
1.1-Dichloroethylene ⁵	10	624
1,2-Dichloropropane ⁵	10	624
1.3-Dichloropropylene*	10	624
Fthylbenzene	10	624
Methyl Bromide [Bromomethane] ⁶	50	624
Methyl Chloride [Chloromethane] 6	50	624
Methylene Chloride ⁵	20	624
-		

14

VOLATILE COMPOUNDS	(ug/l,.)	EPA METHOD
1,1,2,2-Tetrachloroethane ⁵	10	624
Tetrachloroethylene ⁵	10	624
Tolucne ⁵	10	624
1,2-trans-Dichloroethylene ⁵	10	624
1.1.1-Trichloroethane ³	10	624
1.1.2-Trichloroethane ⁵	10	624
Trichloroethylene ⁵	10	624
Vinyl Chloride ⁵	10	624
ACID COMPOUNDS		
2-Chlorophenol ^s	10	. 625
2,4-Dichlorophenal*	10	625
2,4-Dimethylphenol	10	625
4,6-Dinitro-o-Cresol	. ,	
12 methyl 4.6-dinitrophenol ⁵	50	625
2,4-Dinitrophenol ⁵	50	625
2-Nitmphenol [*]	20	625
4-Nilrophenol	50	625
p-Chioro-m-Cresol		
[4 chloro-3-methylphenoi] 6	10	625
Pentachlorophenol ⁵	50	625
Phenol	. 10	625
2,4,6-Trichkorophenol	10	625
BASE/NEUTRAL COMPOUNDS		÷ •
Acenaphthene	10	625
Acenaphthylent	10	625
Anthracene ⁵	10	625
Benzidine ⁴	50	625
Benzo(a)anthracenes*	10	625
Benzo(a)pyrene ^s	10	625
3.4-Benzofluonmthene ⁵	10	625
Benzo(ghi)përylene ⁶	20	625
Benzo(k)fluoranthene ⁵	10	625
Bis(2-chloroethoxy) methane*	i 10	625
Bis(2-chloroethyl) ether ^s	10	625
Bis(2-chloroisopropyl) cther ⁵	10	625
Bis(2-ethylbexyl) phtbalate ⁵	10	625
4-Bromophenyl phenyl ether	10	625
Butyl benzyl phthalate'	10	625
2-Chloronapihalene*	10	625
4-Chlorophenyl phenyl ethers	10	625
Chrysene ⁵	10	625
		•

Enid -- OK0021628 Permit Part II -- Page 17

MINIMUM QUANTIFICATION LEVELS (MQLs)

BASE/NUETRAL COMPOUNDS	(ug/[_)	EPA METHOD
Dihenzo (a,b) anthracene ⁶	20	625
1,2-Dichloubenzene ⁴	10	625
1.3-Dichlorobenzene	10	625
1,4-Dichlorohenzene ⁵	10	625
3,3'-Dichlorobenzidirm ⁶	50	625
Diethyl Phthalate ³	10.	625
Dimethyl Phthalate*	10	625
Di-n-Butyl Philalate ⁵	10	625
2.4-Dinitrotolucne ⁵	· 10	625
.2.6-Dinitrotoluene ⁵	10	625
Di-n-octyl Phthalate ⁵	10	625
1,2-Diphenythydanzine4	20	625
Fluoranthene*	. 10	625
Fluorene ⁵	10	625
Hexachlorobenzene ⁴	10 .	625
Hexachlorobutadiene ⁵	10	625
Hexachlorocyclopentadiene*	10	625
flexachloroethane ⁶	20	625
Indeno (1,2,3-cd) pyrene ⁶	20	625
(2.3-n-phenylene pyrene)		
Isophorone	10	625
Naphibalcue	10	625
Nitrobenzene ⁴	- 10	625
N-nilrosodimethylamine ⁶	50	625
N-nitrosodi-n-propylamine ⁶	20	625
N-nitrosodiphenylamine ⁶	20	625
Phenanthrenc	10	625
Pyrene ¹	10	625
1.2.4-Trichlorobenzene*	10	625
PESTICIDES		
Aldrin ²	0.05	608
Alpha-BHC ⁷	0.05	608
Bet&-BHC	0.05	609
Gamma-BHC (Lindane) ⁷	0.05	608
Delta-DHC ⁷	0.05	608
Chlordane?	0.2	608
4,4-101017	0.1	608
4,4 -DDE (p:p-DDX)'	0.1	608
4,4-DDD (p.p-TDE) 7	0.1	608
Dicklrin ⁷	0,1	608
Alpha-endosulfan ⁷	0.1	608
Beta-endosulfan ⁷	0.1	608
Findosulfan sulfaic ⁷	0,1	608

PESTICIDES	(ug/j.)	<u>ЕРА МЕТНО</u> В
Finch in ⁷	.1	600
Fudiin aldehyde ⁷	.1	609
Heptachlor ⁷	.05	608
Heptachlor cpoxide ⁷	.05	608
(BHC-hexachlorocyclohexane)	•	
PCB-12427	1.0	608
PCB-1254	1.0	608
PCB-1221	1.0	608
PCB-1232	1.0	608
PCB-1248	1.0	608
PCB-1260	1,0	609
PCB,1016	1.0	608
Toxaphene ⁷	5.0	608

¹Based on Contract Required Detection level (CRDL) developed pursuant to 40 CFR Part 300.430(b)(8) ² Method 213.2, 239.2, 220.2, 272.2

³Dioxin National Strategy

 ⁴No CRQL(Contract required Quantification Level developed pursuant to 40 CFR Part 300.430(b)(8)) established
 ⁵CRQL basis, equivalent to ML
 ⁶ML basis, higher than CRQL
 ⁷CRQL basis, no ML established
 ⁸CRQL basis, higher than ML

OKLAHOMA DEQ SAMPLE POTW MONITORING RESULTS ¹ SUMMARY TABLE FOR THE <u>(CA NAME)</u> ANNUAL PRETREATMENT REPORT, <u>(MONTH & YEAR)</u>

POLLUTANT	Minimum Quantification Level (MQL)	Detection Level (DL) Concentrati on Used (mgA er		POTW. Monitoring Res ations in mg/l unless of	Comparative Standards (Loadings in Ibs/day; concentration in mg/l unless otherwise noted)					
	Concentration (mg/l or ug/l) ²	ug/l)	Average Influent	POTW Average	Calculated Headworks	Maximum Effluent	Average Effluent	Maximum Allowable	Permut or GK L Concentrations	imits
		· · · ·	Concentration	Flow (MGD)	Loading (Ibs/d)	Concentration	Concentration	Headworks Loading or Concentration	Daily Maximum	Daily Maximum
Arsenic (Total	l 								-	
Cadmium (Total									-	
Chromium (Total)			·							
Copper (Total)										
Lead (Total)								· · · · · · · · · · · · · · · · · · ·	·	
Mercury (Total))										
Nickel (Total)							·			
Silver (Total))						·	· · · · ·			
Zinc (Total					· · · · · · · · · · · · · · · · · · ·			·		
Cyanide (Total)							· · · ·			
Other pollutants detected:							· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·										<u>!</u>
										<u>!</u>

I it is advised that the influent and effluent samples are collected considering flow detention time through each plant. Analytical MQLs should be used so that the data can also be used for Local Limits assessment and NPDES application purposes.

SIGNIFICANTLY NON-COMPLIANT USERS - ENFORCEMENT ACTIONS TAKEN

INDSUSTRIAL	NATUF VIOLA	LE OF TION		NUMBER OF ACTIONS TAKEN			PENALTIES COLLECTED	COMPI SCHE	LIANCE DULE	CURRENT STATUS	COMMENTS	
USER	REPORTS	LIMITS	N.O.V.	A.O.	CIVIL	CRIMINAL	OTHER		DATE ISSUED	DATE DUE		
										-		
								•.				
	4	- -										
			-									
											 . . .	
								· . · ·				
											-	

PRETREATMENT PROGRAM STATUS REPORT -- UPDATED SIGNIFICANT INDUSTRIAL USERS LIST

				CONTROL DOCUMENT NEW TIMES				COMPLIANCE STATUS				
INDUSTRIAL	SIC	CATEGORICAL	DOC			TIMES	REPORTS				EFFLUENT	
USER	CODE	DETERMINATION	Y/N LAST USER ACTION		INSPECTED	SAMPLED	BMR	90-DAY	SEMI- ANNUAL	SELF- MONITORING	LIMITS	
												-
	-	•										
										- -		
				-	 							
										·	- -	
]											

PART III. STANDARD CONDITIONS FOR OPDES MUNICIPAL/DOMESTIC PERMIT

SECTION A. Definitions

In addition to the definitions included in the Oklahoma Pollutant Discharge Elimination System Act (OPDES Act), Title 27 O.S. Supp. 1996, Section 2-6-201 et seq., and the rules of the State of Oklahoma Department of Environmental Quality (DEQ) adopted thereunder (See OAC 252;605); the following definitions shall apply to this permit:

- 1. "Act" means the OPDES Act as amended.
- "Applicable effluent standards and limitations" means all state and federal effluent standards and limitations to which a discharge is subject under the Act, including, but not limited to, effluent limitations, standards of performance, toxic effluent standards and prohibitions, and pretreatment standards.
- 3. "Applicable water quality standards" means all water quality standards to which a discharge is subject under the Act.
- 4. "Average limitations"
 - a. "7-day average" (or weekly average), other than for coliform bacteria, is the arithmetic mean of the daily values for all effluent samples collected during a calendar week, calculated as the sum of all daily discharges measured during a calendar week divided by the number of daily discharges measured during a calendar week. The "7-day average" for coliform bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.
 - b. "30-day average" (or monthly average), other than for collform bacteria, is the arithmetic mean of the daily values for all effluent samples collected during a calendar month, calculated as the sum of all daily discharges measured during a calendar month, calculated as the sum of all daily discharges measured during a calendar month. The "30-day average" for collform bacteria is the geometric mean of the values for all effluent samples collected during a calendar month.
- 5. "Bypass" means the diversion, whether intentional or unintentional, of waste streams from any portion of the collection system or treatment facility.
- 6. "Daily discharge" means the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the "daily discharge" is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the "daily discharge" is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the "daily discharge" is calculated as the average measurement of the pollutant over the sampling day. "Daily discharge" determination of concentrations made using a composite sample shall be the concentration of the composite sample. When grab samples are used, the "daily discharge" determination of concentration of the pollutant of all samples collected during that sampling day.
- 7. "Daily maximum" discharge limitation means the highest allowable "daily discharge" during the calendar month.
- 8. "Environmental Protection Agency" (EPA) means the U.S. Environmental Protection Agency.
- 9. "Executive Director" means the Executive Director of the State of Oklahoma Department of Environmental Quality (DEQ) or his/her authorized representative(s).
- 11. "Industrial user" means a nondomestic discharger, as identified in 40 CFR Part 403, introducing pollutants to a publicly owned treatment works.
- 12. "Oklahoma Pollutant Discharge Elimination System" (OPDES) means the state program for issuing, modifying, revoking and reissuing, terminating, monitoring and enforcing permits, and imposing and enforcing pretreatment requirements, under the Act.
- 13. "Oklahoma Department of Environmental Quality" also known as (DEQ), means the State of Oklahoma Department of Environmental Quality.
- 14. "OPDES Act" means the Oklahoima Pollutant Discharge Elimination System Act, Title 27 O.S. Supp. 1996, Section 2-6-201 et seq.
- 15. "Samples"
 - a. For colliarm bacteria, a sample consists of one effluent grah portion collected during a 24-hour period at peak loads.
 - b. "Grab sample" means an individual sample collected in less than 15 minutes.
 - e. "SBR (sequential batch reactor) sample and the various composite samples" are as defined in the OPDES Act, the Oklahoma Environmental Quality Code, rules transferred to or promulgated thercurder by DEQ.

SBR Composite Sample:

SBR Sample

A minimum of three aliquots collected from the discharge of a reactor. The first aliquot must be collected no later than 14 time, the second approximately 34 time, and the third no earlier than 34 time from the initiation of a discharge cycle to the stoppage of the discharge cycle. The three aliquots shall consist of equal portions unless the rate of discharge from the reactor varies significantly during the cycle, in which case the measurement of the flow occurring at the time of their collection.

Single Composite SBR Sample

One SBR sample collected from each reactor during one discharge cycle and composited proportional to the volume discharged from each of the reactors. The sample from at least one of the reactors shall represent the expected period of peak influent organic loading.

Two-Cycle Composite SBR Sample

One SBR sample collected from two consecutive discharge cycles of each reactor and composited proportional to the volume discharged during each cycle of each reactor. The sample from at least one cycle shall represent the expected period of peak influent organic loading.

Three-Cycle Composite SBR Sample

One SBR sample collected from three consecutive discharge cycles of each reactor and composted proportional to the volume discharged during each cycle of each reactor. The sample from at least one cycle shall represent the expected period of peak influent arganic loading.

d. "24-hour composite sample" consists of a minimum of 12 effluent portions collected at equal time intervals over the 24-hour period and combined proportional to flow or a sample collected at frequent intervals proportional to flow over the 24-hour period.

- e. "12-hour composite sample" consists of 12 effluent portions collected no closer together than one hour and composited according to flow. The daily sampling intervals shall include the highest flow periods.
- f. "6-hour composite sample" consists of six effluent portions collected no closer together than one hour (with the first portion collected no earlier than 10:00 p.m.) and composited according to flow.
- g. "3-hour composite sample" consists of three effluent portions collected no closer together than one hour (with the first portion collected no carlier than 10:00 a.m.) and composited according to flow.
- 16. "Severe property damage" means substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can reasonably he expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.
- 17. "Sewage sludge" means the solids, residues and precipitates separated from or created in sewage by the unit processes of a publicly owned treatment works. Sewage as used in this definition means any wastes, including wastes from humans, households, commercial establishments, industries, and storm water rumoff, that are discharged to or otherwise enter a publicly owned treatment works.
- 18. "Treatment works" means any devices and systems used in the storage, treatment, recycling and reclamation of municipal sewage and industrial wastes of a liquid nature to implement the Act, or necessary to recycle or reuse water at the most economical cost over the estimated life of the works, including intercepting sewers, sewage collection systems, pumping, power and other equipment, and their appurtenances, extension, improvement, remodeling, additions, and alterations thereof.
- 19. "Upset" means an exceptional incident in which there is unintentional and temporary noncompliance with technology-based permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.
- 20. "MGD" means million gallons per day.
- 21. "mg/l" means milligrams per liter or parts per million (ppm).
- 22. "µg/l" means micrograms per liter or parts per billion (pph).

SECTION B. Monitoring, Record Keeping, Reporting and Liabilities

1. Monitoring

a. Site and Frequency

All monitoring undertaken in compliance with the terms of this permit shall be conducted at the frequency and sample site specified in Part L. Section A of this permit and in accordance with the OPDES Act and the Oklahoma Environmental Quality Code. Grab or composite in Part III. Section B.5 below.

b. Representative Samples

Samples and measurements taken for the purpose of monitoring shall be representative of the monitored autivity.

Averaging of Measurements

Calculations of all limitations which require averaging of measurements shall utilize an arithmetic mean unless otherwise specified by the Executive Director in the permit.

d. Additional Monitoring by the Permittee

If the permittee monitors any pollutant more frequently than required by this permit, using test procedures approved under 40 CFR Part 1.36 or as specified in this permit, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the Discharge Monitoring Report (DMR). Such increased monitoring frequency shall also be indicated on the DMR.

2. Testing Requirements

a. Methods

All sampling and analytical methods used to meet monitoring requirements specified above shall conform to the Act, 40 CFR Part 136, and DEQ rules and regulations.

b. Maintenance and Calibration

The permittee shall calibrate and perform maintenance procedures on all monitoring and analytical instruments at intervals frequent enough to ensure accuracy of measurements and shall maintain appropriate records of such activities.

c. Ouality Control

An adequate analytical quality control program, including the analyses of sufficient standards, spikes, and duplicate samples to insure the accuracy to all required analytical results shall be maintained by the permittee or designated commercial laboratory.

3. Flow Measurements

Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to ensure the accuracy and reliability of measurements of the volume of monitored discharges. The devices shall be installed, calibrated, and maintained to insure that the accuracy of the measurements is consistent with the accepted capability of that type of device. Devices selected shall be capable of measuring flows with a maximum deviation of less than 10% from true discharge rates throughout the range of expected discharge rates.

Records

a. Contents

Records of monitoring information shall include:

- (1) The date, exact place, and time of sampling or measurements;
- (2) The individual(s) who performed the sampling or measurements;
- (3) The date(s) and time(s) analyses were performed;
- (4) The individual(s) who performed the analyses;
- (5) The analytical techniques or methods used; and
- (6) The results of such analyses.

h. Retention

The permittee shall retain records of all monitoring information, including all calibration and maintenance records and all original chart recordings for continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit, for a period of at least three (3) years from the date of the sample, measurement, report, or application. This period may be extended by request of the Executive Director at any time.

5. Discharge Monitoring Reports (DMRs)

All monitoring information required in Part I, Section A of this permit shall be included on DMRs (FPA form 3320-1). Reporting periods shall end on the last day of the month. The reports shall be prepared monthly. The original and one copy shall be submitted to the Oklahoma Department of Environmental Quality at the address shown below no later than the tenth (10th) day of the following month. A copy shall also be submitted simultaneously to the appropriate local DFQ office. All operating records and reports shall comply with the OPDFS Act, the Oklahoma Environmental Quality Code, and the requirements of 40 CFR 122.41(j).

Water Quality Division Oklahuma Department of Environmental Quality P.O. Box 1677 Oklahuma City, OK 73101-1677

. Noncompliance Reports

- Twenty-Four Hour Reporting
 - (1) The permittee shall report any noncompliance which may endanger health or the environment. Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. The DFO shall be notified by calling 1-800-256-2365 or 702-8290 (Oklahoma City Metropolitan Area). A written submission shall be provided within five (5) days of the time the permittee becomes aware of the circumstances. The report shall contain the following information:
 - (a) A description of the noncompliance and its cause;
 - (b) The period of noncompliance including exact dates and times, and if the noncompliance has not been concerted, the anticipated time it is expected to continue; and,
 - (c) Steps being taken to reduce, eliminate, and prevent recurrence of the noncomplying discharge.
 - (2) The following shall be included as information which must be reported within 24 hours:
 - (a) Any unanticipated bypass which exceeds any effluent limitation in the permit:
 - (b) Any upset which exceeds any effluent limitation in the permit;
 - (c) Any violation of a maximum daily discharge limit for any of the pollutants listed by the Executive Director in Part I. Section A; and,
 - (d) Any bypass in the collection system (sanitary sewer overflow (SSO)].
 - (3) The Executive Director may wrive the written report on a case-by-case basis if the oral report has been received within 24 hours.
 - Other Noncompliance

h.

The permittee shall report all instances of noncompliance not reported under Part III, Sections B.5 and B.6.a or the reporting requirements of any Schedule of Compliance included in Part I, Section B at the time monitoring reports are submitted. The reports shall contain the information listed at Part III, Section B.6.a.

Oil and Hazardous Substance Liability

Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties to which the permittee is or may be subject under the Act.

Federal Penalties for Violations of Permit Conditions

Nothing in this permit shall be construed to relieve the permittee from civil or criminal penaltics for noncompliance. Any false or materially misleading representation or conceahnent of information required to be reported by the provisions of the permit, the Act, or applicable regulations, which avoids or effectively defeats the regulatory purpose of the permit may subject the Permittee to criminal enforcement pursuant to 18 U.S.C. Section 1001.

n. Criminal

(1) Negligent Violations

The Act provides that any person who negligently violates permit conditions implementing the Act is subject to a fine of not less than \$2,500 nor more than \$25,000 per day of violation, or by imprisonment for not more than one (1) year, or both.

(2) Knowing Violations

The Act provides that any person who knowingly violates permit conditions implementing the Act is subject to a fine of not less than \$5,000 nor more than \$50,000 per day of violation, or by imprisonment for not more than three (3) years, or both.

(3) Knowing Endangerment

The Act provides that any person who knowingly violates permit conditions implementing the Act and who knows at that time that he is placing another person in imminent danger of death or serious bodily injury is subject to a fine of not more than \$250,000, or by imprisonment for not more than fifteen (15) years, or both.

(4) False Statements

The Act provides that any person who knowingly makes any false material statement, representation, or certification in any application, record, report, plan, or other document filed or required to be maintained under the Act or who knowingly falsifies, tampers with, or renders inaccurate, any monitoring device or method required to be maintained under the Act, shall upon conviction, be punished by a fine of not more than \$10,000, or by imprisonment for not unter than two (2) years, or by both. If a conviction of a person is for a violation committed after a first conviction of such person under this paragraph, punishment shall be by a fine of not more than \$20,000 per day of violation, or by imprisonment of not more than four (4) years, or by both. (See Section 2.6-206 of the Act).

h Civil Penaltics

The Act provides that any person who violates a permit condition implementing the Act is subject to a civil penalty not to exceed \$27,500 per day for each violation.

c. Administrative Penaltics

The Act provides that any person who violates a permit condition implementing the Act is subject to an administrative penalty, as follows:

(1) Class I Penalty

Not to exceed \$11,000 per violation nor shall the maximum amount exceed \$27,500.

(2) Class II Penalty

Not to exceed \$11,000 per day for each day during which the violation continues nor shall the maximum amount exceed \$137,500.

State Penalties

a. Civil and Administrative

For any violation of the limitations and/or conditions of this permit, the State may assess a fine of up to \$10,000 per day per violation.

b. Criminal

Violations of the terms of this permit constitute a misdemeanor under Oklahoma Statutes with various provisions for fines and jail terms.

SECTION C. Other Conditions

- 1. Permit Application
 - a. Timely Application

Upon timely application for a permit, any prior permit remains in effect until a new one is issued.

b. Date of Application

If the permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the permittee must apply for and obtain a new permit. The application shall be submitted at least 180 days before the expiration date of this permit unless otherwise authorized by the Executive Director. He or she may grant permission to submit an application less than 180 days in advance but no later than the permit expiration date. Continuation of expiring permits shall be governed by regulations promulgated at 40 CFR 122.6 and any subsequent amendments.

c. Relevant Facts

When the permittee becomes aware that it failed to suboit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the Executive Director, it shall promptly submit such facts or information.

. Changes

- Change in discharge
 - (1) Anticipated Noncompliance

The permittee shall give advance notice of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements.

(2) Municipal Permits

Any change in the facility discharge (including the introduction of any new source or significant discharge or significant changes in the quantity or quality of existing discharges to the treatment system that may result in new or increased discharges of pollutants) must be reported to the permitting authorities. In no case are any new connections, increased flows, or significant changes in influent quality permitted that will cause violations or add to existing violations of the effluent limitations specified herein.

(3) Other Permits

The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required only when:

- (a) The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR 122.29(b); or,
- (b) The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to all pollutants whether or not they are subject to effluent limitations in the permit.
- h. Transfer of ownership or control

This permit is not transferable to any person except after notice to the Executive Director. The Executive Director may require modification or revocation and reissuance of the permit to change the name of the permittee and incorporate such other requirements as necessary under the Act.

3. Property Rights

This permit does not convey any property rights of any sort, or any exclusive privilege.

- 4. Duty to Comply
 - a. All authorized discharges shall comply with the rules of the DFQ, which are hereby incorporated by reference: the Act and OPDES Regulations, and all provisions, conditions, and requirements included in this permit.
 - b. The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of applicable state and federal laws and the Act, the Oklahoma Environmental Quality Code and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.
 - c. The permittee shall comply with effluent standards or prohibitions established under the Act for toxic pollutants within the time provided in the regulations that establish these standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

5. Duly to mitigate

The permittee shall take all reasonable steps to minimize or prevent any discharge in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.

6. Duty to halt or reduce activity

It shaft not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.

7. Duty to provide information

The permittee shall furnish within a reasonable time, any information which the Executive Director may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. The permittee shall also furnish, upon request, copies of records required to be kept by this permit.

8. Permit modification, suspension and revocation

After notice and opportunity for a hearing, as is required by law, this permit may be modified, suspended, revoked and reissued, or terminated during its term in accordance with 40 CFR 122.62 and 122.64; and Title 27 O.S. Supp. 1996, Section 2-6-201 et seq., and the rules of the State of Oklahoma Department of Environmental Quality (DEQ) adopted thereunder [See OAC 252:605]. The filing of a request for a permit modification or reissuance, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.

9. Proper operation and maintenance

- a. The permittee shall at all times property operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by permittee as efficiently as possible and in a manner which will minimize upsets and discharges of excessive pullutants and will achieve compliance with the conditions of this permit. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of backup or auxiliary facilities or similar systems which are installed by a permittee only when the operation is necessary to achieve compliance with the conditions of this permit.
- b. The permittee shall provide an adequate operating staff which is duly qualified to carry out operation, maintenance and testing functions required to insure compliance with the conditions of this permit.
- c. Collected screenings, slurges, sludges and other solids shall be disposed of in accordance with the Oklahoma Solid Waste Management Act and in such a mamer as to prevent entry of those wastes (or runoff from the wastes) into waters of the state and in compliance with applicable rules of the DEQ.

10. Power Failure

The permittee is responsible for maintaining adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures either by means of alternative power sources, standby generators, or retention of inadequately treated effluent.

11. Upsets and Bypasses

- a. Unsets
 - (1) An upset constitutes an affirmative defense to an enforcement action brought for noncompliance with technology-based permit effluent limitations if the following requirements are met. A permittee who wishes to establish the affirmative defense of upset shall demonstrate through properly signed, contemporaneous operating logs, or other relevant evidence that:
 - (a) An upset occurred and that the permittee can identify the specific cause(s) of the upset;
 - (b) The permitted facility was at the time being properly operated;
 - (c) The permittee submitted notice of the upset as required in Part III, Section B.6 of this permit;
 - (d) The permittee complied with any remedial measures under Part III, Section C.5.
 - (2) Burden of Proof. In any enforcement proceeding, the permittee seeking to establish the occurrence of an upset has the burden of proof.

b. Bypasses

- (1) Anticipated hypass. If the permittee knows in advance of the need for a hypass, it shall submit prior notice, if possible at least ten days before the date of the hypass.
 - (a) Bypass not exceeding limitations. The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the reporting requirements of Part III, Sections C.11.b(1) and (2).
 - (b) Bypass exceeding limitations is prohibited, and the Executive Director may take enforcement action against a permittee for hypass, unless:
 - i. Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;
 - ii. There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgement to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and,
 - iii. The permittee submitted notices required by Part III, Section B.6.
 - (c) The Executive Director may allow an anticipated hypass that executs limitations after considering its adverse effects, if he/she determines that it will meet the three conditions listed at Part III, Section C.11.b.(1)(b).
- (2) Unanticipated bypass. The permittee shall, within 24 hours, submit notice of an unanticipated bypass as required in Part III, Section B.6.
- 12. Percent Removal

For publicly owned treatment works, the 30-day average (or monthly average) percent removal for Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) shall not be less than 85 percent unless otherwise authorized by the permitting authority in accordance with 40 (TR 133,103, This requirement may be waived in permits containing mass loading limits for BOD and TSS.

13. Right of entry

The permittee shall allow the Executive Director, and/or his/her authorized representative(s), upon presentation of credentials and such other documents as may be required by the law to:

- a. Enter upon the permittee's premises or other premises under the control of the permittee, where an effluent source is located or may be located or in which any records are required to be kept under the terms and conditions of this permit:
- b. Have access to and copy at reasonable times any records required to be kept under the terms and conditions of this permit, or the Act or DEO miss;

- c. Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), maintenance, practices or operations regulated or required under this permit, and
- d. Sample or monitor at reasonable times, for the purpose of assuring permit compliance or as otherwise authorized by the Act, any substances or parameters at any location.

14. Toxic Effluent Standards

Notwithstanding Section III.C.8 of this permit, if any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under the Act for a toxic pollutant which is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standard or prohibition.

15. Signatory Requirements

All applications, reports, or information submitted to the Executive Director shall be signed and certified.

- a. All permit applications shall be signed as follows:
 - (1) For a corporation by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means:
 - (a) A president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision making functions for the corporation; or,
 - (b) The manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25 million (in second-quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.
 - (2) For a partnership or sole proprietorship by a general partner or the proprietor, respectively.
 - (3) For a municipality, state, federal, or other public agency by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a federal agency includes:
 - (a) The chief executive officer of the agency, or
 - (b) A senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency.
- b. All reports required by the permit and other information requested by the Executive Director shall be signed by a person described above or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 - (1) The authorization is made in writing by a person described above;
 - (2) The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility of activity, such as the position of plant manager, operator of a well or a well field, superintendent, or position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company. A duly authorized representative may thus be either a named individual or an individual occupying a named position; and,
 - (3) The written authorization is submitted to the Executive Director.
 - Certification. Any person signing a document under this section shall make the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

16. Confidentiality

Except for applications, effluent data, permits, and other data specified in 40 CFR 122.7, any information submitted pursuant to this permit may be claimed as confidential by the submitter. The Executive Director will rule upon such claim in accordance with the Act. If no claim is made at the time of submission, information may be made available to the public without further notice.

> Elstandard municipal permit documents/part iii doc updated 12/6/1999

Part IV SEWAGE SLUDGE REQUIREMENTS

PERMIT

INSTRUCTIONS TO PERMITTEES

Select only those Elements and Sections which apply to your sludge reuse or disposal practice.

If your facility utilizes more than one type of disposal or reuse method (for example, Element 1 and Element 2 apply) or the quality of your sludge varies (for example, Section II and Section III of Element 1 apply) use a separate Discharge Monitoring Report (DMR) for each Section that is applicable.

The sludge DMRs shall be due by February 19th of each year and shall cover the previous January through December time period.

The sludge conditions <u>do not apply</u> to wastewater treatment lagoons where sludge is not wasted for final reuse/disposal. If the sludge is not removed, the permittee shall indicate on the DMR "No Discharge."

ELEMENT 1 - LAND APPLICATION

Page 1 - Requirements Applying to All Sewage Sludge Land Application

SECTION I:

SECTION II:

Page 4 - Requirements Specific to Bulk Sewage Sludge for Application to the Land Meeting Class A or B Pathogen Reduction and the Cumulative Loading Rates in Table 2, or Class B Pathogen Reduction and the Pollutant Concentrations in Table 3

TION III:

ECTION IV:

Page 7 - Requirements Specific to Bulk Sewage Studge Meeting Pollutant Concentrations in Table 3 and Class A Pathogen Reduction Requirements

Page 8 - Requirements Specific to Sludge Sold or Given Away in a Bag or Other Container for Application to the Land that does not Meet the Pollutant Concentrations in Table 3

ELEMENT 2 - MUNICIPAL SOLID WASTE LANDFILL DISPOSAL

SECTION I:

٨.

Page 10 - Requirements Applying to All Municipal Solid Waste Landfill Disposal Activities

ELEMENT 1 - LAND APPLICATION

SECTION 1. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE LAND APPLICATION

General Requirements

- The permittee shall handle and dispose of sewage studge in accordance with the Oklahoma Pollutant Discharge Flimination System (OPDES) Act (hereafter "the Act") and all other applicable federal and state regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants which may be present in the sludge.
- 2.

З.

4.

1

If requirements for studge management practices or pollutant criteria become more stringent than the studge pollutant limits or acceptable management practices in this permit, or control a pollutant not listed in this permit, this permit may be modified or revoked and reissued to conform to the requirements promulgated under the Act. If new limits for molybdenum are promulgated prior to permit expiration, then those limits shall become directly enforceable.

In all cases, if the person (permit holder) who prepares the sewage sludge supplies the sewage sludge to another person for land application use or to the owner or lease holder of the land, the permit holder shall provide necessary information to the parties who receive the sludge to assure compliance with these regulations.

The permittee shall give prior notice to the Director, Water Quality Division, State of Oklahoma, partment of Environmental Onality (DEQ), 707 North Rohinson, Oklahoma City, Oklahoma 73101-1677 of any planned changes in the sewage shudre disposal practice, in accordance with 40 (TR 122.41(1)(1)(iii). These changes may justify the application of permit conditions that are different from or absent in the existing permit. Change in the sludge use or disposal practice may be cause for modification of the permit in accordance with 40 (TR 122.62(a)(1).

Testing Requirements

1

2.

Sewage sludge shall be tested once during the life of the permit within one year from the effective date of the permit in accordance with the method specified at 40 CFR Part 268, Appendix 1 [Toxicity Characteristic Leaching Procedure (TCLP)] or other approved methods. Sludge shall be tested after final treatment prior to leaving the publicly owned treatment works (POFW) site. Sewage sludge determined to be a hazardous waste in accordance with 40 CFR Part 261, shall be handled according to Resource to conservation and Recovery Act (RCRA) standards for the disposal of hazardous waste in accordance with 40 CFR Part 261, shall be handled according to Resource prohibited. The DEO, Waste Management Division at 405-702-5100, shall be notified of test failure within 24 hours. A written report shall be provided to this division within 7 days after failing the TCLP. The report will contain test results, certification that mauthorized disposal has not occurred and a summary of alternative disposal plans that comply with RCRA standards for the Director, Waste Management Division, DEO, 707 N. Robinson, Oklahoma 73101-1677 and a copy sent to the Director, Waste Quality Division, DEO, at the same address.

Sewage shudge shall not be applied to the land if the concentration of the pollutants exceeds the pollutant concentration criteria in Table 1. The frequency of testing for pollutants in Table 1 is found in Element 1, Section I.C.

		TABLET			
l'ollulani			Ceilin (millig	g Concentration grams per kilogra	a111)*
Arsenie				75	
Cadmium				85	
Copper	1.1		1. Sec. 1. Sec	4300	
Lend				840	
Mercury		•		57	
Molybdenum				75	4
Nickel		3		420	
PCBs				49	
Selenium				100	
Zinc				7500	

Pathogen Control

All sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by either the Class A or Class B pathogen requirements. Sewage sludge that is applied to a lawn or hume garden shall be treated by the Class A pathogen requirements. Sewage sludge that is sold or given away in a bag shall be treated by the Class A pathogen requirements.

Class A Sludge Requirements:

Six alternatives are available to demonstrate compliance with Class A sewage sludge. All 6 options require either the density of feeal coliform in the sewage sludge be less than 1000 Most Probable Number (MPN) per gram of total solids (dry weight basis), or the density of *Salmonella sp.* bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed; at the time the sewage sludge is prepared for sale or given away in a bag or other container for application to the land. Below are the <u>additional</u> requirements necessary to meet the definition of a Class A sludge.

<u>Alternative 1</u> - The temperature of the sewage sludge that is used or disposed shall be maintained at a specific value for a period of time. See 40 CFR 503.32(a)(3)(ii) and OAC 252:648 for specific information.

Alternative 2 - The pH of the sewage studge that is used or disposed shall be raised to above 12 and shall termain above 12 for 72 hours.

The temperature of the sewage sludge shall be above 52 degrees Celsius for 12 hours or longer during the period that the pl1 of the sewage sludge is above 12.

At the end of the 72 hour period during which the pH of the sewage sludge is above 12, the sewage sludge shall be air dried to achieve a percent solids in the sewage sludge greater than 50 percent.

<u>Alternative 3</u> - The sewage sludge shall be analyzed for enterie viruses prior to pathogen treatment. The limit for enterie viruses is one Plaque-forming Unit per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 40 (FR 503.32(a)(5)(ii)) for specific information. The sewage shudge shall be analyzed for viable belininth ova prior to pathogen treatment. The limit for viable belininth ova is less than one per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 40 (FR 503.32(a)(5)(iii) and OAC 252:648 for specific information.

<u>Alternative 4</u> - The density of enteric viruses in the sewage sludge shall be less than one Plaque-forming Unit per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed or at the time the sludge is prepared for sale or given away in a bag or other container for application to the land.

The density of viable helminth ova in the servage shudge shall be less than one per four grams of total solids (dry weight

basis) at the time the sewage sludge is used or disposed or at the time the sewage sludge is prepared for sale or given away in a bag or other container for application to the land.

Alemative 5 - Sewage sludge shall be treated by one of the Processes to Further Reduce Pathogens (PFRP) described in 40 CFR 503 Appendix B. PFRPs include composting, heat drying, heat treatment, and thermophilic aerobic digestion.

Alternative \hat{n} - Sewage shull be treated by a process that is equivalent to a PFRP, if individually approved by the Pathogen Equivalency Committee representing the DE Q.

Class B Sludge Requirements:

i.

ii.

iii.

iv.

٧.

ví.

4

.

b.

Three alternatives are available to demonstrate compliance with Class B sewage sludge.

Alternative 1 -

(i) Seven separate random samples representative of the sewage shulpe shall be collected for one monitoring episode at the time the sewage shulpe is used or disposed.

(ii) The geometric mean of the density of fecal coliform in the samples collected shall be less than either 2,000,000 MPN per gram of total solids (dry weight basis) or 2,000,000 Colony Forming Units per gram of total solids (dry weight basis).

Alternative 2 - Sewage shudge shall be treated in one of the Processes to Significantly Reduce Pathogens (PSRP) described in 40 CFR 503 Appendix B.

Alternative 3 - Sewage shullce shall be treated in a process that is equivalent to a PSRP, if individually approved by the Pathogen Equivalency Committee representing the DEQ.

In addition, the following site restrictions must be met if Class B sludge is land applied:

- Food crops with harvested parts that touch the sewage sludge/soil mixture and are totally above the land surface shall not be harvested for 14 months after application of sewage sludge.
 - Food crops with harvested parts below the surface of the land shall not be harvested for 20 months after application of sewage sludge when the sewage sludge remains on the land surface for 4 months or longer prior to incorporation into the soil.
 - Food crops with harvested parts below the surface of the land shall not be harvested for 38 months after application of sewage sludge when the sewage sludge remains on the land surface for less than 4 months prior to incorporation into the soil.
- Food crops, feed crops, and fiber crops shall not be harvested for 30 days after application of sewage sludge.
- Animals shall not be allowed to graze on the land for 30 days after application of sewage sludge.

That grown on land where sewage sludge is applied shall not be harvested for 1 year after application of the sewage sludge when the barvested turf is placed on either land with a high potential for public exposure or a lawn, unless otherwise specified by the permitting authority.

- vii. Public access to land with a high potential for public exposure shall be restricted for 1 year after application of sewage sludge.
- viii. Public access to land with a low potential for public exposure shall be restricted for 30 days after application of sewage sludge.
- Vector Altraction Reduction Requirements

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by one of the following alternatives 1 through 10 for Vector Attraction Reduction. If bulk sewage sludge is applied to a home garden, or hagged sewage sludge is applied to the land, only Alternatives 1 through 8 shall be used.

Alternative 1 - The mass of volatile solids in the sewage sludge shall be reduced by a minimum of 38 percent.

Alignative 2 - If Alternative 1 cannot be met for an anacrobically digested shulge, demonstration can be under by digesting a portion of the previously digested studge anacrobically in the laboratory in a bench-scale unit for 40 additional days at a temperature between 30 and 37 degrees Celsius. Volatile solids must be reduced by less than 17 percent to demonstrate compliance.

Alternative 2 - If Alternative 1 cannot be met for an aerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge with a percent solids of two percent or less aerobically in the laboratory in a bench-scale unit for 30 additional days at 20 degrees Celsius. Volatile solids must be reduced by less than 15 percent to demonstrate compliance.

Attemptive 4 - The specific oxygen uptake rate (SOUR) for sewage sludge treated in an aerobic process shall be equal to or less than 1.5 milligrams of oxygen per hour per gram of total solids (dry weight basis) at a temperature of 20 degrees Celsius.

Aumenting 5. Severage shull be treated in an accubic process for 14 days or longer. During that time, the temperature of the

sewage sludge shall be higher than 40 degrees Celsius and the average temperature of the sewage sludge shall be higher than 45 degrees Celsius.

Alternative 6 - The pH of sewage sludge shall be raised to 12 or higher by alkali addition and, without the addition of more alkali, shall remain at 12 or higher for two hours and then at 11.5 or higher for an additional 22 hours.

Alemative 7 - The percent solids of sewage sludge that does not contain unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 75 percent based on the mustabilized solids prior to mixing with other materials. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

<u>Alternative 8</u> - The percent solids of sewage shudge that contains unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 90 percent based on the moisture content and total solids prior to mixing with other materials. I instabilized solids are defined as organic materials in sewage sludge that have not been treated in either an acrobic or anacrobic treatment process.

Alternative 2 -	(i)	Sewage sludge shall be injected below the surface of the land.
	(ii)	No significant amount of the sewage sludge shall be present on the land surface within one hour after the sewage sludge is injected.
	(iii)	When sewage shudge that is injected below the surface of the land is Class Λ with respect to pathogens, the sewage shudge shall be injected below the land surface within eight hours after being discharged from the pathogen treatment process.
<u> Altemative 10</u> -	(i)	Sewage sludge applied to the land surface or placed on a surface disposal site shall be incorporated into the soil within six hours after application to or placement on the land.
•	(ii)	When sewage sludge that is incorporated into the soil is Class A with respect to pathogens, the sewage sludge shall be applied to or placed on the land within eight hours after being discharged from the pathogen treatment process.

Monitoring Requirements

Toxicity Characteristic Leaching performed within one year from t	Once/Permii Life	
. PCBs		Once/Year
All other pollutants shall be mon	itored at the frequency shown below:	
Amounit of sewage shidge* (<u>metric tons per 365 day pe</u>	<u>riod)</u>	<u>].tednenez</u>
0 ≤ Studge < 290		Once/Year
290 ≤ Sludge < 1,500		Once/Quarter
1,500 ≤ Sludge < 15,000 ,	·	Once/Two Months
15,000 ≤ Sludge		Ouce/Month

*Either the amount of bulk sewage shudge applied to the land or the amount of sewage sludge received by a person who prepares sewage sludge that is sold or given away in a bag or other container for application to the land (dry weight basis).

Representative samples of sewage studge shall be collected and analyzed in accordance with the methods referenced in 40 CTR 503.8(b) and OAC 252:648.

SECTION IL

C.

REQUIREMENTS SPECIFIC TO BULK SEWAGE SLUDGE FOR APPLICATION TO THE LAND MEETING CLASS A 100 B PATHOGEN BEDICTION AND THE CHMULATIVE LOADING RATES IN TABLE 2, OR CLASS B PATHOGEN REDUCTION AND THE FOLLUTANT CONCENTRATIONS IN TABLE 3

For those permittees meeting Class A or B pathogen reduction requirements and that meet the cumulative loading rates in Table 2 below, or the Class B pathogen reduction requirements and contain concentrations of pollutants below those listed in Table 3 found in Flement 1. Section III, the following conditions apply:

TABLE 2

Arsenic41Cadmium39Copper1500Lead300Mercury17MolybdenumReportNickel420Selenium100Zinc2800	Pollutant	Cumulative Pollulant Loading Rat (kilograms per hectare)
Cadmitum 30 Copper 1500 Lead 300 Mercury 17 Molybdenum Report Nickel 420 Selenium 100 Zine 2800	Arsenic	41
Copper 1500 Lead 300 Mercury 17 Molybdenum Report Nickel 420 Selenium 100 Zine 2800	Cadmium	יי
Lead 300 Mercury 17 Molybdenum Report Nickel 420 Selenium 100 Zine 2800	Соррег	15(8)
Mercury17MolybdenumReportNickel420Selenium100Zine2800	Lend	3(80)
MolybdenumReportNickel420Selenium100Zine2800	Mercury	17
Nickel 420 Selenium 100 Zinc 2800	Mulybdemm	Report
Selenium 100 Zine 2800	Nickel	420
Zine 28(8)	Selenium	100
	Zine	28(8)

2. Pathogen Control

а.

c.

3.

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, or lawn or home garden shall be treated by either Class A or Class B pathogen reduction requirements as defined above in Element 1, Section 1.B.3.

Management Practices

i.

- Bulk sewage shudge shall not be applied to agricultural land, forest, a public contact site, or a reclamation site that is flooded, frozen, or snow-covered so that the bulk sewage sludge enters a wetland or other waters of the state, as defined in 40 CFR 122.2, except as provided in a permit issued pursuant to the Act.
- b. Bulk sewage sludge shall not be applied within 100 feet of a water of the state.
 - Bulk sewage sludge shall be applied at or below the agronomic rate in accordance with recommendations from the following references:
 - STANDARDS 1992, Standards, Engineering Practices and Data, 39th Edition (1992) American Society of Agricultural Engineers, 2050 Niles Road, St. Joseph, MI 49085-9659.
 - ii. <u>National Engineering Handbook</u> Part 651, Agricultural Waste Management Field Handbook (1992). P.O. Box 2890, Washington, D.C. 20013.
 - iii. Recommendations of local extension services or Soil Conservation Services.
 - iv. Recommendations of a major university's Agronomic Department.
- d.

4.

An information sheet shall be provided to the person who receives bulk sewage sludge that is sold or given away. The information sheet shall contain the following information:

- i. The name and address of the person who prepared the sewage sludge that is sold or given away in a bag or other container for application to the land.
- ii. A statement that application of the sewage sludge to the land is prohibited except in accordance with the instructions on the label or information sheet.
- iii. The annual whole sludge application rate for the sewage sludge that does not cause any of the cumulative pollutant loading rates in Table 2 above to be exceeded, unless the pollutant concentrations in Table 3 found in Element 1. Section III below are met.

Notification requirements

iv.

- If bulk sewage studge is applied to land in a state other than the state in which the studge is prepared, written police shall be provided prior to the initial land application to the permitting authority for the state in which the bulk sewage studge is proposed to be applied. The notice shall include:
 - i. The location, by either street address or latitude and longitude, of each land application site.
 - ii. The approximate time period bulk sewage sludge will be applied to the site.
 - iii. The name, address, telephone number, and Oklahoma Pollutant Discharge Flimination System or National Pollutant Discharge Flimination System, whichever is applicable, permit number (if appropriate) for the person who prepares the bulk sewage sludge.
 - The name, address, telephone number, and Oklahoma Pollutant Discharge Filmination System or National Pollutant Discharge Elimination System, whichever is applicable, permit number (if appropriate) for the person who will apply the hulk sewage sludge.

h

c.

р.

d.

r.

ſ. .

h.

i.

Page 6 of PatHV

The permittee shall give 60 days prior notice to the DEQ of any change planned in the sewage sludge practice. Any change shall include any planned physical alterations or additions to the permitted treatment works, changes in the permittee's sludge use or disposal practice, and also alterations, additions, or deletions of disposal sites. These changes may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional disposal sites not reported during the permit application process or absent in the existing permit. Change in the sludge use or disposal practice may be cause for modification of the permit in accordance with 40 CFR 122.62(a)(1).

The permittee shall provide the location of all existing studge disposal/use sites to the State Historical Commission within 90 days of the effective date of this permit. In addition, the permittee shall provide the location of any new disposal/use site to the State Historical Commission prior to use of the site.

The permittee shall within 30 days after notification by the State Historical Commission that a specific sludge disposal/use area will adversely effect a National Historic Site, cease use of such area.

Record keeping Requirements - The sludge documents will be retained on site at the same location as other OPDES records.

The person who prepares hulk sewage sludge or a sewage sludge material shall develop the following information and shall retain the information for five years. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for record keeping found in 40 CFR 503.17 and OAC 252:648 for persons who land apply.

The concentration (mg/Kg) in the sludge of each pollutant listed in Table 3 found in Flement 1, Section 111 and the applicable pollutant concentration criteria (mg/Kg), or the applicable cumulative pollutant loading rate and the applicable cumulative pollutant loading rate limit (kg/ha) listed in Table 2 above.

b. A description of how the pathogen reduction requirements are met (including site restrictions for Class B sludges, if applicable).

- c. A description of how the vector attraction reduction requirements are met.
 - A description of how the management practices listed above in Section II.3 are being met.
 - The recommended agronomic loading rate from the references listed in Section 11.3.c above, as well as the actual agronomic loading rate shall be relained.

A description of how the site restrictions in 40 CFR 503.32(b)(5) and OAC 252:648 are met for each site on which Class B bulk sewage studge is applied.

The following certification statement:

"Lectify, under penalty of law, that the management practices in 40 CFR 503.14 have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."

A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penalties for false certification including fine and imprisonment. See 40 (TR 503.17(a)(4)(i)(B) or 40 (TR 503.17(a)(5)(i)(B) as applicable to the permittees sludge treatment activities.

The permittee shall maintain information that describes future geographical areas where shudge may be land applied.

The permittee shall maintain information identifying site selection criteria regarding land application sites not identified at the time of permit application submission.

The permittee shall maintain information regarding how future land application sites will be managed

The person who prepares bulk sewage sludge or a sewage sludge material shall develop the following information and shall retain the information <u>indefinitely</u>. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for recordscepting found in 40 CFR 503.17 and OAC 252:648 for persons who land apply,

- i. The location, by either street address or latitude and longitude, of each site on which sludge is applied.
- ii. The number of hectares in each site on which bulk sludge is applied.
- iii. The date and time sludge is applied to each site.
- iv. The cumulative amount of each pollutant in kilograms/hectare listed in Table 2 applied to each site.
- v. The total amount of sludge applied to each site in metric tons.
- vi. The following certification statement:

"I certify, under penalty of law, that the requirements to obtain information in 40 CTR 503 12(0)(2) but there met for each site on which hulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the requirements to obtain information have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."

vii. A description of how the requirements to obtain information in 40 CFR 503.12(c)(2) and OAC 252:648 are met.

Reporting Requirements - The permittee shall report annually on the DMR the following information:

- a. Pollulant Table (2 or 3) appropriate for permittee's land application practices.
- b. The frequency of monitoring listed in Element 1, Section LC which applies to the permittee.
 - Texicity Characteristic Leaching Procedure (TCLP) results (Pass/Fail).

The concentration (mg/Kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) as well as the applicable pollutant concentration criteria (mg/Kg) listed in Table 3 found in Element 1, Section III, or the applicable pollutant loading rate limit (kg/ha) listed in Table 2 above if it exceeds 90% of the limit.

Level of pathogen reduction achieved (Class A or Class B).

Alternative used as listed in Section I.B.3.(a. or h.). Alternatives describe how the pathogen reduction requirements are met. If Class B sludge, include information on how site restrictions were met in the DMR comment section or attach a separate sheet to the DMR.

Vector attraction reduction alternative used as listed in Section LB.4.

Annual sludge production in dry metric tons/year.

c.

ŧL

c.

٢.

Ρ.

ł

ί.

j.

Amount of sludge land applied in dry metric tons/year.

Amount of sludge transported interstate in dry metric tons/year.

The certification statement listed in 40 CFR 503.17(a)(4)(i)(B) or 40 CFR 503.17(a)(5)(i)(B) whichever applies to the permittees sludge treatment activities shall be attached to the DMR.

When the amount of any pollutant applied to the land exceeds 90% of the cumulative pollutant loading rate for that pollutant, as described in Table 2, the permittee shall report the following information as an attachment to the DMR.

The location, by either sheet address or latitude and longitude.

ii. The number of hectares in each site on which bulk sewage sludge is applied.

iii. The date and time bulk sewage sludge is applied to each site.

iv. The cumulative amount of each pollutant (i.e., kilograms/hectate) listed in Table 2 in the bulk sewage shulpe applied to each site.

The amount of sewage sludge (i.e., metric tons) applied to each site.

vi. The following certification statement:

Dellara

"I certify, under penalty of law, that the requirements to obtain information in 40 ("1-R 503.12(e)(2) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel property eather and evaluate the information used to determine that the requirements to obtain information have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."

vii.

i.

A description of how the requirements to obtain information in 40 CFR 503.12(e)(2) and OAC 252:648 are met.

SECTION III. REQUIREMENTS SPECIFIC_TO BULK OR BACKED SEWAGE SLUDGE MEETING_POLLUTANT_CONCENTRATIONS IN TABLE 3 AND CLASS A PATHOGEN REDUCTION REQUIREMENTS

For those permittees with sludge that contains concentrations of pollutants below those pollutant limits listed in Table 3 for bulk or bagged (containerized) sewage sludge and also meet the Class A pathogen reduction requirements, the following conditions apply (Note: All bagged sewage sludge must be treated by Class A pathogen reduction requirements.):

Pollutant limits - The concentration of the pollutants in the municipal sewage sludge is at or below the values listed.

TABLE 3

Arsenie			. 41
Cadmium	1		10
Conner			1500
lcad			300
Meicury			17
Molybdenum			' Report
Nickel			420
Sclenium			36
Zinc			28(0)
· · · ·			

* Dry weight basis

Pathogen Control

3.

4.

b.

C.

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, or lawn or home garden shall be neated by the Class A pathogen reduction requirements as defined above in Element 1, Section 1.B.3. All bagged sewage sludge must be treated by Class A pathogen reduction requirements.

Management Practices - None,

Notification Requirements - None.

Record keeping Requirements - The permittee shall develop the following information and shall retain the information for five years. The shulge documents will be retained on site at the same location as other OPDES records.

The concentration (mg/Kg) in the studge of each pollutant listed in Table 3 and the applicable pollutant concentration criteria listed in Table 3.

A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penaltics for false certification including fine and imprisonment. See 40 CFR 503.17(a)(1)(ii) or 40 CFR 503.17(a)(1)(ii) or 40 CFR 503.17(a)(1)(ii) or 40 CFR 503.17(a)(2)(i)(B), and OAC 252:648 whichever applies to the permittees shudge treatment activities.

- A description of how the Class A pathogen reduction requirements are met.
- d. A description of how the vector attraction reduction requirements are met.

Reporting Requirements - The permittee shall report annually on the DMR the following information:

- Pollutant Table 3 appropriate for permittee's land application practices.
- b. The frequency of monitoring listed in Element 1, Section LC which applies to the permittee.
 - Toxicity Characteristic Leaching Procedure (TCLP) results. (Pass/Fail).
- d. The concentration (mg/Kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) found in Element 1, Section 1. In addition, the applicable pollutant concentration criteria listed in Table 3 should be included on the DMR.
 - Pathogen reduction Alternative used for Class A bagged or bulk sludge as listed in Section I.B.3.a.
 - Vector attraction reduction Alternative used as listed in Section I.B.4.
- Annual sludge production in dry metric tons/year.
- Amount of sludge land applied in dry metric tons/year.
- Amount of sludge transported interstate in dry metric tons/year.
 - The certification statement listed in 40 CFR 503,17(a)(1)(ii) or 40 CFR 503,17(a)(3)(i)(B), and OAC 252:648 whichever applies to the permittees shalpe treatment activities, shall be attached to the DMR.

SECTION IV. REQUIREMENTS SPECIFIC TO SUDDEF SOLD OR GIVEN AWAY IN A BAG OR OTHER CONTAINER FOR APPLICATION TO THE LAND THAT DOES NOT MEET THE POLILITANT CONCENTRATIONS in Table 3

Pollutant Limits

į.

TABLE 4

Pollutant

Annual Pollutant Loading Rate (kilograms per bectare per 365 day period)

4

Atsenie	2.0
Cadmium	0.1
Conner	75.0
cad	15.0
Mercury	0.85
Molyhdenum	Report
Nickel	21.0
Selenium	5.0
Zine	140,0

Pathogen Control

All sewage sludge that is sold or given away in a bag or other container for application to the hand shall be treated by the Class A pathogen requirements as defined in Section I.B.3.a.

Management Practices

Fither a label shall be affixed to the bag or other container in which sewage sludge that is sold or given away for application to the land, or an information sheet shall be provided to the person who receives sewage sludge sold or given away in another container for application to the land. The label or information sheet shall contain the following information:

a.

h.

2.

-3.

The name and address of the person who prepared the sewage sludge that is sold or given away in a bag or other container for application to the land.

- b. A statement that application of the sewage studge to the land is prohibited except in accordance with the instructions on the label or information sheet.
- c. The annual whole studge application rate for the sewage studge that will not cause any of the annual pollutant loading rates in Table 4 above to be exceeded.

Notification Requirements - None.

Record keeping Requirements - The sludge documents will be retained on site at the same location as other OPDES records.

The person who prepares sewage sludge or a sewage sludge material shall develop the following information and shall retain the information for five years.

The concentration in the sludge of each pollutant listed above in found in Element 1, Section 1, Table 1.

The following certification statement found in 40 CFR 503.17(a)(6)(iii).

"I certify, under penalty of law, that the management practices in 40 CFR 503.14(c), the Class A pathogen requirement in 40 CFR 503.32(a), and the vector attraction reduction requirement in (insert vector attraction reduction option) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices, pathogen requirements, and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment".

A description of how the Class A pathogen reduction requirements are met.

- A description of how the vector attraction reduction requirements are met.
- c. The annual whole sludge application rate for the sewage sludge that does not cause the annual pollutant loading rates in Table 4 to be exceeded. See Appendix A to 40 (TR Part 503 Procedure to Determine the Annual Whole Sludge Application Rate for a Sewage Sludge.
- Reporting Requirements The permittee shall report annually on the DMR the following information:
- Pollutant listed in, Table 4 as appropriate for permittee's land application practices.
 - The frequency of monitoring listed in Element 1, Section I.C which applies to the permittee.
- c. Toxicity Characteristic Leaching Procedure (TCLP) results (Pass/Fail).
- d. The concentration (mg/Kg) in the studge of each pollutant listed above in Table 1 (defined as a monthly average) found in Flement 1, Section 1.
 - Class A pathogen reduction Alternative used as listed in Section 1.13.3.a. Alternatives describe how the pathogen reduction requirements are met.

E. Vector attraction reduction Alternative used as listed in Section 1.B.4.

Annual sludge production in dry metric tons/year.

Amount of sludge land applied in dry metric tons/year.

h.

i.

i.,

1.

2.

3.

4.

5.

6.

7.

8.

٩.

C.

Amount of sludge transported interstate in dry metric tons/year.

The following certification statement found in 40 (FR 503.17(a)(6)(iii) shall be attached to the DMR.

"I certify, under penalty of law, that the management practice in 40 CFR 503.14(c), the Class A pathogen requirement in 40 CFR 503.32(a), and the vector attraction reduction requirement (insert appropriate option) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel gather and , evaluate the information used to determine that the management practice, pathogen requirements, and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

ELEMENT 2 - MUNICIPAL SOLID WASTE LANDFILL DISPOSAL

SECTION L REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE DISPOSED IN A MUNICIPAL SOLID WASTE LANDERLI.

The permittee shall handle and dispose of sewage studge in accordance with the Act and all other applicable federal and state regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present. The permittee shall ensure that the sewage studge meets the requirements in 40 CFR Part 258 concerning the quality of the studge disposed in the municipal solid waste landfill (MSWLF) unit.

If requirements for sludge management practices or pollutant criteria become more stringent than the sludge pollutant limits or acceptable management practices in this permit, or control a pollutant not listed in this permit, this permit may be modified or revoked and reissued to conform to the requirements propulgated under the Act.

If the permittee generates sewage sludge and supplies that sewage sludge to the owner or operator of a MSWLF for disposal, the permittee shall provide to the owner or operator of the MSWLF appropriate information needed to be in compliance with the provisions of this permit. The permittee shall give prior notice to the Director, Water Quality Division, DEQ, 707 N. Robinson, Oklahoma City, Oklahoma 73101-1677, of any planned changes in the sewage sludge disposal practice, in accordance with 40 CFR 122.41(1)(1)(iii). These changes may justify the application of permit conditions that are different from or absent in the existing permit. Change in the sludge use or disposal practice may be cause for modification of the permit in accordance with 40 CFR 122.62(a)(1).

The permittee shall provide the location of all existing sludge disposal/use sites to the State Historical Commission within 90 days of the effective date of this permit. In addition, the permittee shall provide the location of any new disposal/use site to the State Historical Commission prior to use of the site.

The permittee shall within 30 days after notification by the State Historical Commission that a specific sludge disposal/use area will adversely affect a National Historic Sile, cease use of such area.

Sewage sludge shall be tested once during the life of the permit within one year from the effective date of the permit in accordance with the method specified at 40 CFR Part 268. Appendix 1 [Toxicity Characteristic Leaching Procedure (TCLP)] or other approved methods. Sludge shall be tested after final treatment prior to leaving the POTW site. Sewage sludge determined to be a hazardous waste in accordance with 40 CFR Part 261, shall be handled according to RCRA standards for the disposal of hazardous waste in accordance with 40 CFR Part 261, shall be handled according to RCRA standards for the disposal of hazardous waste in accordance with 40 CFR Part 262. The disposal of sewage sludge determined to be a hazardous waste, in other than a certified hazardous waste disposal facility shall be prohibited. The DEQ, Waste Management Division at (405) 271-5338, shall be notified of test failure within 24 hours. A written report shall be provided to this office within 7 days after failing the TCLP. The report will contain test results, certification that unauthorized disposal has not occurred and a summary of alternative disposal plans that comply with RCRA standards for the disposal of bazardous waste. The report shall be addressed to the Director, Waste Management Division, DEQ, 707 N. Robinson, Oklahoma City, Oklahoma 73101-1677, and a copy sent to the Director, Waste Ouality Division, DEQ, at the same address.

- Sewage sludge shall be tested as needed, or at a minimum, once/year in accordance with the method 9095 (Paint Filter Liquids Test) as described in "Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods" (EPA Pub, No. SW-846).
- Recordsceping requirements The permittee shall develop the following information and shall retain the information for five years.
 - a. The description, including procedures followed, and results of the Paint Filter Tests performed.
 - b. The description, including procedures followed, and results of the TCLP Test.
 - Reporting requirements The permittee shall report annually on the Discharge Monitoring Report the following information:
 - a. Results of the Toxicity Characteristic Leaching Procedure Test conducted on the sludge to be disposed. (Pass/Fail).
 - b. Annual sludge production in dry metric tons/year.
 - e. Amount of sludge disposed in a municipal solid waste landfill in dry metric tons/year.
 - Amount of sludge transported interstate in dry metric tons/year.
 - A certification that sewage sludge meets the requirements in 40 CFR Part 258 concerning the quality of the sludge disposed in a

municipal solid waste landfill unit shall be attached to the DMR.

f:\standard`municipal permit documents\part iv.doc updated 8/21/98

. .

APPENDIX TM 1-4

TEMPLATE FOR CONDITION RATING

FACILITY INSPECTIONS Condition Assessment Ratings

Condition Rating	Percent of Useful Life Remaining	General Description of Condition	Photo Examples
New	100-90	 Newly built to recently built No wear Operates as designed No maintenance needed 	
Excellent	90-75	 Recently built Little to no appreciable wear Operates as designed Normal maintenance 	
Good	75-55	 Within first half of useful life Slight wear Operates as designed Normal to slight maintenance needed 	
Fair	55-35	 At or beyond first half of useful life Slight to significant wear Normally operates as designed Slight to supplementary maintenance needed 	

Condition Rating	Percent of Useful Life Remaining	General Description of Condition	Photo Examples
Poor	35-15	 Beyond first half of useful life to at the end of useful life Significant to major wear Operates as designed with additional to significant maintenance Significant to burdensome maintenance necessary 	
Replace	15-0	 Beyond useful life in need of replacement Major wear Will not operate as designed without significant and constant maintenance, is inoperable or abandoned Significant to burdensome constant maintenance necessary 	Torran a second

APPENDIX TM 1-5

NITRIFICATION CLARIFIER OPERATIONAL ISSUES
Memorandum

To: Robert Hitt; Jim McClain, Muralikumar, Joyce Hight,

From: Jose Pereira

a.

Date: September 19, 2005

Re: Nitrification Clarifiers – Handling capacity & operational issues - S-0505A

During a site visit on 08/31/05 to the City of Enid Water Pollution Control Facility, the facility staff indicated that when flows exceed 7 mgd there is high solids carryover in the final effluent, although the design capacity of the final clarifiers in the nitrification plant were designed to handle 8.5 mgd. This technical memorandum offers our comments/recommendation on the operation of the nitrification plant following our inspection of the nitrification plant and review of as-built plans.

As you know, the nitrification plant was originally designed to handle average and peak flows of 8.5 mgd and 21 mgd, respectively at an average BOD₅ of 30 mg/l and TSS of 20 mg/l. The nitrification plant is equipped with four rectangular clarifiers, each 30' wide by 120' long by 12' SWD. These rectangular clarifiers are equipped with traveling bridge mechanisms for the collection and removal of settled sludge and effluent troughs with V- notch weirs to distribute the flow uniformly and improve the effluent quality. Our calculations show that the surface overflow rates at average and peak flows are 590gpd/ft² and 1,458gpd/ft² respectively. The weir loading rates at average and peak flows are estimated to be 5,902 gpd/ft and 14,583 gpd/ft respectively, which are within recommended design criteria (10,000 gpd/ft at average flow and 15,000 gpd/ft at peak flow). However, during our visual inspection of the traveling bridge clarifiers, we noticed few operational issues that could possibly impair the effluent quality, particularly during high flow conditions. These Observations are as follow:

The nitrification plant rectangular clarifier effluent troughs are not leveled, which affects the V-notch weirs elevation. The elevation of the V-notch weirs at the east end of the clarifiers is lower than the west end. As a result, there is no overflow on the V- notch weirs located at the west end of the clarifier troughs and most of the flow occurs through the east end creating more undercurrent and turbulence. This is confirmed by the operators when the flow exceeds 7 mgd the v-notch weirs at the east end of the clarifier troughs become submerged. The V-notch weir submergence does not reflect under designed of the weirs but instead overcharge due to the unleveled surface.

b. The traveling bridge mechanism used for sludge collection has a supporting truss extending all the way down in to the clarifier bottom. The traveling bridge also has too many moving parts for its operation and the movement of the bridge on the rail is not smooth and at times, creating a jerk sudden movement possibly due to wear and tear on the traveling parts as result of the equipment age. The truss/other parts on the traveling bridge, and agitation due to the sudden jerk movement could possibly create an under current wave that could stir the settled/settling solids in the clarifier through out the basin and impact the effluent quality, particularly during the high flow conditions.

In summary, it is our opinion that if the plant is operated within the design range and if the above operational deficiencies are corrected, as well as other manufacturer recommendations to fine tune its operation, we anticipate that the final clarifiers could see a major improvement and handle the flow as originally designed. However, additional information and evaluation will be required before final conclusions are recommended.

32158005\Technical\Technical memo - Nitrification basin.doc

Dewberry®

TECHNICAL MEMORANDUM 2 EVALUATION OF THE EXISTING COLLECTION SYSTEM AND RECOMMENDED IMPROVEMENTS

05123-00-02

1. INTRODUCTION

Dewberry was retained by the City of Enid to prepare a Sanitary Sewer Master Plan. In turn, ENVIROTECH ENGINEERING & CONSULTING, INC., was retained by Dewberry Engineering to provide an evaluation of the existing sanitary sewer collection system and provide recommendations for sewer improvements, based on current and future. The ENVIROTECH study assessed the current sanitary sewer system to include sanitary sewer mains, pump stations, wet weather holding facilities, and run-off basins. In addition, a sanitary sewer monitoring program recorded flow data from strategic points throughout the sanitary sewer system. Estimated sanitary sewer usage rates were calculated for dry flow conditions and all of the data was entered into a computer model and calibrated against the sanitary sewer monitoring program.

During rainfall events, the stormwater runoff entering the sanitary sewer collection system is defined as Inflow and Infiltration (I/I). This runoff can potentially overwhelm the sanitary sewer system's capacity and result in discharges to local waterways. ENVIROTECH utilized the sanitary sewer monitoring program to determine stormwater I/I flows. The storm event was increased to a 100-year event, and these flows were compared to EPA's maximum allowable I/I flows to determine the extent of I/I that the collection system was experiencing. The computer model was used to diagnose the inadequacies in the sanitary sewer collection system and determine the improvements needed.

2. EXISTING COLLECTION SYSTEM

2.1 Sanitary Sewer Drainage Basins. The City of Enid's engineering department assisted during the sanitary sewer computer model development by providing manhole inspection reports, an AutoCAD sanitary sewer model, and pumping and sanitary sewer storage data. This information can be reviewed at the City of Enid's administrative offices located at 401 West Owen K. Garriott Road.

ENVIROTECH continued with the City of Enid's previously-implemented manhole labeling system during development of the sanitary sewer model. The City is divided into two (2) major sanitary sewer pipelines encompassing 16 basins (A-P) and 11 basins (A-K), respectively. Each sanitary sewer system basin was divided into sub-basins for a total of 125 sub-basins. The sanitary sewer system sub-basins are graphically depicted on *Figure 1*.

Although this report is limited to the study area provided by the City of Enid, sanitary sewer lines extend beyond the area mapped by the City of Enid. This mainly includes lines in the 1-N basin in the vicinity of Northwestern University on 30TH Street and Purdue Road as well the 2-D basin that services Vance Air Force Base. A trunk line fed by a pump station services the Base, but remains outside the City of Enid's mapped limits.

2.2 Pump Stations and Force Mains. A total of eleven (11) pump stations and force mains are located on the City of Enid's sanitary sewer pipeline. Of the eleven (11) pump stations, only the pump station located at 541 South 54TH Street appears on the model. The remaining

TECHNICAL MEMORANDUM 2 EVALUATION OF THE EXISTING COLLECTION SYSTEM AND RECOMMENDED IMPROVEMENTS

05123-00-02

pump stations either exist outside the mapped parameters of the City of Enid's sanitary sewer basins or are located far upstream and utilized for isolated residential districts and therefore, these pump stations are inconsequential to the system. Pump station details, locations, and reasons for not including them in the model are summarized in *Table 1*.

		TAI	BLE 1.		
SEIM	MARY OF STATIONS	NOT INC		HE MOD	FL COMPARISON
3000					
STATION	LOCATION	PUMP RATING (gpm)	INCLUDED	BASIN	COMMENTS
Chisholm Creek	4607 Chisholm Creek	N/A	No	1N4	Feeds from Basin 1 N4 (North Enid)
Fairgrounds	225 W. Purdue	10	No	1 N4	Outside existing model
54 [™] Street	541 S. S4 TH Street	1,520	Yes	_1P	Lifts all from the 1-P Basins
Phillips	2429 1/2 N. 30 TH	100	No	1 _. N7	Small and outside existing model
S. Hayes	1600 S. Hayes	160	No	2D2	Services a small portion of the 2D2 Basin
Neilson	3105 W. Maine	385	No	2]5	Services a small portion of the 2J5 Basin
Scooters	N. Van Buren	125	No	105	Outside existing model (from Scooters)
Union	2811 N. 6 TH Street	75	No	1N6	Services a small portion of the 1N6 Basin
Willow Underpass	833 E. Willow	385	No	1N6	Services a small portion of the 1N6 Basin
Airport	66 TH St. and Airport	80	No	1P3	Pumps directly to the 54 TH Street Lift Station
Vance AFB	Vance AFB	N/A	No	2D3	Outside existing model

2.3 Wet Weather Holding Facilities. A total of three (3) modeled wet weather peak holding facilities are located in the City of Enid. The first holding facility is located at 658 West Willow on the 1-O line and a second facility is located at 1901 East Randolph on the 1-C line. Both facilities were modeled as a 500,000-gal. facilities with appropriate control structures.

The third holding facility is located at the City of Enid's sanitary sewer treatment plant for wet weather overflow. The sanitary sewer department estimates the volume of this holding basin to be approximately 280-ac-ft.

3. FLOW METERING AND ANALYSIS

During storm events, a dramatic increase in the inflow into the City of Enid's sanitary sewer treatment plants occurs and in some instances, overflow storage is utilized to prevent the increased flows from exceeding the plant's capacity. Excessive wastewater treatment due to stormwater run-off has

05123-00-02

historically been a problem for the City of Enid. These increased stormwater flows originate from inflow and infiltration.

Inflow is defined as additional stormwater flowing into the wastewater stream from *aboveground sources* to include downspouts, foundation drains, leaking manhole covers, and cracked pipelines in stormwater channels. *Infiltration* is defined as additional stormwater entering the wastewater stream from the *surrounding soil* resulting from cracked pipelines and service laterals, separated joints, and leaking manholes.

Several investigative methods are utilized during sanitary sewer system evaluations to determine the most effective method of decreasing inflow and infiltration to include the following:

- □ Inflow and Infiltration (I/I) Studies. Inflow and Infiltration (I/I) studies are useful for determining where the increased flows are originating in order to establish solutions for the increased sanitary sewer flows. The results of these studies mainly determine the approximate locations for conducting more rigorous sanitary sewer investigations. Sanitary sewer flow monitoring is used in conjunction with the Inflow and Infiltration (I/I) study to calibrate and evaluate the generated computer model.
- **Dye Testing.** Dye testing is a large-scale analysis that involves introducing dyes in upstream catch basins. The quantity of dye recovered in the sanitary sewer treatment plant is used as an indicator of inflow in a particular basin. However, these test results can be misleading and are often difficult to accurately calibrate due to the inflow sources.
- **Smoke Testing.** Smoke testing is accomplished by introducing (i.e., pumping) non-toxic smoke into the sanitary sewer system while simultaneously observing and documenting the location of the exiting smoke. Smoke testing activities will reveal pipeline cracks, connected roof drains, unsealed manholes, yard drains, and other sources associated with damaged pipelines and/or associated connections. It should be noted that smoke testing is a location-specific procedure and therefore, it is not recommended for extensive areas.
- TV Inspection. TV inspection is a testing procedure limited to a single pipe per test inspection. However, this test will reveal cracked or broken pipelines in addition to eroded piping that results in groundwater infiltration or root intrusion that is not revealed by smoke testing activities.
- Door-to-Door Surveys. Door-to-door surveys can assist in locating downspouts, gutter drains, sump pumps, and other stormwater inflow into the sanitary sewer system. Homeowners are often knowledgeable about sanitary sewer connections and can assist during smoke testing operations.
- 3.1 Flow Metering Program. In conjunction with Dewberry, ENVIROTECH conducted flowmonitoring services for the inflow and infiltration study. *Flo Tote* sanitary sewer monitoring

TECHNICAL MEMORANDUM 2 EVALUATION OF THE EXISTING COLLECTION SYSTEM AND RECOMMENDED IMPROVEMENTS

05123-00-02

devices were utilized at strategic locations throughout the City of Enid for both dry and wet conditions. The meters were initially placed on trunk and secondary trunk lines. As flow information was assimilated, the meters were relocated to tertiary lines that were suspected sources of inflow and infiltration.

The flow-monitoring program provided both dry and wet weather flows. Each meter remained in-place until the line experienced a significant wet weather flow before being relocated to isolate the suspected sources of inflow and infiltration. This data was utilized in conjunction with a hydraulic model to predict sanitary sewer flows throughout the City of Enid and is included in *TM-2-1*.

In addition, the City of Enid provided Envirotech with daily sanitary sewer treatment rates (i.e., amount of treated sewage from all sources) which is on file at the City of Enid's 54^{TH} Street treatment facility. For the project's duration, the facility treated an average of 6.8-MGD of sanitary sewage.

- **3.2** Determination of Dry Flows and Model Development. Typical sanitary sewer usage flow rate values, published by the Oklahoma Department of Environmental Quality (ODEQ), Title 252, Chapters 656 and 641, were utilized to determine the flows from each basin. The developed flows were then calculated on a typical daily sanitary sewer usage curve and input into the SWMM sanitary sewer model. The usage calculations are included in TM-2-2.
- **3.3** Description of Hydraulic Model. The City of Enid's sanitary sewer system was modeled utilizing the United States Environmental Protection Agency Sanitary Water Management Model (USEPA SWMM) (version 5.0.011), based on sanitary sewer collection system data and calculated dry flow usage rates provided by the City of Enid. This model was utilized to evaluate the following scenarios:
 - Pipelines that have reached or exceeded their full capacity during normal everyday flow events that require upgrading or replacement.
 - Pipelines that have reached or exceeded full capacity during a storm event that require construction of an additional in-system storage facility to alleviate impacts to the system.
 - Problematic areas in the sanitary sewer system for future study. These areas may include cracked or eroded pipes, unsealed manholes, or stormwater drains connected to the sanitary sewer system.

Following completion of the SWMM model, the model was calibrated utilizing flow documentation recorded by the *Flo Tote* sanitary sewer monitoring devices. The relationship between the modeled values and actual recorded values for dry flow conditions is summarized in *Table 2*.

Dewberry®

TECHNICAL MEMORANDUM 2 EVALUATION OF THE EXISTING COLLECTION SYSTEM AND RECOMMENDED IMPROVEMENTS

05123-00-02

	COMPARISON	TABI OF MODELED VALUES DRY FLOW C	E 2. VS. ACTUAL ONDITIONS	RECORDED VAI	UES FOR		
<u>n in de la construction de la cons</u> truction de la construction de la	- Design of the second se		Meter	ed Flow	Model Flow		
Name	Basin	Location	Base Flow (gpm)	Peak Flow (gpm)	Base Flow (gpm)	Peak Flow (gpm)	
North Main	1-A	West 16 TH	550	1700	1352	3495	
	1-B	NOC	280	930	350	875	
NOC	1-C	19 [™] & Randolph	15	-65	30	71	
30 TH Street	1-D	30 [™] & Garriott	65	140	56	135	
<u> </u>		2 ^{№D} & Randolph	2	14	7	16	
	1-F Fed by 1-G	Pasttimes	31	78	32	77	
		З RD & Main	40	110	53	130	
Downtown	1G2	5 [™] & Randolph	60	225	50	220	
	1-I Fed by 1-J and 1-K	ind. & Oklahoma	150	300	167	280	
		Integris Pavilion	363	775	330	744	
		4 TH & Beech	70	275	123	295	
North Enid	1-N	3 RD & Beech	85	300	166	320	
N, Van Buren	1-0	N. Van Buren	NA	330	148	356	
54 TH Street	1-P	54 TH Street Lift	274	1200	504	1210	
		BS Trunk Line	500	1750	1377	2470	
Brookside	2-8	BS Res.	2	20	NA	NA	
		East 16 TH Street	440	1650	390	1450	
South Main	2-C	West 16 TH Street	550	1700	1258	2373	
5. Van Buren	2-D	S. Van Buren	40	240	101	245	
Frantz Main	2-E	Jeff & Frantz	650	1850	1050	2200	
	2.0	Mall	330	920	278	890	
Oakwood Mall	2~4	Indian Oaks	200	650	300	758	
	2-H	Rand & Mck.	100	500	219	512	
Cleveland	2-1	Lisa Lane	35	143	53	130	
	2-K	Cleveland & Chestnut	120	240	111	270	

3.4 Determination of Wet Weather Flows and Inflow and Infiltration. In order to determine the wet weather events, the amount of rainfall each sanitary sewer basin receives must be

Dewberry[®]

TECHNICAL MEMORANDUM 2 EVALUATION OF THE EXISTING COLLECTION SYSTEM AND RECOMMENDED IMPROVEMENTS

05123-00-02

known. Initially, the catch basins were modeled in accordance with the United States Department of Agriculture (USDA) TR-55 Urban Hydrology for Small Watersheds. A modified version of the Soil Conservation Service (SCS) runoff curve method was utilized to determine infiltration. Although the run-off curve factor was calculated pursuant to the above-referenced USDA TR-55 document, the soil conductivity and basin width factors were substituted for time-of-concentration (as per the USEPA SWMM 5.0 Help Files.) Utilizing this data, unit hydrographs were produced for each basin and input into the model. In addition, the diameter and length of the pipe in each sub-basin was determined. The USCS calculations and piping information are included herein as TM-2-3.

For calibration purposes, rainfall was based on data obtained from the City of Enid's rainfall gauges and patterned on the rainfall distribution on the website <u>weatherunderground.com</u> for the Enid area, each rainfall event was modeled as an intensity hydrograph. The events were input into the model in order to calculate the inflow/infiltration for the associated storm event and compared to monitored storm events. For final modeling purposes, an SCS 8-in. Type II rainfall event was incorporated in the model as the 100-year design event. The patterned rain events are included herein as *TM-2-4*.

The limiting factor for infiltration is the storm event. A value of 200-gal./pipe dia./mi./day was assumed to occur during a 100-year storm event. Therefore, 200-gal. of infiltration/ pipe dia./mi. was introduced into the sanitary sewer model with subsequent smaller storms events derived from the 100-year event. The SWMM engine calculated the smaller storm events and infiltration values from the SWMM Model were compared to the metered events recorded by the Flo Tote monitoring equipment. Actual infiltration values for gal./pipe dia./mi./day were derived for each monitoring point, as summarized in *Table 3*. A more detailed explanation of inflow/infiltration model development is included in *TM-2-5* and the final SWMM model output data is included in *TM-2-6*. In addition, an electronic copy of this model is included herewith and made a part of this report.

- **3.5** Model Limitations. While the SWMM model is extensive, the model limitations include the following:
 - The model includes all 10-in. pipes and above, but ignores all 8-in. pipes and below.
 - The model is also only as good as the input data provided. Much of the manhole and pipe data was old and contained only approximate manhole depths without invert elevations.
 - New pipelines along Purdue Street and older pipeline at Vance Air Force Base were not available for inclusion in the model.

Calibration data for dry and wet weather flows was incomplete. Although a large area was monitored, some flows remained uncalibrated and extrapolated from known flows for similar land uses.

Dewberry®

TECHNICAL MEMORANDUM 2 EVALUATION OF THE EXISTING COLLECTION SYSTEM AND RECOMMENDED IMPROVEMENTS

05123-00-02

and the second secon			TA	BLE 3.				
		SUMMARY OF M	ONITORING	G POINT	INFILTRA	FION VAL	UES	
Name	Basin	Location	100-Year Model Infiltration (gpm)	Storm Event	Date	Metered Flow gpm	Storm Event Infiltration gpm	Stormwater Infiltration gal./d/in./mil.
North Main	1-A	West 16 TH	4542	1.54	6/23/06	4654	4156	221
	1-B	NOĊ	1291	2.7	4/28/06	1220	1220	200
NOC	1-C	19 TH & Randolph	185	1.32	6/23/06	107	143	133
30 TH Street	1-D	30 TH & Garriott	296	2.7	4/28/06	167	201	159
		2 ND & Randolph	41	1.32	6/23/06	49	32	269.
	1-Fred by 1-G and 1-H	Pasttimes	115	NA	NA	NA	NA	NA
Downtown		3 RD & Main	190	2.36	4/28/06	420	185	312
	1-I Fed by 1-J and 1-K	Ind. & Oklahoma	370	Any	Any	680	370	291
		Integris Pavilion	838	1.32	6/23/06	2237	745	333
North Enid	1-N	3 RD & Rock Island	386	2.36	4/28/06	1036	354	332
		4 [™] & Beech	374	1.01	5/24/07	331	406	155
		3 RD & Beech	370	1.32	6/23/06	NA	316	NA
N. Van Buren	1-0	N. Van Buren	518	1.01	5/24/07	766	418	291
54 TH Street	1-P	54 TH Street Lift	1229	Any	Any	NA	1229	NA
Brookside	2-B	BS Trunk Line	5897	1.73	4/13/07	3748	3443	216
South Main	2-C	East 16 TH Street	5617	1.3	8/20/06	2033	5030	-95
S. Van Buren	2-D	5. Van Buren	601	1.11	3/30/07	482	499	193
Oakwood		Mail	1999	1.32	6/23/06	1901	1203	273
Mall	2-G	Indian Oaks	986	NA	NA	NA	NA	NA
·	2-H	Rand. & Mck.	1473	0.8	5/30/07	840	B8B	189
Cleveland	2-1	Lisa Lane	441	2.36	4/28/06	805	280	330
	2-K	Cleveland & Chestnut	811	1.32	6/23/06	574	520	219

4. ADEQUACY OF EXISTING SYSTEM

4.1 Current Design Conditions. An analysis of the SWMM model pipeline was conducted to identify problem areas during both dry and wet weather flow conditions. Pipe capacity is

Dewberry[®]

TECHNICAL MEMORANDUM 2 EVALUATION OF THE EXISTING COLLECTION SYSTEM AND RECOMMENDED IMPROVEMENTS

05123-00-02

often referred to as the fundamental factor in determining the volume of flow a sanitary sewer system can convey in a specific location. Pipe capacity is defined as the volume of flow a pipe at 3/4-full capacity can convey and is based on the minimum slope and actual diameter of the pipe. The steeper the slope or larger the pipe's diameter, the greater the pipe's capacity to convey increased flow volumes.

- 4.2 Existing System Evaluation. Although the current system is old, it is in a fairly well-preserved condition. Much of the system continues to receive less than 200-gal./pipe dia./mi./day of infiltration. With the exception of a few isolated lines, infiltration exceeds 200-gal./pipe dia./mi./day by relatively small amounts. Additional sanitary sewer investigations will assist in decreasing the amount of inflow and infiltration into the system. However, some upgrades are necessary in the immediate future to accommodate wet flows and new industrial flows as Enid develops.
 - **4.2.1** Dry Flow Condition Analysis. During periods of no precipitation, the Line 1 Basin A (1A) and Line 1 Basin P (1P) pipes appear to be flowing at or near capacity and therefore, the City of Enid intends to construct an additional pipeline adjacent to the current 1P pipe for increased flow capacity. Although the 1A pipeline performs at or above capacity during dry flow conditions, plans should be implemented to increase this pipeline's capacity as well.

There is some confusion regarding the 1N pipeline that extends toward North Enid. Two (2) lines converge in the vicinity of the 1N008 manhole, but neither City of Enid or ENVIROTECH engineers could determine the exact path of the sanitary sewer manholes. In the current model set-up, the manhole connecting the two (2) branches of the 1N pipeline surcharges during dry flow conditions.

The 1N pipeline in the vicinity of North Van Buren receives inordinately high flow rates for the businesses and residents served in the area. This pipeline was recently upgraded to accommodate these higher flow rates. Although an additional investigation may help identify the source of these flows, the new pipeline can adequately manage these higher flow rates.

The 1-J pipeline trunk line flows above capacity during dry periods. Both the 1-J and 1-K Basins feed this pipeline. Plans should be made to increase the capacity of this pipeline.

4.2.2 Wet Flow Condition Analysis. During precipitation events, flows in the sanitary sewer pipelines greatly increase due to Inflow and Infiltration (I/I). According to the wet condition model, the capacity of most pipelines is sufficient to accommodate the increased flow rates. However, flow back-ups occur in the 1A and 2A pipelines due to sanitary sewer treatment plant and pipeline capacity limitations associated with the

05123-00-02

additional flows. Due to the increased flows, additional back-ups will also occur in lower portions of the 1B, 1D, and 2B pipelines.

The 1N pipeline appears to experience additional surcharging during storm events in addition to the surcharging experienced during dry events. In addition, the 1-J pipeline remains surcharged for extended periods during wet events due to increased flow.

- **4.3 Inadequacies in the Existing System.** Currently, the City of Enid's sanitary sewer collection system experiences an annual peak dry flow of approximately 7-mgd. Several collection basins exhibit the need for investigation, rehabilitation, or increased capacity. The basins requiring improvement and the degree of urgency are graphically depicted on *Figure 2*. A description of the affected basins and associated improvement recommendations are summarized in the following paragraphs.
 - **4.3.1 Basin 1P Expansion Recommendations.** Currently, the 12-in. trunk line serving the 1P Basin is operating at capacity and therefore, system expansion should be considered to allow for continued growth in east Enid. ENVIROTECH recommends construction of a second, minimum 24-in.-dia. pipeline adjacent to the existing 12-in.-dia, pipeline. This upgrade will accommodate flows from both the new Advanced Foods facility and Ethanol treatment facilities.

The cost for this upgrade will be approximately \$2.5 million.

4.3.2 Basins 1A and 2A Peak Holding Tank Recommendations. The City of Enid has experienced overflow events in the 1A and 2A pipelines near the sanitary sewer treatment plant at Boggy Creek. Based on both the physical evidence and SWMM modeled flows, this trend will continue to occur and therefore, construction of a peak flow holding tank appears to be the most effective solution. Although additional study and design is necessary, ENVIROTECH recommends utilizing the old sanitary sewer treatment facility as an appropriate site.

The overflow tank's capacity should be approximately 800,000-gal. and the cost is estimated to be \$1.5 million.

4.3.3 Basins 1J and 1K Expansion Recommendations. The 1-J pipeline flows above capacity during dry periods and remains surcharged for long periods during wet events. Therefore, ENVIROTECH recommends that an investigation of the I/I sources utilizing smoke testing, door-to-door surveys, and video monitoring, where appropriate, be conducted. In addition, the pipe capacity needs to be expanded and may include a few small pipe and manhole replacements to the entire pipeline replacement.

Dewberry®

05123-00-02

Based on the results of the I/I study, this project will cost between \$100,000 and \$600,000.

- **4.3.4 Basin 2H Investigation.** Basin 2H receives little inflow during small storm events and exceedingly high amounts of inflow during large events. Since the pipeline is located near a stormwater channel, a possibility exists that the line is receiving inflow from the channel. Therefore, ENVIROTECH recommends that a more detailed I/I study be conducted in this basin to include smoke testing and video monitoring, where appropriate.
- **4.3.5** Basin 1N Investigation. The exact configuration of Basin 1N near the confluence with the 24-in. cross-town main is not known. In addition, the 1N basin receives high amounts of inflow during storm events. Therefore, ENVIROTECH recommends that a more detailed investigation of the 1N basin be conducted to include smoke testing, door-to-door surveys, and video monitoring, where appropriate.
- **4.3.6 Basins 2G and 2K Investigations.** Basins 2G and 2K receive higher than EPA-recommended rates of infiltration. Therefore, ENVIROTECH recommends conducting additional sanitary sewer inflow and infiltration investigations in these basins to include smoke testing and video monitoring, where appropriate.

Total Estimated Cost (7-MGD - 2007) \$4.3 million

5. FUTURE COLLECTION SYSTEM EVALUATION

In order to alleviate manhole surcharging and prepare for expanding the sanitary sewer pipeline network, ENVIROTECH has prepared recommendations for sanitary sewer improvements and additional Inflow and Infiltration (1/1) investigation(s).

- **5.1** Future Design Conditions. Recent trends in the City of Enid's expansion efforts reflect growth to the east, northwest and west, with each direction of growth representing a different type of development. Industry in east Enid has expanded as a result of construction of the Advanced Foods Processing Plant and the proposed Ethanol production facilities. Residential development is steadily expanding northwest of Enid while a combination of commercial and residential development dominates westward expansion along Owen K. Garriott Road. As a result of this growth, recommendations for expanding the affected sanitary sewer basins are summarized in the following sections of this report.
- **5.2** Hydraulic Capacity Evaluation Year 2010 (9-MGD). As the City of Enid develops/expands and the sanitary sewer capacity reaches 8.5- to 9-MGD, several expansions to the sanitary sewer collection system will be necessary.

Dewberry®

05123-00-02

- 5.2.1 Basins 2H and 2K Expansion Recommendations. Residential expansion northwest of Enid poses minimal short-term problems regarding the sanitary sewer system's capacity. Although Basins 2H and 2K have not yet reached total flow volume capacity, additional residential growth may require system expansion in the future. Expansion recommendations for Basins 2H and 2K are as follows:
 - □ BASIN 2H. Since several collection lines will eventually reach capacity, alternative collection lines may be required to service the expanding community. The 12-in. line that services Sub-basin 2H-2 will most likely reach capacity and subsequently, the 18-, 21-, 24- and 27-in. collection pipelines will also near capacity. In addition, some of these lines may require improvement.

The cost to upgrade the 12-in. pipeline alone is estimated to be \$500,000. Additional upgrades to the 18- and 21-in. collection pipelines will cost approximately \$1.3 million.

Total Estimated Cost......\$1.8 million

BASIN 2K. The 12-in. collection line that services Basin 2K and flows northsouth down Cleveland Road will eventually reach capacity. This will subsequently affect the same 24- and 27-in. collection lines referenced above for Basin 2H, resulting in surcharging and backup in the pipelines. Depending upon peak flow rates, the 30-in. Frantz Street line may also require improvement.

The cost to upgrade the 12-in. pipeline is estimated to be \$1.3 million. Additional upgrades to the 24- and 27-in. pipelines will cost approximately \$1.8 million. The cost to improve the 30-in. Frantz Street pipeline is estimated between \$2 million and \$7 million, depending on the extent of pipeline replacement required.

Total Estimated Cost......\$7.1 million

5.2.2 Basin 2G Expansion Recommendations. Continued commercial and residential growth westward along Owen K. Garriott Road may be impeded by the existing sanitary sewer system that services this area. Currently, the Basin 2 pipeline that transverses the southern portion of the City has sufficient capacity to easily accommodate expansion both west and northwest of Enid. However, once the pipelines reach Oakwood Road, the sizes decrease to 12- and 8-in.-dia. beyond Bob's Farm residential development. Therefore, it is recommended that the pipeline network capacity be expanded from the Bob's Farm complex westward along. Oakwood Road to accommodate additional growth.

TECHNICAL MEMORANDUM 2 EVALUATION OF THE EXISTING COLLECTION SYSTEM AND RECOMMENDED IMPROVEMENTS

05123-00-02

This can be accomplished by either expanding the 12-in. pipeline that services Bob's Farm further west, or installing a second 12-in. pipeline westward on the north side of Owen K. Garriott Road. The cost to complete this work is estimated to be \$800,000.

In addition, the 12- and 18-in. collection pipelines that service the Bob's Farm pipeline will require improvement. The cost to upgrade the 12- and 18-in. collection pipelines is estimated to be \$2 million.

Total Estimated Cost......\$2.8 million

Total Estimated Cost (9-MGD - 2010) \$16 million

5.3 Hydraulic Capacity Evaluation - Year 2015 (11-MGD). In the event the City of Enid continues to develop/expand and flows increase to 11-MGD, several of the main lines will begin to back-up and flows will push into residential lines. Most lines above 18-in.-dia., including some select lines below 18-in.-dia., will require upgrading to accommodate the increased flows. Alternatively, additional collection lines paralleling existing lines would be required to alleviate the increased flows.

These upgrades represent improvements that must be made to the system in addition to those already summarized in sections 4.3 and 5.2.

5.3.1 Sanitary Sewer Main Expansion. Several sanitary sewer mains that transverse the City will experience increased flows and therefore, many will need to be replaced and include (a) 1A and 2A main lines south of the City; (b) north-south 36-in. main from 11TH Street to Van Buren and Willow; (c) Frantz Street 30-in. cross-town main; and (d) 2D line servicing Vance Air Force Base (VAFB).

The cost for this expansion is estimated to be in the \$20 million range.

- **5.3.2** Sanitary Sewer Collection Lines. The secondary collection pipelines that will require improvements in addition to those outlined in Section 5.2 are as follows:
 - The Oakwood pipeline will require an additional \$1 million expansion north of Owen K. Garriott Road.
 - The north-south 36-in. main will require that a collection pipe be extended to the north along Van Buren. This line will most likely require construction of

) Dewberry®

05123-00-02

an additional pump station and therefore, the expansion will cost approximately \$2.5 million.

- □ The 1N pipeline will require improvement, both east and north, at an approximate cost of \$2 million.
- □ The Basin 2D 10-in. pipeline that services southeast Van Buren will require improvement at an approximate cost of \$2 million.
- Although additional flows north of Basin 1C will burden the existing pipelines, they should maintain below full-capacity.
- **5.3.3** Peak Storage Basins. As a result of high flow rates, the occurrence of stormwater seepage will be significant and therefore, construction of two (2) additional stormwater peak storage basins should be considered. One (1) tank should be located on south Cleveland Road where the Oakwood and Cleveland sanitary sewer systems converge; and the second tank should be located where the 2D and 2A pipelines merge. Each facility should detain approximately 800,000- to 1-million-gal.

Estimated Cost to Construct Both Facilities\$4 million.

Estimated Cost for Section 5.3 Improvements......\$31 million

Total Estimated Cost (11-MGD - 2015)\$47 million

6. CONCLUSIONS

The sanitary sewer collection model constructed for the City of Enid should be considered a working model that should be continually updated as new information becomes available. This will provide the City of Enid a real-time tool to answer questions concerning current sanitary sewer capacity and future growth.

Overall, the City of Enid's sanitary sewer capacity can adequately accommodate flows of 8-MGD and below. As the City expands, additional sanitary sewer capacity will be required. In addition, as flows increase to 10-MGD, some minor expansion projects will be required to ensure sufficient sanitary sewer capacity. Once flows reach 11-MGD, major expansions to the sanitary sewer system will be required.

The SWMM computer model and the 2007 AutoCAD sanitary sewer system drawing are included in electronic format with this report.

Engineering Calculations (I/I Study)

Engineering Notes:

Problem: Determine amount of I/I in each Sewer Basin

Assumption: The maximum allowable inflow/infiltration for a sewer operating within "normal" limits is 200 gallons/mile/day/in-diameter

Step 1:	TM 2-1	From the flow data gathered from the city sewers, determine average and peak daily flows as well as peak storm water flows. Correlate the storm flows with their individual storm Flow data was divided into yearly quarters and analyzed for peak flows. Flow data was
		point. Some conditions were taken into account, such as line back ups, surcharging, and seasonal flows.
Step 2:	TM 2-2	Calculate the Municipal sewer inflows Utilizing typical inflows from municipal sources, inflows in the various sub-basins were calculated throughout the city.
Step 3:	TM 2-3	Determine the US SCS curve numbers, % impervious, and conductivity for each sub- basin.
Step 4:	TM 2-3	Determine the length*in-diameter of the sewer pipe and area of each sub-basin. Calculated by observation.
Step 5:	TM 2-4	Determine the rainfall for the 100-year storm and the individual storms in Enid Data obtained from TR-55 and weatherunderground.com in combination with the City of Enid raingauges
Step 6:	TM 2-5	Determine the hydrograph of the infiltration/inflow The SWMM model is divides the I/I hydrograph into Start Tern Response (ST), Median Term Response (MT), and Long Term Reponses (LT). Within each hydrograph is a ratio of the flow (R) Proportional to the Response Term, a Time to the Peak (T), and (K) the Step 4a Find Proportionality between each response From the CN values, a Proportionality curve was generated for each response time Step 2b Determine the T and K factors
		The conductivity of the soil divided by the depth of soil/manhole was used to calculate the T factor. In general the K factor is approximately 2:1 for a typical curve (Twice the lag time to initial concentration)
Step 7:	TM 2-5	Determine the sewer area necessary to provide a 200 gal/mil/day/in-dia flow. Step 5a: Find the amount of inflow required to provide the 200 g/m/d/in for the sub-basin. The 200 g/m/d/in form was multiplied by the observed length*dia term in Step 3
		Step 5b: Find the relationship between sewer inflow area and required inflow The relationship between inflow and the sewer basin inflow area term is liner with a 0 y-
		Step 5c: Find the relationship between CN and sewer inflow Since the inflow relationship is liner with a y-intercept = 0, the slopes of the CN values for each manhole depth were fit to a inflow*area vs. CN graph. Step 5d: Determine the sewer inflow area.
		The CN value was inputted into the graphical relationship in 5c and an area*inflow value was found. The factor was divided by the necessary inflow rate determined in Step 5a, and an area value was determined on a 5-ft depth basis (5, 10, 15, 20, and 25-ft deep sewers). The values were interpolated against the actual sewer depth and the inflow area
Step 8:	TM 2-6	SWMM Model and Output The SWMM model was developed from the above data. The input/final output report appear in Appendix F.

WATEWATER TREATMENT SYSTEM ALTERNATIVES

DEVELOPMENT NEEDS

The following needs were identified during the analysis and evaluation of previous reports and facility plans, the inspection and evaluation of the existing units and facilities at the Water Pollution Control Facility, and interviews/meetings with City personnel. The needs presented below cover the liquid process as well as bio-solids process.

The Oklahoma Department of Environmental Quality's Design Criteria for Sewerage Systems was used to benchmark unit conditions and establish permissible guidelines for future unit designs. Onsite evaluation of facilities, current and future flow analysis, interviews with operations staff, and an analysis of existing site conditions were all incorporated in the projection of system needs. Finally, each unit and process was evaluated with respect to the following areas of concern:

- Health & Safety,
- System Operations and Maintenance, and
- Future Growth

The system needs that were determined are as follows:

Health & Safety

- Additional and sufficient capacity to prevent overflows or discharge of untreated wastewaters.
- Less disruption to current operations.

System O&M

- Redundancy in unit operations.
- Easy operation and maintenance
- Easy access of mechanical and electrical mechanisms.
- Corrosion resistant structures and equipment.
- Flexible plant piping with ability to take any unit out of service for maintenance.

Growth

- Sufficient capacity to meet needs during the 25 year planning horizon including sufficient capacity and flexibility to promote growth in annexed areas,
- Ability to mitigate fluctuations in plant flow and effluent quality due to influx of storm water and industrial flows

DESCRIPTION OF ALTERNATIVES

The following section summarizes each alternative that was considered in the planning phase of this project. The alternatives are developed with the objective of meeting the projected design capacity of the WPCF for the year 2030 is 14 MGD. The projected design capacity for the years 2010, 2015 and 2020 will be 9.00 MGD and 10.50 MGD and 12.00 MGD, respectively. The above projection include domestic flows from projected population, future flows from the expansion of Advance Foods, two new Ethanol Plants and other industries which are unknown at this time. The options for Plant expansions will be phased in stages that provide flexibility during expansion. The alternatives were developed based on the premise that the existing WPCF with the exception of bio-solids processing facility will be decommissioned either in 2010 or in 2020 after utilizing its useful life. The existing renovated sludge

PSA 🏶 Dewberry

processing facility capable of processing the sludge generated from a 10 MGD wastewater treatment facility will be expanded to 14 MGD as and when necessary based on the plant capacity of the given alternative. These alternatives will be presented with the major advantages and disadvantages listed for each.

Option 1: New 14 MGD treatment facility

This Option consists of building a new 14 MGD treatment plant by in the year 2010 that would cater to the projected ultimate flow for 2030. The bio-solids processing facility would be expanded from the current capacity of 10 MGD to 14 MGD in the year 2020. The advantages of this Option would be the total replacement of the existing wastewater treatment facility, a reliable treatment process, good growth capacity, general aesthetic improvements, ease of operation and maintenance, and no disruption to current plant operations. The disadvantages of this option would be a high capital construction cost, high land use, and high operation and maintenance cost.

Option 2: New 14 MGD treatment facility with an ability to treat industrial wastes directly without pretreatment

This Option consists of building a new 14 MGD treatment plant to treat wastewater with a high organic loading. This Option was developed with the purpose of receiving the industrial wastes within the City without significant pretreatment. Option 2 is identical to Option 1 with the exception of its design to treat the high strength wastewater. Under this Option, the existing bio-solids processing facility will be upgraded immediately as a result of increased bio-solids production from the high strength wastewater. The advantages of this Option will include the total replacement of the existing wastewater treatment facility, receiving industrial wastes without pretreatment leading to increased revenue to the City, good growth capacity, general aesthetic improvements and no disruption to current plant operations. Consequently the disadvantages of this option will include a higher capital construction cost than Option 1, higher land use, higher operation and maintenance costs, uncertainty in treated effluent quality, no control over the discharges by the industrial users and increased maintenance issues in collection system.

Option 3: New 12 MGD treatment facility with expansion to 14 MGD

This Option consists of building a new 12 MGD treatment plant in the year 2010 and expanding to 14 MGD in the year 2020 to meet the projected ultimate flow. The expansion to 14 MGD and upgrading of the existing bio-solids processing facility will occur in year 2020. The advantages of this Option will include the total replacement of the existing wastewater treatment facility, a reliable treatment process, good growth capacity, general aesthetic improvements, ease of operation and maintenance, and no disruption to current plant operations. The disadvantages of this Option include a high capital construction cost, high land use, and high operation and maintenance cost.

Option 4: Using existing treatment facility and building a new 7 MGD treatment facility with expansion to 14 MGD

This Option consists of building a new treatment plant in two stages, 7 MGD treatment facility in the year 2010 and expanding it to 14 MGD in the year 2020. Building a first stage 7 MGD plant will allow for the replacement of existing headworks and South Plant. The second stage expansion to 14 MGD plant will allow for the replacement of existing North Plant and BNR Plant. The advantages of this Option are less capital construction cost, and high utilization of the existing North and BNR Plants. Consequently the disadvantages of this option would be complexity in operations, possible disruption to current operations, renovations or replacement of certain treatment units in the North Plant, and high operation and maintenance cost.

PSA 🏶 Dewberry

Option 5: New 9 MGD treatment facility for domestic flows and a separate new 5 MGD treatment facility for industrial flows

This Option consists of building two new treatment plants at two different sites, the first, a new 9 MGD treatment facility in the year 2010 for treating domestic flows and a second a 5 MGD treatment facility in the year 2010 for treating industrial flows. The advantages of this Option include the total replacement of the existing wastewater treatment facility, good growth capacity, general aesthetic improvements, requires no expansion to the existing bio-solids processing facility, and no disruption to current plant operations. Consequently the disadvantages of this Option include high capital construction cost, high land use, high operation and maintenance cost, requirement of two separate collection systems, uncertainty in treated effluent quality, more operational skills, and increased maintenance issues in collection system.

Option 6: New 9 MGD treatment facility for domestic flows and a separate new 2.5 MGD treatment facility for industrial flows with expansion to 5 MGD

This Option is similar to Option 5 except that the 5 MGD treatment facility for industrial flows is expanded in two stages of 2.5 MGD (2.5 MGD each, in the year 2010 and 2020 respectively) treatment capacity each. The benefits and disadvantages of this Option would be same as Option 5 except that it has lower initial capital cost than Option 5.

EVALUATION METHODOLOGY

In general, the evaluation of alternatives is a two-fold process. The first is a qualitative analysis based on the factors listed below, which are considered to be important to the process system and the second is a quantitative analysis of the top few selected Options. The second analysis utilizes Present Worth Cost Analysis, to yield the most cost-effective, preferred alternative to meet the needs.

The factors used in the evaluation of qualitative analysis are histed below:

- Capital Costs
- Operation and Maintenance Costs
- Ease of Operation and Maintenance
- Reliability
- Expansion Potential
- Constructability
- Land Requirements
- Aesthetics

But in this evaluation, as an intermittent step, each of the top few selected Options were analyzed for two different processes namely, conventional activated sludge process, and sequential batch reactor process to determine the most reliable and cost effective alternative to meet the ultimate flow condition.

PSA 🏶 Dewberry

The Options developed in the previous sections were presented to the City staff consisting of the following members on August 2, 2006.

- 1. Robert Hitt, P.E. Director of Development Services
- 2. James McClain Public Utility Director
- 3. Barry Brummit Pretreatment Director
- 4. Jason Brinley, P.E. Engineering Administrator

5. Murali Katta

- Project Engineer
- 6. Joyce Hight Wastewater Plant Superintendent

After discussions on each of these Options, the City of Enid selected the following three (3) Options to proceed further with detailed analysis.

TABLE TM 3-1 :	Top	Selected (Options	for	Detailed	Analys	sis.
----------------	-----	------------	---------	-----	----------	--------	------

Option	Description
1	New 14 MGD treatment facility
3	New 12 MGD treatment facility with expansion to 14 MGD
4	Using existing treatment facility and building new 7 MGD treatment facility with expansion to 14 MGD

PROCESS ALTERNATIVES

Each of the selected Options in **Table TM 3-1** were further divided in two Options based on the two chosen process types namely, conventional activated sludge process and sequential batch reactor process, and analyzed in detail for capital and operation and maintenance costs. Process selection is very important step in the design of wastewater treatment plant as it provides an opportunity to implement the treatment system that suits local environmental conditions, construction and operation costs, energy considerations, operator's skills, process flexibility, etc. In this study, a conventional activated sludge process and sequential batch reactor process were considered for the following reasons

Conventional activated sludge process

In a conventional activated sludge process, the primary-treated wastewater and acclimated microorganisms (activated sludge or biomass) are aerated in a basin or tank. After a sufficient aeration period, the flocculent activated sludge solids are separated from the wastewater in a secondary clarifier. The clarified wastewater flows forward for further treatment or discharge. A portion of the clarifier underflow sludge is returned to the aeration basin for mixing with the primary- treated influent to the basin and the remaining sludge is wasted to the sludge handling portion of the treatment plant.

The City of Enid operational staff is familiar with this process as they have been operating the North and South Plants for many years. The North and South Plants use conventional activated sludge process. The benefits of this process were simple operation, smaller basin size, familiar and more reliable process. The disadvantages of this process will be high energy costs, requires more process treatment units, requires separate treatment units for nitrification, effluent quality is susceptible to variations in influent flow and quality, and high land use.

PSA 🔮 Dewberry

Sequencing batch reactor (SBR) process

A sequencing batch reactor process is a fill-and-draw activated-sludge treatment system. This process is identical to conventional activated sludge system, but the (SBR) reactor is a self contained system performing equalization, aeration and clarification in a single reactor. Although the reactor size is larger than the conventional activated sludge process reactor, it eliminates the use of primary clarifiers, secondary clarifiers and return sludge recirculation. This process is being increasingly used in recent years.

The major advantages of this process will be improved effluent quality, elimination of primary, secondary clarifiers and return sludge recirculation, elimination of short circuiting, ability to handle shock in hydraulic and organic loading and the ability to remove nutrients within the same basin.

PREFERRED ALTERNATIVES

The Options selected by the City of Enid as shown in **Table TM 3-1** were expanded to six alternatives, each Option using two different processes, conventional activated sludge and sequencing batch reactor processes. These Options are as follows.

Option 1A: New 14 MGD treatment facility using conventional activated sludge process

The process schematic for this Option is shown in Figure TM 3-1. This process is a two stage treatment process, first stage for BOD removal and the second stage for the removal of ammonia. The Option is designed to handle the projected ultimate design flow of 14 MGD, and replaces the existing WPCF facility in totality with the exception of the biosolids processing facility. The size of individual treatment units, its construction cost, and operation and maintenance cost is shown in Table 1 and 7 iu Appendix TM 3-1.

Option 1B: New 14 MGD treatment facility using sequencing batch reactor process

The process schematic for this Option is shown in Figure TM 3-2. The designed capacity of this plant is the same as Option 1A except it uses SBR process. The BOD and ammonia removal are accomplished in several steps using the same basin/tank. The size of individual treatment units, its construction cost, and operation and maintenance cost is shown in Table 2 and 7 in Appendix TM 3-1.

Option 3A: New 12 MGD treatment facility using conventional activated sludge process with expansion to 14 MGD

The process schematic for this Option is shown in **Figure TM 3-3**. This Option uses conventional activated sludge process. The preliminary treatment unit consisting of screen, grit removal, parshall flume and lift station, primary clarifier and UV disinfection system are designed for an ultimate design flow of 14 MGD and the remaining treatment units are designed for 12 MGD with the Option to expand to 14 MGD in the year 2020. This Option also replaces the existing WPCF facility in totality with the exception of bio-solids processing facility. The size of individual treatment units, its construction cost, and operation and maintenance cost for the staged expansion is shown in **Table 3** and **8** in **Appendix TM 3-1**.

PSA 🏶 Dewberry

3 - 5

E**NVIRO**TECH

Option 3B: New 12 MGD treatment facility using sequencing batch reactor process with expansion to 14 MGD

The process schematic for this Option is shown in **Figure TM 3-4**. The designed capacities and expansion phasing of this Option is the same as Option 3A except it uses SBR process. The size of individual treatment units, its construction cost, and operation and maintenance cost for the staged expansion is shown in **Table 4** and **8** in **Appendix TM 3-1**.

Option 4A: Using the existing treatment facility and building a new 7 MGD treatment facility using conventional activated sludge process with expansion to 14 MGD

This Option uses conventional activated sludge process, and the process schematic for this Option is shown in Figure TM 3-5. The preliminary treatment unit consisting of screen, grit removal, parshall flume and lift station, and UV disinfection system are designed for ultimate design flow of 14 MGD and the remaining treatment units are designed for 7 MGD with the Option to expand to them to 14 MGD in the year 2020. This Option will still use the North Plant until 2020. As a result it will require some rehabilitation work to existing primary and secondary clarifiers in the North Plant and construction of new nitrification clarifiers at existing BNR system. The size of individual treatment units, its construction cost, and operation and maintenance cost for the staged expansion of this Option is shown in Table 5 and 9 in Appendix TM 3-1.

Option 4B: Using the existing treatment facility and building a new 7 MGD treatment facility using sequencing batch reactor process with expansion to 14 MGD

The process schematic for this Option is shown in Figure TM 3-6. The designed capacities and expansion phasing of this Option is the same as Option 3A except it uses SBR process. The size of individual treatment units, its construction cost, and operation and maintenance cost for the staged expansion is shown in 6 and 9 in Appendix TM 3-1.

Summary of capital cost and operation and maintenance cost for each of the above six Options is shown in Table TM 3-2.

PSA 🏶 Dewberry

 TABLE TM 3-2:
 Summary of capital and operation and maintenance cost

OPTION	DESORIPIION	CAPITALICOST				@AMIGOST			
			2010		2020	2	010-2020	92 	920-2830
1A	14 MGD New Plant Conventional Activated Sludge Process	\$	48,316,100	\$	4,935,100	\$	1,717,680	\$	1,888,480
18	14 MGD New Plant SBR Process	\$	46,580,700	\$	4,935,100	\$	1,442,030	\$	1,612,830
3A	12 MGD New Plant Conventional Activated Sludge Process W/ Expansion to 14 MGD	\$	42,796,500	\$	11,077,500	\$	1,514,290	\$	1,888,480
3B	12 MGD New Plant SBR Process W/ Expansion to 14 MGD	\$	42,121,600	\$	9,430,200	(3)	1,289,790	\$	1,612,830
4A	Using Existing Treatment Facility and building new 7 MGD New Plant Conventional Activated Sludge Process W/ Expansion to 14 MGD	\$	33,039,300	\$	26,421,000	\$	1,627,910	\$	1,888,480
4B	Using Existing Treatment Facility and building new 7 MGD New Plant SBR Process W/Expansion to 14 MGD	\$	31,930,500	\$	24,026,400	\$	1,577,340	\$	1,612,830

From the capital and operations costs listed in **Table TM 3-2**, the Present Worth Cost for each Option was calculated. A summary of the Present Worth Costs can be seen below in **Table TM 3-3**. The following assumptions were used in the Present Worth Cost Analysis.

- 1. Present Worth Analysis was performed for the year 2006
- 2. Evaluation period used is 20 years, between years 2010 and 2030
- 3. Capital costs were expected to occur in two stages, year 2010 and 2020. Capital cost for the year 2020 includes additional expansion to meet the ultimate condition.
- 4. Annual operations and maintenance costs were divided in to two time periods, one for the period 2010-2020 and the other for the period 2020-2030 as the expansion at 2020 would increase the operation and maintenance cost.
- 5. Inflation factor of 4.5% per year was used for Present worth Analysis.

The detailed Present Worth Cost analysis is shown in Table 10 in Appendix TM 3-1.

TABLE TM 3-3:	Summary of present worth cost
---------------	-------------------------------

Option	Description	Present Worth Cost
1 A	14 MGD New Plant Conventional Activated Sludge Process	\$ 62,646,975
1 B	14 MGD New Plant SBR Process	\$ 58,184,959
3 A	12 MGD New Plant Conventional Activated Sludge Process W/ Expansion to 14 MGD	\$ 59,985,628
3 B	12 MGD New Plant SBR Process W/ Expansion to 14 MGD	\$ 55,862,804
4 A	Using Existing Treatment Facility and Building a 7 MGD New Plant Conventional Activated Sludge Process W/ Expansion to 14 MGD	\$ 60,842,593
4 B	Using Existing Treatment Facility and Building a 7 MGD New Plant SBR Process W/ Expansion to 14 MGD	\$ 57,106,473

Normally the recommended alternative selection is based upon the Present Worth Cost Analysis described and summarized above. The Present Worth Cost information presented in **Table TM 3-3**, worth indicates that Option 3B has the lowest present worth cost among all of the alternatives evaluated. Therefore it is recommended that Option 3B be considered by the City of Enid for implementation. This Option is discussed in more detail in the following section.

RECOMMENDED ALTERNATIVE

The recommendations below are based on an extensive evaluation of the existing treatment units and the introduction of new treatment concepts. During this evaluation, the basis for selection was the cost effectiveness of the system process. Generally, the alternative with the lowest present worth cost was recommended. In this evaluation, Option 3B has the lowest present worth cost, and therefore fore it is recommended that Option 3B be considered by the City of Enid for implementation.

The proposed improvements under *Option 3B* will provide the City of Enid Water Pollution Control Facility with the following attributes:

- Replaces the existing WPCF facility in totality with the exception of the bio-solids processing facility;
- Less / no disruption to current plant operations while new facility is being built;
- Improved effluent quality;
- Elimination of primary, secondary clarifiers and return sludge recirculation, elimination of short circuiting;

3 - 8

- Ability to handle shock in hydraulic and organic loading;
- Ability to remove nutrients;
- Easy to expand and replicate the additional reactors;
- Less land requirements than other processes.

The improvements recommended under *Option 3B* consist of expanding the plant in two stages as follows:

Improvements at 2010:

- New headworks including screening, grit removal and flow measurement to handle ultimate peak flow of 28 MGD;
- New low lift pump station to handle ultimate peak flow of 28 MGD;
- SBR reactors to treat an average daily flow of 12 MGD;
- New sludge holding basins;
- Disinfection system;
- Effluent flow measurement structure;
- Influent/effluent outfall; site work, piping, electrical, instrumentation & controls;
- Decommissioning of the existing WPCF facility in totality except bio-solids processing facility.

Improvements at 2020:

- One additional SBR reactor to increase the design capacity of the SBR reactors from 12 MGD to 14 MGD of average daily flow;
- Expanding the capacity of the existing bio-solids processing facility from 10 MGD to 14 MGD by building two new aerobic digesters and additional dewatering system consisting of belt press, polymer dosing system, sludge conveyor, etc.;
- Sitework, piping, electrical, instrumentation & controls.

The site plan showing the improvements as recommended in *Option 3B* is shown in **Figure TM 3-7**. This site is located northwest of the North Plant and south of Market Road and was recommended in the previous facility plan as suitable land for expansion. This site appears to be outside the floodway, and will not disrupt the Facility's operation but still close to the existing facility.

3 - 9

TABLE TM 3-4:

Capital construction cost for recommended alternative, Option 3B

Unit Description	Capital Construction Cost					
	2010	2020				
Mobilization	\$ 773,900	\$ 224,800				
Sitework	\$ 2,220,600	\$ 680,600				
Headworks						
Screening	\$ 510,400	-				
Grit Removal	\$ 783,100	-				
Parshall Flume	\$ 240,500	-				
Low Lift Pump Station	\$ 1,383,900	-				
SBR Reactors	\$ 16,590,200	\$ 2,370,100				
Sludge Holding Basins	\$ 1,174,100	- .				
Disinfection System	\$ 1,975,300	-				
Aerobic Digesters	-	\$ 1,295,800				
Dewatering System	-	\$ 1,200,300				
Electrical	\$ 2,251,500	\$ 608,800				
Instrumentation & Controls	\$ 1,187,700	\$ 293,600				
Piping	\$ 2,560,000	\$ 580,000				
Influent / Effluent outfall	\$ 750,000	<u> </u>				
SUB TOTAL	\$ 32,401,200	\$ 7,254,000				
Non-Construction Cost (15%)	\$ 4,860,200	\$ 1,088,100				
Contingency (15%)	\$ 4,860,200	\$ 1,088,100				
TOTAL	\$ 42,121,600	\$ 9,430,200				

The approximate capital construction cost to build all recommended improvements has been estimated to be \$42,121,600 and \$9,430,200 for the years 2010 and 2020, respectively. **Table TM 3-4** shows the breakdown of these estimated capital costs for the recommended improvements. The estimated construction costs are based on August 2006, Engineering News Record (ENR) construction cost index (7722).

The annual operation and maintenance cost for the years 2010-2020 and 2020-2030 are \$1,289,790 and \$1,612,830 respectively. A detailed break down of these estimated operation and maintenance cost is shown in Table 8 in Appendix TM 3-1.

PSA 🔮 Dewberry

APPENDICES

 \bigcirc

 \bigcirc

APPENDIX TM 3-1

COST ANALYSIS WORKSHEETS

CITY OF ENID WASTEWATER FACILITY PLAN

CAPITAL COST ESTIMATES

TABLE 1 Sep-06

OPTION 1A: 14 MGD NEW PLANT, CONVENTIONAL ACTIVATED SLUDGE PROCESS

Design Capacity of Units Cost in 2006 Dollars Improvements at 2010 - - 860,800 Mobilization - - 2,458,400 Istework - - 2,458,400 Headworks - - 2,458,400 Grit Removal 28 MGD - 763,100 Parshal Flume 28 MGD - 1,383,900 Primary Clarifiers 90 ft, Dia 2 1,794,600 Aeration Basin 200' L x 50' W x 16.5' D 4 8,115,200 Secondary Clarifiers 100 ft, Dia 3 3,322,900 Nitrification Basin 14 MGD - 4,643,300 Tertiary clarifiers 100 ft, Dia 3 3,322,900 Disinfection system 28 MGD - 1,382,000 Electrical - - 2,519,600 Instrumentation & Controls - - 1,339,400 Piping - - 3,739,100 Influent / Effluent outfall 2300 LF, 36''' -	Unit Description	Unit Size/	Number	Estimated
Improvements at 2010 Mobilization - - 860,800 Sitework - - 2,458,400 Headworks - - 2,458,400 Grit Removal 28 MGD - 783,100 Parshal Flume 28 MGD - 1,383,900 Primary Clarifiers 90 ft, Dia 2 1,794,600 Acration Basin 200' L x 50' W x 16.5' D 4 8,115,200 Secondary Clarifiers 100 ft, Dia 3 3,322,900 Nitrification Basin 14 MGD - 4,643,300 Primary Clarifiers 100 ft, Dia 3 3,322,900 Nitrification Basin 14 MGD - 1,363,000 Disinfection system 28 MGD - 1,382,000 Electrical - - 2,519,600 Instrumentation & Controls - - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 Stework - - 300,000 5,575,000 <th></th> <th>Design Capacity</th> <th>or Units</th> <th>Cost.in</th>		Design Capacity	or Units	Cost.in
Mobilization - - 860,800 Sitework - - 2,458,400 Headworks - - 2,458,400 Grit Removal 28 MGD - 763,100 Parshal Flume 28 MGD - 240,500 Liftstation 28 MGD - 1,383,900 Primary Clarifiers 90 ft, Dia 2 1,794,600 Aeration Basin 200' L x 50' W x 16.5' D 4 8,115,200 Secondary Clarifiers 100 ft, Dia 3 3,322,900 Nitrification Basin 14 MGD - 4,643,300 Tertiary clarifiers 100 ft, Dia 3 3,322,900 Disinfection system 28 MGD - 1,382,000 Instrumentation & Controls - - 2,519,600 Instrumentation & Controls - - 1,339,400 Piping - - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL - -	Improvements at 2010			EXA PAHARS
Sitework - - 2,458,400 Headworks Screening 28 MGD - 510,400 Grit Removal 28 MGD - 783,100 Parshal Flume 28 MGD - 240,500 Liftstation 28 MGD - 1,383,900 Primary Clarifiers 90 ft. Dia 2 1,794,600 Aeration Basin 200 L x 50' W x 16.5' D 4 8,115,200 Secondary Clarifiers 100 ft. Dia 3 3,322,900 Nitrification Basin 14 MGD - 4,643,300 Tertiary clarifiers 100 ft. Dia 3 3,322,900 Disinfection system 28 MGD - 1,384,000 Piping - - 2,519,600 - Instrumentation & Controls - - 1,339,400 - Piping - - 3,738,100 - 5,575,000 Influent / Effluent outfall 2300 LF, 36" - 720,000 - Mobilization - - </td <td>Mobilization</td> <td>_</td> <td><u> </u></td> <td>860.800</td>	Mobilization	_	<u> </u>	860.800
Headworks Screening 28 MGD - 510,400 Grit Removal 28 MGD - 783,100 Parshal Flume 28 MGD - 240,500 Liftstation 28 MGD - 1,383,900 Primary Clarifiers 90 ft. Dia 2 1,794,600 Aeration Basin 200' L x 50' W x 16.5' D 4 8,115,200 Secondary Clarifiers 100 ft. Dia 3 3,322,900 Nitrification Basin 14 MGD - 4,643,300 Tertiary clarifiers 100 ft. Dia 3 3,322,900 Disinfection system 28 MGD - 1,384,000 Electrical - - 2,519,600 Instrumentation & Controls - - 1,339,400 Piping - - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 Sortingency (15%) - 5,575,000 5,575,000 Contingency (15%) - - 300,000 Mobilization <td>Sitework</td> <td>_</td> <td> _ </td> <td>2,458.400</td>	Sitework	_	_	2,458.400
Screening 28 MGD - 510,400 Grit Removal 28 MGD - 783,100 Parshal Flume 28 MGD - 240,500 Liftstation 28 MGD - 1,383,900 Primary Clarifiers 90 ft. Dia 2 1,794,600 Aeration Basin 200' L x 50' W x 16.5' D 4 8,115,200 Secondary Clarifiers 100 ft. Dia 3 3,322,900 Nitrification Basin 14 MGD - 4,643,300 Tertiary clarifiers 100 ft. Dia 3 3,322,900 Disinfection system 28 MGD - 1,382,000 Electrical - - 2,519,600 Instrumentation & Controls - - 1,339,400 Piping - - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL - 300,000 - 5,575,000 Contingency (15%) - - 300,000 Improvements at 2020	Headworks			
Grit Removal 28 MGD - 763,100 Parshal Flume 28 MGD - 240,500 Liftstation 28 MGD - 1,383,900 Primary Clarifiers 90 ft. Dia 2 1,794,600 Aeration Basin 200' L x 50' W x 16.5' D 4 8,115,200 Secondary Clarifiers 100 ft. Dia 3 3,322,900 Nitrification Basin 14 MGD - 4,643,300 Tertiary clarifiers 100 ft. Dia 3 3,322,900 Disinfection system 28 MGD - 1,382,000 Electrical - - 2,519,600 Instrumentation & Controls - - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL - 37,166,100 - 5,575,000 Non-Construction Cost (15%) - - 300,000 Stework - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewateri	Screening	28 MGD	-	510,400
Parshal Flume 28 MGD - 240,500 Liftstation 28 MGD - 1,383,900 Primary Clarifiers 90 ft. Dia 2 1,794,600 Aeration Basin 200' L x 50' W x 16.5' D 4 8,115,200 Secondary Clarifiers 100 ft. Dia 3 3,322,900 Nitrification Basin 14 MGD - 4,643,300 Tertiary clarifiers 100 ft. Dia 3 3,322,900 Disinfection system 28 MGD - 1,382,000 Electrical - - 2,519,600 Instrumentation & Controls - - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL - 37,166,100 - 5,575,000 Non-Construction Cost (15%) - - 300,000 Contingency (15%) - - 300,000 Stework - - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800	Grit Removal	28 MGD	-	783,100
Liftstation 28 MGD - 1,383,900 Primary Clarifiers 90 ft. Dia 2 1,794,600 Aeration Basin 200' L x 50' W x 16.5' D 4 8,115,200 Secondary Clarifiers 100 ft. Dia 3 3,322,900 Nitrification Basin 14 MGD - 4,643,300 Tertiary clarifiers 100 ft. Dia 3 3,322,900 Disinfection system 28 MGD - 1,382,000 Electrical - - 2,519,600 Instrumentation & Controls - - 1,339,400 Piping - - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL - 37,166,100 - 5,575,000 Non-Construction Cost (15%) 5,575,000 - 300,000 - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 - 300,000 Aerobic Digesters 60 ft. Dia 2 1,200,300 Electrical -	Parshal Flume	28 MGD	{ - ` `	240,500
Primary Clarifiers 90 ft. Dia 2 1,794,600 Aeration Basin 200' L x 50' W x 16.5' D 4 8,115,200 Secondary Clarifiers 100 ft. Dia 3 3,322,900 Nitrification Basin 14 MGD - 4,643,300 Tertiary clarifiers 100 ft. Dia 3 3,322,900 Disinfection system 28 MGD - 1,382,000 Electrical - - 2,519,600 Instrumentation & Controls - - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL - 37,166,100 - 5,575,000 Non-Construction Cost (15%) 5,575,000 - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 Dewatering System 4 MGD - 1,200	Liftstation	28 MGD		1,383,900
Aeration Basin 200' L x 50' W x 16.5' D 4 8,115,200 Secondary Clarifiers 100 ft, Dia 3 3,322,900 Nitrification Basin 14 MGD - 4,643,300 Tertiary clarifiers 100 ft, Dia 3 3,322,900 Disinfection system 28 MGD - 1,382,000 Electrical - - 2,519,600 Instrumentation & Controls - - 1,339,400 Piping - - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 37,166,100 5,575,000 5,575,000 Non-Construction Cost (15%) 5,575,000 5,575,000 5,575,000 TOTAL - - 300,000 48,316,100 Improvements at 2020 - - 300,000 48,316,100 Mobilization - - 200,000 5,575,000 5,575,000 2 1,295,800 Dewatering System 4 MGD - 1,200,300 2	Primary Clarifiers	90 ft. Dia	2	1,794,600
Secondary Clarifiers 100 ft, Dia 3 3,322,900 Nitrification Basin 14 MGD - 4,643,300 Tertiary clarifiers 100 ft, Dia 3 3,322,900 Disinfection system 28 MGD - 1,382,000 Electrical - - 2,519,600 Instrumentation & Controls - - 1,339,400 Piping - - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL - 37,166,100 5,575,000 Non-Construction Cost (15%) 5,575,000 5,575,000 Contingency (15%) - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 Piping - - 400,000 SUB TOTAL - 150,000 <	Aeration Basin	200' L x 50' W x 16.5' D	4	8,115,200
Nitrification Basin 14 MGD - 4,643,300 Tertiary clarifiers 100 ft. Dia 3 3,322,900 Disinfection system 28 MGD - 1,382,000 Electrical - - 2,519,600 Instrumentation & Controls - 1,339,400 Piping - - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 37,166,100 5,575,000 5,575,000 Non-Construction Cost (15%) 5,575,000 48,316,100 Improvements at 2020 - - 300,000 Acrobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 250,000 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,	Secondary Clarifiers	100 ft. Dia	3	3,322,900
Tertiary clarifiers 100 ft, Dia 3 3,322,900 Disinfection system 28 MGD - 1,382,000 Electrical - - 2,519,600 Instrumentation & Controls - - 1,339,400 Piping - - 1,339,400 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 37,166,100 - 5,575,000 Non-Construction Cost (15%) 5,575,000 - 5,575,000 Contingency (15%) - - 300,000 Mobilization - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 Piping - - 150,000 Instrumentation & Controls - - 150,000 Piping - - 400,000	Nitrification Basin	14 MGD	-	4,643,300
Disinfection system 28 MGD - 1,382,000 Electrical - - 2,519,600 Instrumentation & Controls - - 1,339,400 Piping - - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 37,166,100 37,166,100 37,166,100 Non-Construction Cost (15%) 5,575,000 5,575,000 5,575,000 TOTAL 48,316,100 - - 200,000 Mobilization - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 Piping - - 400,000 SUB TOTAL 3,796,100 569,500 Non-Construction Cost (15%) 569,500 569,500 Contingency (15%) 569,500 569,500	Tertiary clarifiers	100 ft. Dia	3	3,322,900
Electrical - - 2,519,600 Instrumentation & Controls - 1,339,400 Piping - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 37,166,100 37,166,100 37,166,100 Non-Construction Cost (15%) 5,575,000 5,575,000 5,575,000 TOTAL 38,316,100 - - 200,000 Mobilization - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 Piping - - 400,000 SUB TOTAL 3,796,100 569,500 Non-Construction Cost (15%) 569,500 569,500 Contingency (15%) 569,500 569,500	Disinfection system	28 MGD	- 1	1,382,000
Instrumentation & Controls - - 1,339,400 Piping - - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 37,166,100 37,166,100 Non-Construction Cost (15%) 5,575,000 5,575,000 Contingency (15%) 5,575,000 5,575,000 TOTAL 48,316,100 48,316,100 Improvements at 2020 48,316,100 48,316,100 Improvements at 2020 - - 200,000 Sitework - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 Piping - - 400,000 SUB TOTAL 3,796,100 569,500 Non-Construction Cost (15%) 569,500 569,500 Contingency (15%) 569,500 569,500	Electrical	-	-	2,519,600
Piping - - 3,739,100 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 37,166,100 37,166,100 37,166,100 Non-Construction Cost (15%) 5,575,000 5,575,000 5,575,000 Contingency (15%) 5,575,000 5,575,000 5,575,000 TOTAL 48,316,100 48,316,100 Improvements at 2020 48,316,100 48,316,100 Improvements at 2020 - - 200,000 Sitework - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 Piping - - 400,000 SUB TOTAL 3,796,100 569,500 Non-Construction Cost (15%) 569,500 569,500 Contingency (15%) 569,500 569,500	Instrumentation & Controls	-	- 1	1,339,400
Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 37,166,100 37,166,100 37,166,100 5,575,000 5,575,000 5,575,000 5,575,000 5,575,000 5,575,000 5,575,000 48,316,100 40,000 40,000 40,000 40,000 40,000 40,000 40,000 569,500 569,500 569,500 569,500 569,500 569,500 569,500 569,500 569,500 569,500 569,500 569,500 569,500 569,500 569,500 569,500 569,500 </td <td>Piping</td> <td>-</td> <td>-</td> <td>3,739,100</td>	Piping	-	-	3,739,100
SUB TOTAL 37,166,100 Non-Construction Cost (15%) 5,575,000 Contingency (15%) 5,575,000 TOTAL 48,316,100 Improvements at 2020 48,316,100 Mobilization - - Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - 150,000 SUB TOTAL 3,796,100 3,796,100 Non-Construction Cost (15%) 569,500 569,500 Contingency (15%) 569,500 569,500	Influent / Effluent outfall	2300 LF, 36"	<u> </u>	750,000
Non-Construction Cost (15%) Contingency (15%) 5,575,000 5,575,000 TOTAL 48,316,100 Improvements at 2020 48,316,100 Mobilization - - 200,000 Sitework - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 SUB TOTAL 3,796,100 569,500 Non-Construction Cost (15%) 569,500 569,500 Contingency (15%) 4 035 400 569,500	SUB TOTAL			37,166,100
Contingency (15%) 5,575,000 TOTAL 48,316,100 Improvements at 2020 48,316,100 Mobilization - - 200,000 Sitework - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 SUB TOTAL 3,796,100 569,500 Non-Construction Cost (15%) 569,500 569,500 Contingency (15%) 4025 400 569,500	Non-Construction Cost (15%)		{	5,575,000
TOTAL 48,316,100 Improvements at 2020 - - 200,000 Sitework - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 Piping - - 400,000 SUB TOTAL 3,796,100 569,500 Non-Construction Cost (15%) 569,500 569,500 Contingency (15%) - 4025,400	Contingency (15%)			5,575,000
Improvements at 2020 Mobilization - - 200,000 Sitework - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 Piping - 400,000 3,796,100 Non-Construction Cost (15%) 569,500 569,500 Contingency (15%) - 4025,400	TOTAL		a san na ang ang ang ang ang ang ang ang an	48,316,100
Improvements at 2020 Mobilization - - 200,000 Sitework - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 Piping - - 400,000 SUB TOTAL 3,796,100 569,500 Non-Construction Cost (15%) 569,500 569,500 Contingency (15%) - 4025,400				· · · · · · · · · · · · · · · · · · ·
Mobilization - - 200,000 Sitework - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 Piping - - 400,000 SUB TOTAL 3,796,100 569,500 Non-Construction Cost (15%) 569,500 569,500 TOTAL 4 025 400 569,500	Improvements at 2020	· · · · · · · · · · · · · · · · · · ·	T	1
Sitework - - 300,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 Piping - - 400,000 SUB TOTAL 3,796,100 569,500 Non-Construction Cost (15%) 569,500 569,500 TOTAL 4025,400 569,500	Mobilization		} -	200,000
Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 Piping - - 400,000 SUB TOTAL 3,796,100 569,500 Non-Construction Cost (15%) 569,500 569,500 TOTAL 325,400 325,400	Sitework	-		300,000
Dewatering System 4 MGD - 1,200,300 Electrical - - 250,000 Instrumentation & Controls - - 150,000 Piping - - 400,000 SUB TOTAL 3,796,100 Non-Construction Cost (15%) 569,500 Contingency (15%) 569,500	Aerobic Digesters	60 ft. Dia	2	1,295,800
Electrical - - 250,000 Instrumentation & Controls - - 150,000 Piping - - 400,000 SUB TOTAL 3,796,100 3,796,100 Non-Construction Cost (15%) 569,500 569,500 Contingency (15%) 569,500 569,500	Dewatering System	4 MGD	– .	1,200,300
Instrumentation & Controls - - 150,000 Piping - - 400,000 SUB TOTAL 3,796,100 3,796,100 Non-Construction Cost (15%) 569,500 569,500 Contingency (15%) 569,500 569,500	Electrical	-	-	250,000
Piping - 400,000 SUB TOTAL 3,796,100 Non-Construction Cost (15%) 569,500 Contingency (15%) 569,500 TOTAL 4 025 400	Instrumentation & Controls	} -	-	150,000
SUB TOTAL 3,796,100 Non-Construction Cost (15%) 569,500 Contingency (15%) 569,500 TOTAL 4 025,400	Piping		<u> </u>	400,000
Non-Construction Cost (15%) 569,500 Contingency (15%) 569,500 TOTAL 4 02 400	SUB TOTAL	<u> </u>		3,796,100
	Non-Construction Cost (15%)	ł .	:	569,500
				4 935 100
CAPITAL COST ESTIMATES

OPTION 1B: 14 MGD NEW PLANT, SBR (SEQUENTIAL BATCH REACTOR) PROCESS

Unit Description	Unit Size/	Number	Estimated
	Design Capacity	of Units .	Cost in
			2006 Dollars
Improvements at 2010			
Mobilization	-	-	860,800
Sitework	-	-	2,458,400
Headworks			
Screening	28 MGD	 	510,400
Grit Removal	28 MGD	-	783,100
Parshal Flume	28 MGD	-	240,500
Liftstation	28 MGD	- 1	1,383,900
SBR Reactors	140' L x 98' W x 22' D	8	18,960,200
Sludge Holding Basins	70' L x 35' W x 12' D	2	1,174,100
Disinfection System	40 MGD	-	1,975,300
Electrical	· _	-	2,519,600
Instrumentation & Controls	-	-	1,339,400
Piping	-	-	2,875,600
Influent / Effluent outfall	2300 LF, 36"	-	750,000
SUB TOTAL	· · · · · · · · ·		35,831,300
Non-Construction Cost (15%)			5,374,700
Contingency (15%)		<u> </u>	5,374,700
TOTAL		·我们的情况。	46,580,700
Improvements at 2020	· · · · · · · · · · · · · · · · · · ·	·	<u> </u>
Mobilization	-	-	200,000
Sitework	-	-	300,000
Aerobic Digesters	60 ft. Dia	2	1,295,800
Dewatering System	4 MGD	-	1,200,300
Electrical	-	-	250,000
Instrumentation & Controls	-	-	150,000
Piping			400,000
SUB TOTAL			3,796,100
Non-Construction Cost (15%)			569,500
Contingency (15%)	a se selence a substance a tablecer se a substance a		569,500
TOTAL	的联邦和特殊的公司学会专家任务	4月2日的 化物理	4,935,100

TABLE 2 Sep-06

CAPITAL COST ESTIMATES

TABLE 3 Sep-06

OPTION 3A: 12 MGD NEW PLANT, CONVENTIONAL ACTIVATED SLUDGE PROCESS WITH EXPANSION TO 14 MGD CAPACITY

Unit Description	Unit Size/, a. a. State	Number	Estimated
	Design Capacity	of Units	Costin
			2006 Dollars
Improvements at 2010	<u></u>		
Mobilization		-	773,900
Sitework	-	- 1	2,220,600
Headworks			ļ
Screening	28 MGD	-	510,400
Grit Removal	28 MGD	-	783,100
Parshal Flume	28 MGD	-	240,500
Liftstation	28 MGD	{ -	1,383,900
Primary Clarifiers	90 ft. Dia	2	1,794,600
Aeration Basin	180' L x 45' W x 17.20' D	4	6,852,200
Secondary Clanfiers	90 ft. Dia	3	2,691,900
Nitrification Basin	12 MGD	· -	4,085,500
Tertiary clarifiers	90 ft. Dia	3	2,691,900
Disinfection System	28 MGD	- ·	1,382,000
Electrical	} ;	-	2,251,500
Instrumentation & Controls	-	-	1,187,700
Piping		-	3,320,600
Influent / Effluent outfall	2300 LF, 36"		750,000
SUB TOTAL			32,920,300
Non-Construction Cost (15%)		·	4,938,100
Contingency (15%)		133.344 ·····	4,938,100
TOTAL		非影響的能量	42,796,500
Improvements at 2020			
Mobilization	-	-	224,800
Sitework		-	680,600
Aeration Basin	180' L x 30' W x 17.20' D	4	1,142,100
Secondary Clarifiers	80 ft. Dia	1	709,000
Nitrification Basin	2 MGD	-	821,400
Tertiary clarifiers	80 ft. Dia	1	709,000
Aerobic Digesters	60 ft. Dia	2	1,295,800
Dewatering System	4 MGD	-	1,200,300
Electrical		-	608,800
Instrumentation & Controls	-	-	293,600
Piping	-	-	835,700
SUB TOTAL			8,521,100
Non-Construction Cost (15%)	1		1,278,200
Contingency (15%)	W. R. M. M. P. Market Street and Street Street	- active Deck	1,278,200
TOTAL			11,077,500

TABLE 4 Sep-06

CAPITAL COST ESTIMATES

OPTION 3B: 12 MGD NEW PLANT, SBR (SEQUENTIAL BATCH REACTOR) PROCESS WITH EXPANSION TO 14 MGD CAPACITY

Unit Description	Unit Size/	Number	Estimated
	Design Capacity	ofUnits	Cost in
		of Units	2006 Dollars
Improvements at 2010			
Mobilization	-		773,900
Sitework	-	.	2,220,600
Headworks	.*		
Screening	28 MGD	-	510,400
Grit Removal	28 MGD	-	783,100
Parshal Flume	28 MGD	-	240,500
Liftstation	28 MGD	-	1,383,900
SBR Reactors	140' L x 98' W x 22' D	7	16,590,200
Sludge Holding Basins	70' L x 35' W x 12' D	2	1,174,100
Disinfection System	40 MGD	-	1,975,300
Electrical	-	· •	2,251,500
Instrumentation & Controls	-	-	1,187,700
Piping	-	-	2,560,000
Influent / Effluent outfall	2300 LF, 36"		750,000
SUB TOTAL			32,401,200
Non-Construction Cost (15%)			4,860,200
Contingency (15%)			4,860,200
TOTAL			42121,600
Improvements at 2020	T.	<u> </u>	224 800
	-		224,000 680.600
			000,000
SBK Reactors	140 L X 98 W X 22' D		2,370,100
	ου π. Dia		1,295,800
Dewatering System	4 MGD		1,200,300
Electrical	-	-	608,800
Instrumentation & Controls	- '	-	293,600
Piping	-		580,000
SUB TOTAL		<u> </u>	7,254,000
Non-Construction Cost (15%)			
Contingency (15%)			1,000,100
IUTAL	网络拉拉斯斯拉拉拉斯 电子的 网络帕拉斯拉拉		

CAPITAL COST ESTIMATES

TABLE 5 Sep-06

OPTION 4A: USING EXISTING TREATMENT FACILITY AND BUILDING A 7 MGD NEW PLANT, CONVENTIONAL ACTIVATED SLUDGE PROCESS WITH EXPANSION TO 14 MGD CAPACITY

Design Capacity Of Units by the second 2000: Dollars Cost unitsecond 2000: Dollars Improvements at 2010 - - 533,600 Mobilization - - 533,600 Stework - - 1,555,900 Headworks 28 MGD - 510,400 Grit Removal 28 MGD - 240,500 Liftsation 28 MGD - 1,383,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 2,721,100 Disinfection System 28 MGD - 882,000 Improvements to Existing WWTP - - 2,737,700 Electrical - - 750,000 SUB TOTAL 254/44,700 3,812,300 TOTAL - 25,444,700 Non-Construction Cost (15%) - 1,555,900	Unit Description	Unit Size/	Numbere	Estimated
Improvements at 2010 - - 533,600 Mobilization - - 533,600 Sitework - - 1,655,900 Headworks 28 MGD - 510,400 Grit Removal 28 MGD - 240,500 Parshal Flume 28 MGD - 240,500 Lifistation 28 MGD - 1,383,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 2,737,700 Electrical - - 1,519,000 Improvements to Existing WWTP - - 2,192,700 Influent / Effluent outfall 2300 LF, 36" - 760,000 SUB TOTAL 254,414,700 Non-Construction Cost (15%) 3,812,300 3,812,300 Contingency (15%) - - 1,555,900 716 Dia 2		Design Capacity	of Units	Costin
Improvements at 2010 Mobilization - - 533,600 Sitework - - 1,555,900 Headworks Screening 28 MGD - 763,100 Grit Removal 28 MGD - 240,500 Liftsation 28 MGD - 240,500 Liftsation 28 MGD - 1,833,900 Parshal Flume 28 MGD - 1,343,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 2,721,100 Disinfection System 28 MGD - 882,000 Improvements to Existing WWTP - - 2,737,700 Electrical - - 780,000 Piping - - 2,192,700 Instrumentation & Controls - - 780,000 SUB TOTAL 254,414,700 3,812,300 3,812,300 Contingency (15%) - - 1,555,900 3,812,300 TOTA			推动制造	2006 Dollars
Mobilization - - 533,600 Stework - - 1,555,900 Headworks - - 5,5590 Screening 28 MGD - 510,400 Grit Removal 28 MGD - 783,100 Parshal Flume 28 MGD - 1,363,900 Primary Clarifiers 70 ft. Dia 2 1,065,700 Aceration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 2,721,100 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System 28 MGD - 882,000 Improvements to Existing WWTP - - 2,737,700 Electrical - - 750,000 Non-Construction Cost (15%) - 760,000 SUB TOTAL 25,414,700 3,812,300 Non-Construction Cost (15%) - 1,555,900 TOTAL<	Improvements at 2010			
Sitework - - 1,555,900 Headworks 28 MGD - 510,400 Gritt Removal 28 MGD - 763,100 Parshal Flume 28 MGD - 1,853,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 2,721,100 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System 28 MGD - 82,000 Improvements to Existing WWTP - - 2,737,700 Electrical - - 1,519,000 Instrumentation & Controls - - 780,000 Piping - - 2,122,700 Influent outfall 2300 LF, 36" - 750,000 Subs TOTAL - 1,555,900 3,812,300 Non-Construction Cost (15%) - <t< td=""><td>Mobilization</td><td>-</td><td>-</td><td>533,600</td></t<>	Mobilization	-	-	533,600
Headworks 28 MGD - 510,400 Grit Removal 28 MGD - 783,100 Parshal Flume 28 MGD - 240,500 Liftstation 28 MGD - 1,883,900 Primary Clarifiers 70 ft. Dia 2 1,065,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 2,721,100 Tertlary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System 28 MGD - 862,000 Instrumentation & Controls - - 780,000 Piping - - 780,000 Piping - - 780,000 Non-Construction Cost (15%) - 3,812,300 Contingency (15%) - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,045,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 <td>Sitework</td> <td>-</td> <td>-</td> <td>1,555,900</td>	Sitework	-	-	1,555,900
Screening 28 MGD - 510,400 Grit Removal 28 MGD - 783,100 Parshal Flume 28 MGD - 240,500 Liftstation 28 MGD - 1,383,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 2,737,700 Electrical - - 780,000 Improvements to Existing WWTP - - 2,192,700 Piping - - 2,192,700 Influent / Effluent outfall 2300 LF, 36" - 780,000 SUB TOTAL 25,414,700 3,812,300 - 1,555,900 Mobilization - - 533,600 - 1,365,900 Primary Clarifiers 90 ft. Dia 2 1,794,600 3,812,300 Contingency (15%) - - 533,600	Headworks			
Grit Removal Parshal Flume 28 MGD - 763,100 Liftstation 28 MGD - 240,500 Primary Clarifiers 70 ft. Dia 2 1,085,700 Acration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 2,721,100 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 2,721,100 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System 28 MGD - 862,000 Improvements to Existing WWTP - - 2,737,700 Electrical - - 750,000 Instrumentation & Controls - 750,000 3,812,300 Subt TOTAL 254,414,700 Non-Construction Cost (15%) 3,812,300 Contingency (15%) - - 1,555,900 Stework - - 1,555,900	Screening	28 MGD	-	510,400
Parshal Flume 28 MGD - 240,500 Liftstation 28 MGD - 1,383,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 2,721,100 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System 28 MGD - 862,000 Improvements to Existing WWTP - - 2,737,700 Electrical - - 759,000 Instrumentation & Controls - 759,000 3,812,300 SUB TOTAL 25,414,700 3,812,300 3,812,300 Contingency (15%) - - 1,555,900 TOTAL - - 533,603 Stework - - 1,555,900 Primary Clarifiers 90 ft. Dia 2 1,794,600 Stework - -<	Grit Removal	28 MGD	-	783,100
Liftstation 28 MGD - 1,383,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 2,721,100 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System 28 MGD - 882,000 Improvements to Existing WWTP - - 2,737,700 Electrical - - 780,000 Instrumentation & Controls - 750,000 3,812,300 SUB TOTAL 25,414,700 3,812,300 3,812,300 Contingency (15%) 3,812,300 3,812,300 3,812,300 TOTAL 25,414,700 3,812,300 3,812,300 Mobilization - - 1,555,900 Stework - - 1,555,900 Primary Clarifiers 90 ft. Dia 2 1,794,600 Secondary Clari	Parshal Flume	28 MGD	-	240,500
Primary Clarifiers 70 ft. Dia 2 1,065,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 2,721,100 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System 28 MGD - 882,000 Improvements to Existing WWTP - - 2,737,700 Electrical - - 1,519,000 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 25,414,700 3,812,300 - Non-Construction Cost (15%) - 1,555,900 - ToTAL - 1,555,900 - 1,555,900 Primary Clarifiers 90 ft. Dia 2 1,794,600 - Stework - - 1,555,900 -	Liftstation	28 MGD	-	1,383,900
Aeration Basin 150° L x 75° W x 15° D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 2,721,100 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System 28 MGD - 882,000 Improvements to Existing WWTP - - 2,737,700 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 Influent / Effluent outfall 2300 LF, 36° - 750,000 SUB TOTAL 25,414,700 3,812,300 3,812,300 Contingency (15%) 3,812,300 3,812,300 3,812,300 Contingency (15%) - - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150° L x 75° W x 15° D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700	Primary Clarifiers	70 ft. Dia	2	1,085,700
Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 2,721,100 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System 28 MGD - 882,000 Improvements to Existing WWTP - - 2,737,700 Electrical - - 1,519,000 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 25,414,700 3,812,300 3,812,300 Contingency (15%) 3,812,300 3,812,300 3,812,300 TOTAL - - 533,600 Improvements at 2020 - - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Acration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Disinfectio	Aeration Basin	150' L x 75' W x 15' D	2	4,149,900
Nitrification Basin 7 MGD - 2,721,100 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System 28 MGD - 882,000 Improvements to Existing WWTP - - 2,737,700 Electrical - - 1,519,000 Instrumentation & Controls - - 760,000 Piping - - 2,192,700 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 25,414,700 3,812,300 3,812,300 Contingency (15%) 3,812,300 3,812,300 3,812,300 TOTAL - - 533,600 Mobilization - - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700 Tertiary clarifiers	Secondary Clarifiers	90 ft. Dia	2	1,794,600
Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System 28 MGD - 882,000 Improvements to Existing WWTP - - 2,737,700 Electrical - - 1,519,000 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 25,414,700 3,812,300 - 750,000 SUB TOTAL 25,414,700 3,812,300 - - 533,600 Non-Construction Cost (15%) 3,812,300 - - 533,600 Contingency (15%) - - 533,600 - Improvements at 2020 - - 1,555,900 - Mobilization - - 533,600 - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,794,600 - 1,921,700 Norification Basin 7 MGD - 1,9	Nitrification Basin	7 MGD		2,721,100
Disinfection System 28 MGD - 862,000 Improvements to Existing WWTP - - 2,737,700 Electrical - - 1,519,000 Instrumentation & Controls - - 760,000 Piping - - 2,192,700 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 25,414,700 3,812,300 - 3,812,300 Non-Construction Cost (15%) 3,812,300 - 1,555,900 TOTAL - - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Acration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,225,800 Dewatering System - - 500,000 Disinfection System - - 760,000 Disinfection System - - 780,000 Disinfection Sys	Tertiary clarifiers	90 ft. Dia	2	1,794,600
Improvements to Existing WWTP - - 2,737,700 Electrical - - 1,519,000 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 25,414,700 Non-Construction Cost (15%) 3,812,300 Contingency (15%) 3,812,300 3,812,300 3,812,300 TOTAL 25,414,700 3,812,300 3,812,300 TOTAL 3,812,300 3,812,300 3,812,300 TOTAL 25,414,700 3,812,300 3,812,300 TOTAL 3,812,300 3,812,300 3,812,300 TOTAL 533,600 3,812,300 3,812,300 Mobilization - - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,794,600 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700 Tertiary clar	Disinfection System	28 MGD	-	882,000
Electrical - - 1,519,000 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 25,414,700 3,812,300 3,812,300 Contingency (15%) 3,812,300 3,812,300 3,812,300 TOTAL ////////////////////////////////////	Improvements to Existing WWTP	-	-	2,737,700
Instrumentation & Controls - - 780,000 Piping - - 2,192,700 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 25,414,700 3,812,300 3,812,300 Contingency (15%) 3,812,300 3,812,300 3,812,300 TOTAL 25,414,700 3,812,300 3,812,300 Mobilization - - 533,600 Sitework - - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,519,000 Instrumentation & Co	Electrical	-		1,519,000
Piping - - 2,192,700 Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 25,414,700 3,812,300 3,812,300 Non-Construction Cost (15%) 3,812,300 3,812,300 3,812,300 TOTAL 33,039,300 33,039,300 3,812,300 Improvements at 2020 - - 533,600 Nobilization - - 533,600 Sitework - - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150° L x 75' W x 15° D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,203,300 Electrical - - 780,000 Instrumentation & Controls </td <td>Instrumentation & Controls</td> <td>-</td> <td>-</td> <td>780,000</td>	Instrumentation & Controls	-	-	780,000
Influent / Effluent outfall 2300 LF, 36" - 750,000 SUB TOTAL 25,414,700 3,812,300 3,914,600 3,914,600	Piping	-	-	2,192,700
SUB TOTAL 25,414,700 Non-Construction Cost (15%) Contingency (15%) 3,812,300 TOTAL 3,812,300 TOTAL 3,812,300 TOTAL 3,812,300 Mobilization - Sitework - Primary Clarifiers 70 ft. Dia Aeration Basin 150' L x 75' W x 15' D Secondary Clarifiers 90 ft. Dia Pointary Clarifiers 90 ft. Dia Nitrification Basin 7 MGD Nitrification System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - - - 780,000 Piping - - 2,192,700 SUB TOTAL 20,323,800 Non-Construction Cost (15%) 3,048,600 Contingency (15%) 3,048,600	Influent / Effluent outfall	2300 LF, 36"	· -	750,000
Non-Construction Cost (15%) Contingency (15%) 3,812,300 3,812,300 TOTAL 33,039,300 Improvements at 2020 33,039,300 Mobilization - - 533,600 Sitework - - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System - 500,000 - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 - - 500,000 Dewatering System 4 MGD - 1,200,300 - - 780,000 - - 2,192,700 - 2,192,700 - 2,192,700 - 2,192,700 - 2,192,700 - 2,192,700 - 2,192,2,700 - 3,048,600 </td <td>SUB TOTAL</td> <td></td> <td></td> <td>25,414,700</td>	SUB TOTAL			25,414,700
Contingency (15%) 3,812,300 TOTAL 33,039,300 Improvements at 2020 33,039,300 Mobilization - - 533,600 Sitework - - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 780,000 Instrumentation & Controls - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 3,048,600 Non-Construction Cost (15%) 3,048,600 3,048,600	Non-Construction Cost (15%)			3,812,300
TOTAL 33,039,300 Improvements at 2020 - - 533,600 Mobilization - - 533,600 Sitework - - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 780,000 Instrumentation & Controls - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 3,048,600 Non-Construction Cost (15%) 3,048,600 3,048,600	Contingency (15%)			3,812,300
Improvements at 2020 Mobilization - - 533,600 Sitework - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,519,000 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 3,048,600	TOTAL	的情况的关系。他们的	臺灣南部	33,039,300
Improvements at 2020 Mobilization - - 533,600 Sitework - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,519,000 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 3,048,600 Non-Construction Cost (15%) - - -				
Mobilization - - 533,600 Sitework - - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 780,000 Nistrumentation & Controls - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 3,048,600 Non-Construction Cost (15%) 3,048,600 3,048,600	Improvements at 2020	· · · · · · · · · · · · · · · · · · ·		
Sitework - - 1,555,900 Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,519,000 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 3,048,600 Non-Construction Cost (15%) 3,048,600 3,048,600 3,048,600	Mobilization		-	533,600
Primary Clarifiers 70 ft. Dia 2 1,085,700 Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 780,000 Nistrumentation & Controls - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 3,048,600 Non-Construction Cost (15%) - - 3,048,600	Sitework		-	1,555,900
Aeration Basin 150' L x 75' W x 15' D 2 4,149,900 Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 780,000 Nistrumentation & Controls - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 3,048,600 Non-Construction Cost (15%) - - 3,048,600	Primary Clarifiers	70 ft. Dia	2	1,085,700
Secondary Clarifiers 90 ft. Dia 2 1,794,600 Nitrification Basin 7 MGD - 1,921,700 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 1,519,000 Instrumentation & Controls - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 3,048,600 Non-Construction Cost (15%) - - -	Aeration Basin	150' L x 75' W x 15' D	2	4,149,900
Nitrification Basin 7 MGD - 1,921,700 Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 780,000 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 3,048,600 Contingency (15%) - - -	Secondary Clarifiers	90 ft. Dia	2	1,794,600
Tertiary clarifiers 90 ft. Dia 2 1,794,600 Disinfection System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 1,519,000 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 Non-Construction Cost (15%) 3,048,600 3,048,600	Nitrification Basin	7 MGD	-	1,921,700
Disinfection System - - 500,000 Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 1,519,000 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 3,048,600 Non-Construction Cost (15%) - 3,048,600 3,048,600	Tertiary clarifiers	90 ft. Dia	2	1,794,600
Aerobic Digesters 60 ft. Dia 2 1,295,800 Dewatering System 4 MGD - 1,200,300 Electrical - - 1,519,000 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 3,048,600 Non-Construction Cost (15%) 3,048,600 3,048,600	Disinfection System	<u> </u>	-	500,000
Dewatering System 4 MGD - 1,200,300 Electrical - - 1,519,000 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 3,048,600 Contingency (15%) - - -	Aerobic Digesters	60 ft. Dia	2	1,295,800
Electrical - - 1,519,000 Instrumentation & Controls - - 780,000 Piping - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 Non-Construction Cost (15%) 3,048,600 3,048,600	Dewatering System	4 MGD	-	1,200,300
Instrumentation & Controls - - 780,000 Piping - 2,192,700 20,323,800 SUB TOTAL 20,323,800 3,048,600 Non-Construction Cost (15%) 3,048,600 3,048,600 Contingency (15%) 3,048,600 3,048,600	Electrical	-	-	1,519,000
Piping - - 2,192,700 SUB TOTAL 20,323,800 3,048,600 <	Instrumentation & Controls	-	-	780,000
SUB TOTAL 20,323,800 Non-Construction Cost (15%) 3,048,600 Contingency (15%) 3,048,600	Piping		-	2,192,700
Non-Construction Cost (15%) 3,048,600 Contingency (15%) 3,048,600	SUB TOTAL			20,323,800
Contingency (15%) 3,048,600	Non-Construction Cost (15%)			3,048,600
	Contingency (15%)	a obgehandel i filmen der Alfelie Anne (1994) aberliefen.	H (BANDONSON)	3,048,600

TABLE 6 Sep-06

CAPITAL COST ESTIMATES

OPTION 4B: USING EXISTING TREATMENT FACILITY AND BUILDING A 7 MGD NEW PLANT, SBR (SEQUENTIAL BATCH REACTOR) PROCESS WITH EXPANSION TO 14 MGD CAPACITY

Unit Description	Unit Size/	Number	Estimated
	Design Capacity	of Units	Costin
			2006 Dollars
Improvements at 2010			
Mobilization		-	533,600
Sitework	-		1,555,900
Headworks			
Screening	28 MGD	-	510,400
Grit Removal	28 MGD		783,100
Parshal Flume	28 MGD	-	240,500
Liftstation	28 MGD		1,383,900
SBR Reactors	140' L x 98' W x 22' D	4	9,480,100
Sludge Holding Basins	70' L x 35' W x 12' D	1	587,100
Disinfection System	40 MGD	- '	1,975,300
Improvements to Existing WWTP	-	-	2,737,700
Electrical	-	21 <u>1</u>	1,519,000
Instrumentation & Controls	_ ·	-	780,000
Piping	-	-	1,725,300
Influent / Effluent outfall	2300 LF, 36"	-	750,000
SUB TOTAL			24,561,900
Non-Construction Cost (15%)			3,684,300
Contingency (15%)	· · · · · · · · · · · · · · · · · · ·	No. of the second s	3,684,300
TOTAL	Martin Charles and	1.48 1.5. 1.	31,930,500
		1	
Improvements at 2020	1	1	553 600
Mobilization	-	-	1 555 900
Sitework		-	0,480,100
SBR Reactors	140° L X 98' W X 22' D	4	5,400,100
Sludge Holding Basins	70' L x 35' W x 12' D		1 205 800
Aerobic Digesters	60 ft. Dia	2	1,295,800
Dewatering System	4 MGD	-	1,200,300
Electrical		-	1,519,000
Instrumentation & Controls	-	-	780,000
Piping			1,510,000
SUB TOTAL			
Non-Construction Cost (15%)			2,772,300
			24.026.400

Operations & Maintenance Costs

Digestion

Digestion

See Cornig

Dewatering

Annual Operations Costs Base Year **Total Annual** Labor Rate Maintenance. Additional Energy Materials and Maintenance Unit Component Operations Costs Labor Costs Supply Costs** Operations Labor Labor (man-(\$/hr) Labor* **(\$)** (\$) (\$) (\$) Sec. (\$) hours) (man-hours) Between 2010 - 2020 OPTION 1 A 149,000 122,400 \$ 12,300 \$ 6,600 \$ 700 \$ 7,700 600 \$ 11.00 Influent Pumping 17.100 \$ 61,100 29,700 1300 \$ 14.300 | \$ - 15 2700 \$ 11.00 Preliminary treatment 9,800 \$ 31,800 700 \$ 7,700 \$ -1.\$ 1300 \$ 14.300 11.00 Primary sedimentation 536,500 424,200 \$ 34,200 \$ 30,800 \$ 2800 \$ 47,300 4300 \$ Activated sludge Process 11.00 48,400 17,600 \$ 11,000 \$ Τŝ 1000 \$ -1800 \$ 19,800 11.00 Secondary Clarifiers 324,300 34,200 \$ 228,500 \$ 38,500 2100 \$ 23,100 \$ 11.00 3500 \$ Nitrification Basin 48,400 17,600 \$ 1000 \$ 11,000 \$ -5 1800 \$ 19,800 Tertiary clarifiers 11.00 89,680 68.600 \$ 18,000 \$ 1,540 \$ 140 \$ 140 \$ 1.540 11.00 Desinfection 189,200 14,300 \$ 130,600 \$ 24,500 \$ 19,800 1300 \$ 1800 \$ 11.00 165,600 \$ 239,300 7,700 \$ 5 66,000 700 \$ -11.00 6000 \$ Dewatering a the second second Between 2020 - 2030* **OPTION 1A** 52,800 12,300 \$ 6,600 \$ 22,900 \$ 11,000 600 \$ 1000 \$ 11.00 118,000 4,400 \$ 80.600 \$ \$ 33,000 400 \$ -3000 \$ 11.00 Dewatering \$ Total: Between 2010 - 2020 OPTION 18-12,300 \$ 149,000 122,400 \$ 600 \$ 6,600 \$ 700 \$ 7,700 11.00 Influent Pumping 17,100 \$ 61,100 14,300 \$ \$ 1300 \$ 2700 \$ 29,700 11.00 Preliminary treatment \$ 682,500 548,200 \$ 34,200 \$ 3600 \$ 39,600 \$ 60,500 5500 \$ 11.00 Sequential Batch Reactor \$ 14,200 \$ 31,250 6,050 \$ -5 550 \$ 1000 \$ 11,000 11.00 Sludge Holding Basin 18.000 \$ 89,680 68,600 \$ 1.540 \$ 140 \$ 1,540 140 \$ 11.00 DesInfection 189,200 130,600 \$ 24,500 \$ 14,300 \$ 1300 \$ 1800 \$ 19,800 11.00 239,300 **Digestion** \$ 165,600 \$ 7.700 \$ 700 \$ 60001\$ 66,000 11.00 Dewatering Total: \$ 1,442,030 LEAN CALL State-sta Between 2020 - 2030* OPTION 1B 52,800 12,300 \$ 6,600 \$ 22,900 \$ 600 \$ 1000 \$ 11,000 11.00 Digestion 118,000 \$ 80,600 | \$ 4,400 | \$ 400 \$ -33.000

* O&M Costs for the period 2020 - 2030 Includes annual O&M costs estimated for the period 2010 - 2020 plus additional O&M costs resulting from expansion in 2020

11.00

3000 \$

See a

TABLE 7 September-06

1,612,830

Operations & Maintenance Costs

TABLE 8

September-06

		ar u de Cara		Ăni	nual Operations Co	osts.	an a	
Unit Component	Base Year Labor Rate (\$/hr)	Operations Labor* (man-hours)	Operations Labor (\$)	Maintenance Labor* (nan- hours)	Maintenance Labor (\$)	Additional Energy Costs (\$):	Materials and Supply Costs** (\$)	Total Annual Costs (\$)
OPTION 34		· · · · ·		Between	2010 - 2020	· · · ·		
Influent Pumping	\$ 11.00	650	\$ 7,150	550	\$ 6,050	\$ 81,600	\$ 9,300	\$ 104,100
Preliminary treatment	\$ 11.00	2300	\$ 25,300	1100	\$ 12,100	\$ -	\$ 14,700	\$ 52,100
Primary sedimentation	\$ 11.00	1200	\$ 13,200	650	\$7,150	\$ -	\$ 10,000	\$ 30,350
Activated sludge Process	\$ 11.00	4000	\$ 44,000	2500	\$ 27,500	\$ 359,000	\$ 29,300	\$ 459,800
Secondary Clarifiers	\$ 11.00	1700	\$ 18,700	850	\$ 9,350	\$ <u> </u>	\$13,200	\$ 41,250
Nitrification Basin	\$ 11.00	3000	\$ 33,000	2000	\$22,000	\$ 195,800	\$ 29,300	\$ 280,100
Tertiary clarifiers	<u>\$ 11.00</u>	1700	\$ 18,700	850	\$ 9,350	<u> </u>	\$ 13,200	\$ 41,250
Desinfection	\$ 11.00	120	\$1,320	120	\$1,320	\$ 58,800	\$ 15,400	\$ 76,840
Digestion	\$ 11.00	1800	\$ 19,800	1300	\$ 14,300	\$ 130,600	\$ 24,500	\$ 189,200
Dewatering	<u>\$</u> 11.00	6000	\$ 66,000	700	\$7,700		\$ 165,600	\$ 239,300
The second s	Martin Constant			Charles and the second s		A CONTRACTOR OF THE OWNER	lotal:	3 1,614,290
OPTION 3A		·		Between	2020 - 2030*			
					N IN STATE	i de cato	Total:	\$ 1,888,480
OPTION 3B			-1	Between	2010 - 2020			· .
Influent Pumping	\$ 11.00	650	\$ 7,150	550	\$ 6,050	\$ 81,600	\$ 9,300	\$ <u>1</u> 04,100
Preliminary treatment	\$ 11.00	2300	\$ 25,300	1100	\$ 12,100	\$ -	\$ 14,700	\$ 52,100
Sequential Batch Reactor	\$ 11.00	5000	\$ 55,000	3000	\$ 33,000	\$ 479,700	\$ 29,300	\$ 597,000
Sludge Holding Basin	\$ 11.00	1000	\$ 11,000	550	\$ 6,050		\$ 14,200	\$ 31,250
Desinfection	\$ 11.00	120	\$ 1,320	120	\$ 1,320	\$ 58 <u>,8</u> 00	\$ 15,400	\$ 76,840
Digestion	\$ 11.00	1800	\$ 19,800	1300	\$ 14,300	\$ 130,600	\$ 24,500	\$ 189,200
Dewatering	\$ 11.00	6000	\$ 66,000	700	\$7,700		\$ 165,600	\$ 239,300
	CALL CALL	的三种植物作用于这种		二十五 中国 化	后当和自己的法言。	and the restation of the second	Total	\$ 3 3 1,289,790
OPTION 3B				Between	2020 - 2030*			
	Security we a support of them to		. Also addit to a state of the st	Contraction of the second second second	and the later from	e skou o state	r Total (* 1997)	\$ 1.612.830

* O&M Costs for the period 2020 - 2030 includes annual O&M costs estimated for the period 2010 - 2020 plus additional O&M costs resulting from expansion in 2020

 \bigcirc

Base Year

Labor Rate

(\$/hr)

Operations

Labor*

(man-hours)

Unit Component

OPTION 4A

Influent Pumping

Nitrification Basin

Tertiary clarifiers

Desinfection

Digestion .

Dewatering

OPTION 4A

OPTION 4B

Influent Pumping

Nitrification Basin

Tertiary clarifiers

Desinfection

Digestion

Dewatering

OPTION 4B

2.4.1.6. 9

Between 2010 - 2020 9,300 \$ 6,050 \$ 81,600 \$ 550 \$ 650 \$ 7,150 11.00 12.100 \$ 14,700 \$ 1100 \$ T\$ 2300 \$ 25,300 -Preliminary treatment 11.00 10,800 \$ 5 600 \$ 6,600 \$ 12,100 11.00 1100 \$ Primary sedimentation 339,400 \$ 44,500 \$ 49,500 2900 \$ 31,900 \$ 11.00 4500 \$ Activated sludge Process 17,400 \$ 20,350 990 \$ 10,890 \$ - \$ 1850 \$ -11.00 Secondary Clarifiers 30,800 \$ 244,800 \$ 44,500 \$ 45,100 2800 \$ 4100 \$ 11.00 20,000 \$ 12,980 \$ 1180 \$ - \$ 2250 \$ 24,750 11.00 15,400 \$ 1,320 \$ 58,800 \$ 120 \$ 120 1,320 11.00 \$ 130,600 \$ 24,500 \$ 1300 \$ 14,300 \$ 1800 \$ 19,800 11.00 7.700 \$ \$ 165,600 5 700 \$ -6000 \$ 66,000 11.00 Total: 1 22 1 2017 Between 2020 - 2030* \$_____1,888,480 Total: 在外部 法公司 建筑 化学 Between 2010 - 2020 81,600 \$ 9,300 \$ 550 \$ 6,050 \$ 650 \$ 7,150 11.00 14,700 \$ 12.100 \$ \$ 2300 \$ 25.300 1100 \$ -11.00 Preliminary treatment 4,400 \$ 350 \$ 3,850 \$ l S 7,150 11.00 650 S **Primary sedimentation** 20,000 \$ 16,500 \$ 195,800 \$ 1500 \$ 27,500 2500 \$ 11.00 Activated sludge Process 7,400 \$ 5,500 \$. \$ 9,900 500 \$ 11.00 \$ 1009 S Secondary Clarifiers 130,600 \$ 20,000 \$ 1700 \$ 18,700 \$ 28,600 11.00 2600 \$ \$ 10,800 \$ 700 \$ 7.700 \$ -1 \$ 1300 \$ 14,300 11.00 24,500 \$ 274,100 \$ 23,100 \$ 2100 \$ 39,600 3600 \$ 11.00 Sequential Batch Reactor 13,700 \$ 3,850 \$ 8.250 350 \$ -750 \$ 11.00 Sludge Holding Basin. 58,800 \$ 15,400 \$ 1,320 \$ 120 \$ 1,320 11.00 120 \$ 24,500 \$ 130,600 \$ 1300 \$ 14,300 \$ 19,800 1800 \$ 11.00 165,600 \$ - \$

66,000

and the second second second second

Operations Labor Labor* (man-

Sec. (\$)

Maintenance

hours)

Operations & Maintenance Costs

TABLE 9 September-06

Total Annual

Costs

(\$)

104,100

52,100

29,500

465,300

48,640

365,200

57,730

76,840

189,200

239,300

104,100

52,100

15,400

22,800

197,900

32,800

361,300

25,800

76,840

189,200

239,300

1,612,830

\$ 1,577,340

\$

259,800

1,627,910

Materials and

Supply Costs**

. (\$)

* O&M Costs for the period 2020 - 2030 includes annual O&M costs estimated for the period 2010 - 2020 plus additional O&M costs resulting from expansion in 2020

11.00

1.81.4.6

States and the state of the sta

6000 \$

Annual Operations Costs

Maintenance

Labor

(\$)

7.700 \$

Store Total:

700 \$

Between 2020 - 2030*

Total.

Additional Energy

Cósts

(\$)

PRESENT WORTH COST ANALYSIS

TABLE 10

Sep-06

OPTION	DESCRIPTION	CAPITAL CO	DST		精整	0 & M CC	ST.	neste processo References a constante	PR	ESENT
		2010		2020		2010 - 2020	2	020 - 2030	W(AT	DRTH COST 2006
1A	14 MGD New Plant Conventional Activated Sludge Process	\$ 48,316,100	\$	4,935,100	\$	1,717,680	\$	1,888,480	\$	62,646,975
1B	14 MGD New Plant SBR Process	\$ 46,580,700	\$	4,935,100	\$	1,442,030	\$	1,612,830	\$	58,184,959
3A	12 MGD New Plant Conventional Activated Sludge Process W/ Expansion to 14 MGD	\$ 42,796,500	\$	11,077,500	\$	1,514,290	\$	1,888,480	\$	59,985,628
3В	12 MGD New Plant SBR Process W/ Expansion to 14 MGD	\$ 42,121,600	\$	9,430,200	\$	1,289,790	\$	1,612,830	\$	55,862,804
4A	7 MGD New Plant Conventional Activated Sludge Process W/ Expansion to 14 MGD	\$ 33,039,300	\$	26,421,00 0	\$	1,627,910	\$	1,888,480	\$	60,842,593
4B	7 MGD New Plant SBR Process W/ Expansion to 14 MGD	\$ 31,930,500	\$	24,026,400	\$	1,577,340	\$	1,612,830	\$	57,106,473

APPENDICES

APPENDIX TM 1-1

RAW DATA FROM PLANT RECORDS

		Historical Flow	Peaking Data		
Year	Average	Maximum	Maximum	Maximum	Maximum
	Annual	Month Flow	Day Flow	Month	Day
	Flow (mgd)	(mgd)	(pgm)	Factor	Factor
1996	6.264	7.064	11.922	1.13	1.90
1997	7.396	7.866	8.846	1.06	1.20
1998	7.937	9.637	14.724	1.21	1.86
1999	9.439	12.780	15.407	1.35	1.63
2000	6.804	8.207	11.387	1.21	1.67
2001	6.384	7.250	8.362	1.14	1.31
2002	6.015	6.358	8.887	1.06	1.48
2003	5.912	6.401	7.380	1.08	1.25
2004	6.121	6.400	7.800	1.05	1.27
Average	6.919			1.14	1.51

		Influent Wastev	water Charact	eristics	
Year	Influent	Influent	Influent	Influent	Influent
	BOD5	TSS	NH_3	DO	Alkalinity
	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
1996	333	274	15.80	2.30	368
1997	245	257	14.60	1.20	359
1998	222	261	12.80	1.10	356
1999	196	227	11.10	1.00	354
2000	206	222	15.90	1.10	357
2001	268	283	16.67	1	3
2002	230	254	17.36	I	1
2003	220	248	18.30	I	1
2004	271	234	17.48	1.26	356
Mean	243	251	15.56	1.34	359
Std. Dev.	42	21	2.4	0.54	5

Per capita	wastewater gena	aration rate	
Year	Total Service population	Average Annual Flow (mgd)	Percapita rate gpcd
1996	45,320	6.264	138
1997	45,190	7.396	164
1998	45,250	7.937	175
	45,200	9.439	209
2000	47,045	6.804	145
2001	46,590	6.384	137
2002	46,530	6.015	129
2003	46,480	5.912	127
2004	46,630	6.121	131

Sludge Production Records at the Existing Facility

SHEET	MONTH	TOTAL SLUDGE	TOTAL SLUDGE	TOTAL SLUDGE
	/YR	GALLONS	CF PER MONTH	CF PER DAY
1	Jan-95	2590575	346334	11172
2	Feb-95	2790340	373040	13323
3	Mar-95	3041700	406644	13118
4	Apr-95	2887300	386003	12867
.5	May-95	1794900	239960	7741
6	Jun-95	594000	79412	2647
7	Jul-95	1273545	170260	5492
8	Aug-95			
9	Sep-95	10500.10	004000	7450
10	Oct-95	1659812	221900	/158
11	NOV-95	1210972	00007	0080
12		14080000	19093/	50//
13	Jall-a0	1152721	154208	5500
14	<u></u>	1308050	172002	6734
16	Δpr-96	1054483	140974	4699
17	<u></u>	1561451	208750	6734
18	.lun-96	1562531	208895	6963
19	Jul-96	1687081	225546	7276
20	Aug-96	13294371	1777322	57333
21	Sep-96	2175010	290777	9693
22	Oct-96	2191146	292934	9449
23	Nov-96	2706903	361885	12063
24	Dec-96	4016038	536903	17319
25	Jan-97	3080936	411890	13287
26	Feb-97	1947000	260294	9296
27	Mar-97	2112000	282353	9108
28	Apr-97	1503000	200936	6698
29	May-9/	1321000	1/0504	0097
30	Jun-97	973000	130080	4330
31		9/1000	123010	4100
32	Aug-9/	1012000	125062	4501
24	Oct_{-97}	945000	126337	4075
- 34 25	Nov-97	872000	116578	3886
36	Dec-97	1157000	154679	4990
37	Jan-98	892000	119251	3847
38	Feb-98	660000	88235	3151
39	Mar-98	1196861	160008	5162
40	Apr-98	1903000	254412	8480
41	May-98	1226000	163904	5287
42	Jun-98	1228000	164171	5472
43	Jul-98	949000	126872	4093
44	Aug-98	1003500	134158	4328
45	Sep-98	714000	95455	3182
46	Oct-98	630000	84225	2717
47	Nov-98	512347	68 496	2283
48	Dec-98	512347	68496	2210
49	Jan-99	921000	123128	3972
50	Feb-99	989495	132285	4724

	51	Mar-99	582500	77874	2512	
	52	Apr-99	416384	55666	1856	
, J	53	May-99	416384	55666	1796	
4	54	Jun-99	416384	55666	1856	
	55	Jul-99	571262	76372	2464	
L	56	Aug-99	112452	15034	485	
	57	Sep-99	100381	13420	447	
	58	Oct-99	152188	20346	656	
	59	Nov-99				
L	60	Dec-99	349400	46711	1507	
	61	Jan-00	362932	48520	1565 <u></u>	
	62	Feb-00	326268	43619	1558	
	63	Mar-00	1172410	156739	5056	
	64	Apr-00	500448	66905	2230	
	65	May-00	500448	66905	2158	
L	66	Jun-00	1480739	197960	6599	
	67	Jul-00	1280750	171223	5523	
L	68	Aug-00	716337	95767	3089	
	69	Sep-00	775500	103676	3456	
	70	Oct-00	985500	131751	4250	
	71	Nov-00	945500	126404	4213	
	72	Dec-00	962000	128610	4149	
	73	Jan-01	000007			
	74	Feb-U1	638865	85410	3050	
	75	Mar-U1	989544	132292	426/	
	76	<u>Apr-01</u>	524446	70113	2337	
ļ	- 77	May-U1	664603	68851	2866	
	78	Jun-01	455591	60908	2030	
	7	AVG.	1,352,242	180,781	5,951	
	r				ה	
		Quantity	of Solids Landfilled			
		L	4 k			
	1	Veen l	toplycopt	in A		

Quantit	Quantity of Solids Landfilled					
Year	ton/year	lb/d				
1996	1513	8290				
1997	1679	9200				
1998	1062	5819				
1999	-	-				
2000	1164	6378				
2001	1284	7036				
2002	1067	5847				
2003	1188	6510				
Average	1280	7011				

APPENDIX TM 1-2

INFORMATION ABOUT INDUSTRIES

			FLOWS, B(DD5, TSS A	T SIGNIFI	CANT INDU	STRIAL USERS 2004 AVERAGE
CIA						TCC	
° DN	IINDUS I RIAL LISED		AVG BOD5		500		
		(MGD)	200	2	8	L	
	INTEGRIS HOSPITAL	0.052	294	127.5	66	42.9	
5	2 LANDFILL LEACHATE	0.028	59	13.8	315	73.6	
°,	3 CHEM-CAN	0.01	5040	420.3	159	13.3	
4	1 BROADWAY TEXACO	0.004	10	0.3	ω	0.3	
Q	5 ADVANCE-E WILLOW	0.03	661	165.4	144	36.0	
9	3 ADVANCE-RALEIGH RD	0.274	838	1915.0	496	1140.3	
2	Z ADVANCE-PINE ST	0.079	1172	772.2	1047	689.8	
ω	3 ST MARY'S HOSPITAL	0.069	373	214.6	226	130.1	
O)	9 VANCE AFB	0.171	173	246.7	151	215.3	
10) SEABOARD FARMS	0.005	642	26.8	254	10.6	
11	1 RED CARPET LANDFILL	0.004	17	2.6	50	0.7	
	TOTAL	0.726	9339	3905.2	2922	2352.8	
	AVERAGE	0.066	849	355.0	566	213.9	
	2004 AVG FLOW AT POTW	6.12	271		234		
	SIU PERCENT OF TOTAL FLOW	11.86					

р." : September 13, 2005

Mr. Robert Hitt, P.E. Director of Development Services City of Enid P.O. Box 1768 Enid, Oklahoma 73702

> City of Enid Sanitary Sewer Master Plan Agreement "Additional Organic Loading from Advance Foods and New Ethanol Plant"

Dear Mr. Hitt,

Re:

On Monday September 12, 2005, we were notified by your staff on the anticipated discharge from the proposed ethanol plant. As a result of this anticipated discharge and in addition to Advance Foods, we felt that it would be necessary to reevaluate the treatment capacity of the existing Water Pollution Control Facility.

Currently, the Influent flow and its BOD5 and TSS concentrations to the existing Water Pollution Control Facility average at 6.24 mgd, 280 mg/l and 226 mg/l, respectively. As you know both the North and South treatment plants were designed for an average BOD and TSS concentrations of 300 mg/l and 250 mg/l, respectively. In addition, our current evaluation of these two plants based on current ODEQ design standards has revealed that the North and South treatment plant are rated at 4.62 mgd and 3.23 mgd, respectively. Based on this information the total combined design capacity of the existing Water Pollution Control Facility for the City of Enid is about 19,641 pounds per day for BOD5 and 16, 367 pounds per day for TSS.

With the anticipated discharge limits proposed by Advance Foods of 0.5 mgd, 664 mg/l BOD and 382 mg/l TSS and the new ethanol plant flow of 0.12 mgd, 1000 mg/l BOD and 350 mg/l TSS, we have estimated that the influent flow and raw wastewater characteristics for BOD and TSS to the existing facility will increase to 6.853 mgd, 320 mg/l and 240 TSS, respectively. Under these conditions the projected loading to the existing Water Pollution Control Facility will be approximately 18,313 pounds per day for BOD and 13,689 pounds per day for TSS.

From the information shown above it appears that the existing facility has the capacity to handle the additional loading, since the projected loading is slightly lesser. However, the BOD5 concentration of the projected influent flow (320 mg/l) is greater than the designed BOD5 concentration (300 mg/l) for the existing facility. Operating under these conditions could impact the effluent quality of the treatment plant and possibly exceed the current NPDES permit.

In order to maintain the influent BOD5 and TSS concentrations to the existing facility within the original design parameters, the BOD5 and TSS discharge concentration from these two industries will have to set at 500 mg/l, each. However, Conversations with your staff have also, revealed that Advance Foods is anticipating doubling production in the next two years that will add an additional flow of 0.5 mgd to the existing facility which will worsen conditions and exceed the BOD5 design parameter and possibly impact the effluent quality of the existing facility. With and anticipated additional flow of 1.0 mgd from Advance Foods and 0.12 mgd from the new ethanol plant, the ultimate combined flow to the existing plant will average at 7.4 mgd. Under this scenario the existing facility will be operating at about 94% capacity of its current rated capacity.

Based on the anticipated additional loadings described above and the operation of the existing Water Pollution Control Facility with both the North and South plants and the use of the Biological nutrient removal train as an effluent polishing process, we recommend that the City's pretreatment program shall ensure that any future pretreatment discharge limit for BOD5 does not exceed 300 mg/l until further expansion to the treatment plant is evaluated and designed.

Should you have any questions, please feel free to contact me.

Very truly yours,

Dewberry Design Group Incorporated

Jose A. Pereira, P.E. Associate

Cc: James McClain, Public Service Director City of Enid Muralikumar Katta-Muddanna, Project Engineer City of Enid Barry Brummit, Pretreatment Director City of Enid Joyce Hight, Superintendent City of Enid Vel Subramanian, Dewberry

APPENDIX TM 1-3

CITY OF ENID OPDES PERMIT

Enid – OK0021628 Permit Part I – Page 1

AUTHORIZATION TO DISCHARGE UNDER THE OKLAHOMA POLLUTANT DISCHARGE ELIMINATION SYSTEM

PART I.

In compliance with the Oklahoma Pollutant Discharge Elimination System Act (OPDES Act), Title 27A O.S., § 2-6-201 *et seq.* and the rules of the State of Oklahoma Department of Environmental Quality (DEQ) adopted there under (See OAC 252:605); the Federal Clean Water Act, Public Law 95-217 (33 U.S.C. 1251 *et seq.*), Section 402; and NPDES Regulations (40 CFR Parts 122, 124 and 403),

City of Enid (State ID No. S-20931) P.O. Box 1768 Enid, Oklahoma 73702

is hereby authorized to discharge treated wastewater from a facility located at approximately

NE¹/₄ of SW¹/₄ of NW¹/₄ of Section 14 Township 22 North, Range 6 West, I.M. Garfield County, State of Oklahoma

to receiving water: Boggy Creek, tributary to Skeleton Creek, tributary to the Cimarron River at a point located approximately

Outfall 001 Outfall 002

Latitude: 36° 23' 11.904" N 36° 23' 11.148" N (GPS: NAD-27 CONUS) Longitude: 97° 48' 58.968" W 97° 48' 49.787" W (GPS: NAD-27 CONUS) Planning Segment No. 620910 (Water body ID # 620910030250)

in accordance with effluent limitations, monitoring requirements and other conditions set forth in Parts 1, 11, 111 and IV hereof.

This permit replaces and/or supersedes the previous permit modification issued on March 1, 2001

The issuance date of this permit is July 31, 2003

This permit shall become effective August 1, 2003

This permit and authorization to discharge shall expire at midnight, July 31, 3008

For the Oklahoma Department of Environmental Quality:

ilward Wilmber

Edward Dihrberg, P.E., Manager Municipal Permits Section Water Quality Division

Jon L. Craig, Director Water Quality Division

Enid – OK0021628 Permit Part 1 – Page 2

A. Effluent Limitations

During the period beginning the effective date and lasting through date of expiration the permittee is authorized to discharge treated wastewater in accordance with the following limitations:

1. Conventional and Non-Conventional Pollutants

	Disc	harge Limitat	<u>ions</u>	<u>Monitoring</u> <u>Requirements</u>	
Effluent Characteristics	Mass (lbs/d)	Concentra	ation (mg/l)	Measure-	
	30-day Average	30-day Average	7-day Average	ment Frequency	Sample Type
Spring (April - May): Outfall 002 only	y'			· · · · ·	
Carbonaceous Biochemical Oxygen Demand - 5 Day (CBOD ₅) [80082]	1417.8	20.0	30.0	3/wcck	
Total Suspended Solids (TSS) [00530]	2126.7	30.0	45.0	2/week	12-hour
Ammonia (NH3-N) [00610]	141.8	2.0	3.0	1/week	composite
Dissolved Oxygen (DO) [00300] ^b Mir	3/week	Grab			
Summer (June – October): Outfall 002 only					
Carbonaceous Biochemical Oxygen Demand - 5 Day (CBOD ₅) [80082]	1063.4	15.0	22.5	3/week	12-hour
Total Suspended Solids (TSS) [00530]	2126.7	30.0	45.0	2/week	composite
Ammonia (NH3-N) [00610]	141.8	2.0	3.0	1/week	-
Dissolved Oxygen (DO) [00300] ^b Min	nimum 5 mg/l			3/week	Grab
Winter (November - March): Outfall	001 and/or Out	fall 002			
Biochemical Oxygen Demand - 5 Day (BOD ₃) [00310]	1417.8 °	20.0	30.0	3/week	12-hour
Total Suspended Solids (TSS) [00530]	2126.7 °	30.0	45.0	2/week	composite
Ammonia (NII3-N) [00610]	290.6 ª	4.1	9.9 [Daily max]	3/week 5	
Dissolved Oxygen (DO) [00300] ^b Min	nimum 5 mg/l	. <u>I</u>		3/week	Grab

^a The combined mass loading from each outfall may not exceed this value if both outfalls are used simultaneously.

^b If simultaneously discharging from outfalls 001 and 002, grab samples will be taken from both outfalls, and the lower of the two dissolved oxygen values reported.

^c If the highest daily maximum ammonia level reported during this season for the first year after the effective date of these limits is less than or equal to 1.5 times the monthly average limit (i.e., 1.5 × 4.1 = 6.15 mg/l), the monitoring frequency may be reduced to 1/week for that season. Otherwise, the monitoring frequency continues at 3/week for that season for the remaining term of the permit.

There shall be no discharge of floating solids or visible foam in other than trace amounts.

The pH shall not be less than 6.5 standard units nor greater than 9.0 standard units at any time, it shall be monitored by grab samples collected 3/week.

Samples taken in compliance with the monitoring requirements specified above shall be taken at the discharge from the final treatment unit.

Flow (measured in million gallons per day) shall be monitored daily by totalized measurement and reported as a 30-day average and a daily maximum.

2. Whole Effluent Toxicity Reporting and Monitoring Requirements (Outfalls TX1, TX2).

During the period beginning the effective date of the permit and lasting through the expiration date, the permittee is authorized to discharge from Outfall TX1 and Outfall TX2 (functionally identical to Outfall 001 and Outfall 002). The discharge consists of biologically treated sanitary wastewater. Such discharges shall be limited and monitored by the permittee as specified below:

Whole Effluent Toxicity Reporting and Monitoring Requirements (Outfalls TX1 and TX2)

Effluent Characteristic					ting nents *	Monitoring Requirements	
	Test	Critical Dilution	Parameter	30-day Avg Min	7-day Min	Testing Frequency ^h	Sample Type
	a i t tuis dubia 7-day	· · ·	Pass/Fail Survival [TLP3B] NOEC _L Survival [TOP3B]	Report	Report Report	2/season for	24 5-
ting	chronic NOEC static 100%	% Mortality at Critical Dilution [TJP3B] Pass/Fail Reproduction [TGP3B] NOECs Reproduction [TPP3B]	Report Report	Report Report Report	1/quarter ^r for TX2	comp	
Tes			% Coeff of Variation [TQP3B] Pass/Fail Survival [TLP6C]	Report	Report Report		
Routi	Pimephales prometas	1000/	NOEC _L Survival [TOP6C] % Mortality at Critical Dilution [TJP6C]	Report Report	Report Report	2/season for TX1 [°] , and	24-hr
	chronic NOEC static renewal, freshwater	100%	Pass/Fail Growth [TGP6C] NOECs Growth [TPP6C]	Report	Report Report	1/quarter ' for TX2	comp
	PRetest #1 [22415] °		% Coeff of Variation [TQP6C]		Report	Äs	24-hr
- iter	B Retest #2 [22416] ^c				Report	required ^d	comp

See Part II, Section A, Whole Effluent Toxicity Testing, for additional monitoring and reporting conditions.

Reporting periods commence with the effective date of the permit. A valid WET test shall be reported for each species for each reporting period. Results of retests conducted pursuant to prior test failure shall not be submitted on DMRs in lieu of routine test results (see Part II, Section A, Item 2.a).

Applies to either or both test species, according to results of test failure triggering monthly retests.

Monthly retesting required only if the routine test for reporting period (for either species) fails.

When discharging, no frequency reduction will be applied to TX1 for biomonitoring (November – March).

The frequency of testing may be reduced to twice per year for TX2, if requested and if there are no lethal or sublethal failures in WET testing during the first two years of the permit. See the provision for WET testing monitoring frequency reduction after the first two years (Part II, Section A, Item 5).

Whole effluent toxicity reporting and monitoring requirements apply beginning the effective date of the permit.

<u>WET testing summary reports</u>: Reports of all WET testing initiated, regardless of whether such tests are carried to completion, shall follow the requirements of Part II, Section Λ , Item 4.

£

Whole effluent toxicity concurrent testing provision: Concurrent analysis of total ammonia and pH is required on all effluent samples, including static renewals, collected for Fathcad minnow WET testing or retesting. Reporting of results shall be in accordance with the following requirements.

Concurrent Effluent Testing - Reporting Requirements

Effluent Concentration ^a			Monitoring Requirements		
Characteristic	Daily Min	Montly Avg	Daily Max	Monitoring Frequency	Sample Type
Ammonia, total	Report ^b	Report ^b	Report ^b	2/season for TX1 °, and	24 hr composite
pH (std units)	Report ^b		Report ^b	1/quarter ^d for TX2	Note

Concentration units are mg/l unless otherwise specified.

Report only those effluent samples collected for Fathead minnow WET testing.

Measured in each composite effluent sample, including static renewals, just prior to first use

The frequency of testing can be reduced to twice per year for TX2, if requested and if there are no lethal or sublethal failures in WET testing during the first two years of the permit.

When discharging (November – March).

3. Priority Pollutants

a. Monitoring Requirements for Copper for Outfall 002 (period effective beginning eighteen months before the expiration date of the permit and to last one year).

During the period stated above, the permittee shall monitor for one year the effluent for copper and report the results as follows:

	DI	scharge Limitati	ons	Monitoring	Requirements [
Effluent	Mass (lbs/day)	Concent	ration(ug/l)	Measurement	
Characteristics	Monthly Avg.	Monthly Avg.	Daily Maximum	Frequency	Sample Type
Copper, Total	Report	Report	Report	1/month	24-hr composite

If any individual test result is less than the minimum quantification level (MQL) of 10 ug/l for copper (monthly and/or daily maximum), a value of zero (0) may be used for the discharge monitoring report (DMR) calculations and reporting requirements.

b. Monitoring Requirements for Hardness (Outfall 999)

During the period beginning eighteen months before the expiration of the permit, the permittee shall monitor the upstream hardness for one year, and report the results as follows:

	U	pstream Monitor	ing	Monitoring	Requirements
Upstream	Upstream Mass (lbs/day)		ration(mg/l)	Measurement	
Characteristics	Monthly Avg.	Monthly Avg.	Daily Maximum	Frequency	Sample Type
Hardness	NΛ	NA	Report	1/month	Grab

Enid – OK0021628 Permit Part 1 – Page 5

B. Sanitary Sewer Overflows

Any bypass in the collection system [sanitary sewer overflow (SSO)] shall be reported in accordance with Part III.B.6. of this permit.

In addition, all reports shall be summarized and reported in tabular format with the Discharge Monitoring report (DMR) for the month in which the bypasses occurred.

PART II. OTHER PERMIT REQUIREMENTS

A. WHOLE EFFLUENT TOXICITY TESTING (7-DAY CHRONIC NOEC, STATIC RENEWAL, FRESHWATER)

1. SCOPE AND METHODOLOGY

a. The permittee shall test the effluent for toxicity in accordance with the provisions in this section. Applicability to multiple outfalls is described in Item 3.d.5 of this section. The permittee shall biomonitor for *Ceriodaphnia dubia* and *Pimephales promelas* in accordance with the WET testing frequencies prescribed in Part I. Intervals between test initiation dates shall be a function of the required testing frequency, as follows:

•	Monthly retests:	No less than 20 days and no more than 40 days.
	Quarterly:	No less than 2 months and no more than 4 months.
•	Semi-annually:	No less than 4 months and no more than 8 months.

APPLICABLE TO OUTFALL(S):	001 and 002
REPORTED ON DMR AS OUTFALL(S):	TX1 and TX2
CRITICAL DILUTION:	100%
EFFLUENT DILUTION SERIES (ALL TESTS):	32%, 42%, 56%, 75%, and 100%
COMPOSITE SAMPLE TYPE:	Defined at Part I
TEST SPECIES/METHODS:	40 CFR 136

Ceriodaphnia dubia chronic static renewal 7-day survival and reproduction test, Method 1002.0, EPA/600/4-91/002 or the most recent update thereof. A minimum of ten (10) replicates consisting of one (1) organism each must be used in the control and in each effluent dilution of this test. This test should be terminated when 60% of the surviving females in the control produce three broods or at the end of eight days, whichever comes first. If these criteria are not met at the end of 8 days, the test must be repeated.

Pimephales promelas (Fathead minnow) chronic static renewal 7-day larval survival and growth test, Method 1000.0, EPA/600/4-91/002, or the most recent update thereof. A minimum of five (5) replicates with eight (8) organisms per replicate must be used in the control and in each effluent dilution of this test.

b. CHRONIC LETHAL EFFECT TEST FAILURE

The NOEC_L (No Observed Lethal Effect Concentration) is defined as the greatest effluent dilution at and below which lethality that is statistically different from the control (0% effluent) at the 95% confidence level does not occur. Chronic lethal test failure (chronic

En

 $NOEC_1$ test) is defined as a demonstration of a statistically significant lethal effect at test completion to a test species at or below the critical dilution.

c. CHRONIC SUBLETHAL EFFECT TEST FAILURE

The NOEC_s (No Observed Sublethal Effect Concentration) is defined as the greatest effluent dilution at and below which sublethality (inhibited reproduction in the *Ceriodaphnia dubia* test or inhibited growth in the Fathcad minnow test) that is statistically different from the control (0% effluent) at the 95% confidence level does not occur. Chronic sublethal test failure (chronic NOEC_s test) is defined as a demonstration of a statistically significant sublethal effect at test completion to a test species at or below the critical dilution.

d. <u>REOPENER CLAUSE</u>

This permit may be reopened to require whole effluent toxicity limits, chemical specific effluent limits, additional testing, and/or other appropriate actions to address toxicity.

2. TESTING REQUIREMENTS DUE TO CHRONIC TEST FAILURE

Upon becoming aware of the failure of any test, the permittee shall notify the DEQ Water Quality Division Toxics Coordinator immediately, and in writing within 5 working days of the test failure, with a summary of the results of and any other pertinent circumstances associated with the failed test.

a. Whenever there is a lethal effect test failure for either species during routine testing, the frequency of testing for the affected species shall automatically increase to, or continue at, as appropriate, the WET testing frequency prescribed in Part I for the remaining life of the permit. In addition, two (2) additional monthly tests (retests) of the affected species are required. The two additional tests shall be conducted monthly during the next two consecutive months. The permittee shall not substitute either of the two additional tests for routine toxicity testing. Additional tests are not required for a sublethal effect test failure. A full laboratory report for the failed routine test and both additional tests, if required, shall be prepared and submitted to the DEQ in accordance with procedures outlined in Item 4 of this section.

b. PERSISTENT LETHALITY

- If either of the two additional tests result in an NOEC₁ value less than the critical dilution, persistent lethality is exhibited, and the permittee shall initiate a Toxicity Reduction Evaluation (TRE) as specified in Item 5 of this section. The TRE initiation date will be the test completion date of the first failed retest.
- (2) The retesting requirements in Item 2.a are suspended upon submittal of the TRE Action Plan.

c. INTERMITTENT LETHALITY

If both additional tests result in an NOEC₁, value greater than or equal to the critical dilution, persistent lethality is not exhibited. However, if any routine test lethal effect failure occurs within 18 months of a prior lethal effect test failure, intermittent lethality is

exhibited, and the permittee may be required by the DEQ to initiate a TRE, as described in Item 5 of this section, based on the severity and pattern of such lethal effect over time.

d. PERSISTENT SUBLETHALITY

Barring persistent lethality, if two consecutive routine tests result in a sublethal effect failure for a species, persistent sublethality is exhibited, and the permittee:

- (1) Shall increase the frequency of testing for the affected species to, or continue at, as appropriate, the WET testing frequency prescribed in Part 1 for the remaining life of the permit; and
- (2) May be required by the DEQ to initiate a TRE, as specified in Item 5 of this section, based on the severity and pattern of such sublethal effect over time.

3. REQUIRED TOXICITY TESTING CONDITIONS

a. <u>Test Acceptance</u>

The permittee shall repeat a test, including the control and all effluent dilutions, if the procedures and quality assurance requirements defined in the test methods or in this permit are not satisfied, including the following additional criteria:

- (1) The toxicity test control (0% effluent) must have survival equal to or greater than 80%.
- (2) The mean number of *Ceriodaphnia dubia* neonates produced per surviving female in the control (0% effluent) must be 15 or more.
- (3) Sixty (60) percent of the surviving *Ceriodaphnia dubia* control females must produce three broods.
- (4) The mean dry weight of surviving Fathead minnow larvae at the end of the 7 days in the control (0% effluent) must be 0.25 mg per larva or greater.
- (5) The percent coefficient of variation between replicates shall be 40% or less in the control (0% effluent) for the young of surviving females in the *Ceriodaphnia dubia* reproduction test and for the growth and survival endpoints of the Fathead minnow test.
- (6) The percent coefficient of variation between replicates shall be 40% or less in the critical dilution, unless significant lethal or sublethal effects are exhibited for the young of surviving females in the *Ceriodaphnia dubia* reproduction test and for the growth and survival endpoints of the Fathead minnow test.
- (7) As documented at test termination, no more than forty (40) percent of the *Ceriodaphnia dubia* test organisms in the control (0% effluent) or any effluent dilution shall be male.

Test failure may not be construed or reported as invalid due to a coefficient of variation value of greater than 40% in the critical dilution. A repeat test shall be conducted within the reporting period of any test determined to be invalid.

b. Statistical Interpretation

- (1) For the *Ceriodaphiia dubia* survival test, the statistical analyses used to determine if there is a significant difference between the control and the critical dilution shall be Fisher's Exact Test as described in EPA/600/4-91/002, or the most recent update thereof.
- (2) For the *Ceriodaphnia dubia* reproduction test and the Fathead minnow larval survival and growth test the statistical analyses used to determine if there is a significant difference between the control and the critical dilution shall be in accordance with the methods for determining the No Observed Effect Concentration (NOEC) as described in EPA/600/4-91/002, or the most recent update thereof.
- (3) If the conditions of test acceptability are met in Item 3.a above and the percent survival of the test organism is equal to or greater than 80% in the critical dilution concentration and all lower dilution concentrations, the test shall be considered to be a passing test, and the permittee shall report an NOEC₁ of not less than the critical dilution for the DMR reporting requirements found in Item 4 below.

c. Dilution Water

- (1) Dilution water used in the toxicity tests will be receiving water collected as close to the point of discharge as possible but unaffected by the discharge. The permittee shall substitute synthetic dilution water of similar pH, hardness and alkalinity to the closest downstream perennial water where the toxicity test is conducted on an effluent discharge to a receiving stream classified as intermittent or to a receiving stream with no flow due to zero flow conditions.
- (2) If the receiving water is unsatisfactory as a result of instream toxicity (fails to fulfill the test acceptance criteria of Item 3.a.), the permittee must submit the test results exhibiting receiving water toxicity with the full test report required in Item 4 below and may thereafter substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
 - (a) A synthetic dilution water control which fulfills the test acceptance requirements of Item 3.a. was run concurrently with the receiving water control;
 - (b) The test indicating receiving water toxicity was carried out to completion; and
 - (c) The synthetic dilution water had a pH, hardness and alkalinity similar to that of the receiving water or closest downstream perennial water not adversely affected by the discharge, provided the magnitude of these parameters will not cause toxicity in the synthetic dilution water.

d. Samples and Composites

(1) The permittee shall collect three flow-weighted 24-hour composite samples representative of the flows during normal operation from the outfall(s) listed at Item 1.a above. Unless otherwise specified in Part I of the permit, a 24-hour composite sample consists of a minimum of 12 effluent portions collected at equal time intervals

Enid - OK0021628 Permit Part II - Page 5

representative of a 24-hour operating day and combined proportional to flow or a sample continuously collected proportional to flow over a 24-hour operating day.

- (2) The first composite effluent sample shall be used to initiate each test and must be collected so that its holding time (between collection of the last portion of the sample and test initiation) does not exceed 36 hours. Collection of the second and third composite effluent samples must be timed so as to permit an approximately equal use distribution of the three composite samples for daily static renewals. In no case:shall the holding time of the second and third composite samples (between collection of the last portion of the sample and its first use) exceed 72 hours. All samples shall be chilled to 4 °C during collection, shipping and/or storage.
- (3) The permittee shall collect the 24-hour composite samples such that the effluent samples are representative of any periodic episode of chlorination, biocide usage or other potentially toxic substance discharged on an intermittent basis.
- (4) If the flow from the outfall(s) being tested ceases during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions and the sample holding time are waived during that sampling period. However, the permittee must collect an effluent composite sample volume during the period of discharge that is sufficient to complete the required toxicity tests with daily renewal of effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate days if the discharge occurs over multiple days. The effluent composite sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full test report required in Item 4 of this section.
- (5) <u>MULTIPLE OUTFALLS</u>: If the provisions of this section are applicable to multiple outfalls, as specified in Part I of the permit, the permittee shall combine the composite effluent samples in proportion to the average flow from the outfalls listed in Item 1.a of this section for the day the sample was collected. The permittee shall perform the toxicity test on the flow-weighted composite of the outfall samples.

4. <u>REPORTING</u>

- a. The permittee shall prepare a full report of the results of all tests conducted pursuant to this section in accordance with the Report Preparation Section of EPA/600/4-91/002, or the most current publication, for every valid or invalid toxicity test initiated, whether carried to completion or not. The permittee shall retain each full report pursuant to the records retention provisions of Part III of this permit. The permittee shall submit full test reports for all tests initiated, regardless of whether the tests are carried to completion, to the DEQ no later than the 15th day of the month following completion of the test, including any test which is considered invalid, is terminated early for any reason, or which indicates receiving water toxicity.
- b. A valid test for each species (excluding retests) must be reported on the DMR for each reporting period specified in Part I of this permit unless the permittee is performing a TRE, which may increase the frequency of testing and reporting. A DMR must be submitted by the 15th day of the month following-completion of any valid test. The full report for the test (see Item 4.a above) shall be submitted along with the DMR. If a survival test failure is experienced for either test species, two copies of the blank DMR for the applicable

reporting period shall be made in advance of completing and submitting the DMR so that the DMR copies may be used to report results of the required retests. If more than one valid test (excluding retests) is performed on a species during a reporting period, the permittee shall report the lowest survival test results as the 7-day minimum for each species tested, and the arithmetic average of the results of the survival tests shall be reported as the 30-day average minimum. The sublethal test results reported for each species on the DMR are determined in the same manner. If the permittee performs only one valid test (excluding retests) on a species during the reporting period, then the results of that test shall be reported as both the 7-day minimum and the 30-day average minimum on the DMR. The 30-day average minimum does not apply to the pass/fail parameters (TLP3B, TGP3B, TLP6C and TGP6C) in Item 4.c below.

If any test results in anomalous NOEC_L or NOEC_s findings (i.e., it indicates an interrupted dose response across the dilution series), the DEQ recommends that the permittee contact its DEQ toxicity coordinator for a technical review of the test results prior to submitting the full test report and DMR. A summary of all tests initiated during the reporting period, including invalid tests, repeat tests and retests, shall be attached to the reporting period DMR for DEQ review. A test is a <u>REPEAT</u> test if it is performed as a result of a previously invalid test. A test is a <u>RETEST</u> if it is performed as a result of a previously failed test. Each time a DMR is submitted, put the new submittal date in the lower right-hand corner of the DMR.

- (1) The reporting period test summary attached to the DMR shall be organized as follows:
 - (a) Invalid tests (basis for test invalidity must be described)
 - (b) Valid tests (other than retests) initiated during current reporting period
 - (c) Valid retests for tests failed during previous reporting period (if not submitted in the previous reporting period test summary)
 - (d) Valid retests for tests failed during current reporting period
- (2) The following information shall be listed in the reporting period test summary for each valid test in categories (b) through (d) in Item 4.b(1) above:
 - (a) Test species
 - (b) Date of test initiation at laboratory
 - (c) Results of all concurrent effluent analyses specified in Part I of this permit
 - (d) All test result parameters for the test species specified in Item 4.c below.
- c. The permittee shall report the following results for all <u>VALID</u> toxicity tests (excluding retests) on the DMR(s) for that reporting period in accordance with Item 4.b above and Part III of this permit.

(1) Ceriodaphnia dubia

Enid – OK0021628 Permit Part II – Page 7

- (a) Parameter TLP3B: If the *Ceriodaphnia dubia* NOEC_L for survival is less than the critical dilution, report a "1"; otherwise, report a "0".
- (b) Parameter TOP3B: Report the *Ceriodaphnia dubia* NOEC₁, value for survival.
- (c) Parameter TJP3B: Report the *Ceriodaphnia dubia* percent mortality in the critical dilution at test completion.
- (d) Parameter TGP3B: If the *Ceriodaphnia duhia* NOEC₅ for reproduction is less than the critical dilution, report a "1"; otherwise, report a "0".
- (e) Parameter TPP3B: Report the Ceriodaphnia dubia NOEC₅ value for reproduction.
- (f) Parameter TQP3B: Report the highest coefficient of variation (critical dilution or control) for *Ceriodaphnia dubia* reproduction.
- (2) *Pimephales promelas* (Fathead minnow)
 - (a) Parameter TLP6C: If the Fathead minnow NOEC₁ for survival is less than the critical dilution, report a "1"; otherwise, report a "0".
 - (b) Parameter TOP6C: Report the Fathead minnow NOEC_L value for survival.
 - (c) Parameter TJP6C: Report the Fathead minnow percent mortality in the critical dilution at test completion.
 - (d) Parameter TGP6C: If the Fathead minnow NOECs for growth is less than the critical dilution, report a "1"; otherwise, report a "0".
 - (e) Parameter TPP6C: Report the Fathead minnow NOECs value for growth.
 - (f) Parameter TQP6C: Report the highest coefficient of variation (critical dilution or control) for Fathead minnow survival and growth.
- d. The permittee shall report the following results for all <u>VALID</u> toxicity <u>retests</u> on the DMR(s) for that reporting period.
 - Retest #1 (STORET 22415): If the <u>first</u> monthly retest following failure of a routine test for either test species results in an NOEC₁ for survival less than the critical dilution, report a "1"; otherwise, report a "0".
 - (2) Retest #2 (STORET 22416): If the <u>second</u> monthly retest following failure of a routine test for either test species results in an NOEC₁ for survival less than the critical dilution, report a "1"; otherwise, report a "0".

Results of all retests shall be reported on a copy of the DMR for the reporting period (see Item 4.b above) in which the triggering routine test failure is experienced by no later than the 15th day of the month following completion of the retest. The full report for the retest (see Item 4.a above) shall be submitted along with the retest DMR. Even if a retest cannot be conducted before the end of the reporting period for which it is required (due to test initiation interval requirements), the retest results shall still be reported for the reporting

Enid – OK0021628 Permit Part II – Page 8

period in which the triggering test failure is experienced. In this manner, both retests are reported for the same reporting period as the failed routine test. Each time a DMR is submitted, put the new submittal date in the lower right-hand corner of the DMR. If retesting is not required during a given reporting period, the permittee shall leave these DMR fields blank.

5. MONITORING FREQUENCY REDUCTION

a. The permittee may apply for a testing frequency reduction upon the successful completion of the first two years of testing for one or both test species with no lethal or sublethal effects demonstrated at or below the critical dilution. Certification in accordance with Item 5.b of this section shall be submitted at the time of such application for monitoring frequency reduction. If granted, the monitoring frequency may be reduced to not less than once per 6 months (once each during the periods June 1 through September 30 and December 1 through March 31) for either test species.

CERTIFICATION: The permittee must certify in writing that no lethal or sublethal test b. failures have occurred for the species for which the monitoring frequency reduction is being requested and that all tests meet all test acceptability criteria in Item 3.a. above. In addition, the permittee must provide a summary of all tests initiated during the period of certification including test initiation dates, species, test acceptability parameters, NOEC, values, percent mortality at the critical dilution, NOECs values, and coefficients of variation for the controls and critical dilutions. If the certification is approvable, the DEQ will issue a letter of confirmation of the monitoring frequency reduction. A copy of the confirmation letter will be forwarded to the DEQ's Permit Compliance System unit to update the permit reporting requirements. The DEQ may deny the certification if it determines that, during the period for which the certification is submitted, there were errors in meeting test acceptability requirements, errors in statistical interpretation affecting test results reported on DMRs, late submissions of test reports or submissions of substantively incomplete test reports. If the certification is denied, the permittee shall continue biomonitoring of the affected test species at a frequency of once per quarter until the permit is reissued.

c. SUBLETHAL FAILURES DURING FIRST YEAR OF TESTING: If, during the first year of testing, only a sublethal effect is demonstrated to a test species, continued routine testing for that species is required for the remainder of the first year and, as necessary, into the following year(s) at the frequency prescribed in Part I until the effluent passes four consecutive routine tests for both lethal and sublethal test endpoints, at which time the permittee may apply for a monitoring frequency reduction in a manner consistent with Item 5.a above. Certification in accordance with Item 5.b of this section shall be submitted at the time of such application for monitoring frequency reduction. If granted, the monitoring frequency may be reduced in accordance with Item 5.a.

d. SURVIVAL FAILURES AFTER A MONITORING FREQUENCY REDUCTION: If any test fails the survival endpoint at any time after the granting of a monitoring frequency reduction, two monthly retests are required in accordance with Item 2 of this section (unless the permittee is performing a TRE) and the monitoring frequency for the affected test species shall be increased to the WET testing frequency prescribed in Part I until the permit is reissued.

e. This monitoring frequency reduction applies only until the expiration date of this permit, at which time the monitoring frequency for both test species reverts to the WET testing frequency prescribed in Part I until the permit is reissued.

6. TOXICITY REDUCTION EVALUATION (TRE)

- a. Within ninety (90) days of confirming lethality in the retests for a test species, the permittee shall submit to the DEQ a Toxicity Reduction Evaluation (TRE) Action Plan and Schedule for conducting a TRE. The TRE Action Plan shall specify the approach and methodology to be used in performing the TRE. A Toxicity Reduction Evaluation is an investigation intended to determine those actions necessary to achieve compliance with water quality-based effluent limits by reducing an effluent's toxicity to an acceptable level. A TRE is defined as a step-wise process which combines toxicity testing and analyses of the physical and chemical characteristics of a toxic effluent to identify the constituents causing effluent toxicity and/or treatment methods which will reduce the effluent toxicity. The TRE Action Plan shall lead to the successful elimination of effluent toxicity at the critical dilution and include the following:
 - (1) Specific Activities. The plan shall detail the specific approach the permittee intends to utilize in conducting the TRE. The approach may include toxicity characterizations, identifications and confirmation activities, source evaluation, treatability studies, or alternative approaches. When the permittee conducts Toxicity Characterization Procedures the permittee shall perform multiple characterizations and follow the procedures specified in the documents "Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures" (EPA-600/6-91/003) and "Toxicity Identification Evaluation: Characterization of Chronically Toxic Effluents, Phase I" (EPA-600/6-91/005F), or alternate procedures. When the permittee conducts Toxicity Identification Evaluations and Confirmations, the permittee shall perform multiple identifications and follow the methods specified in the documents "Methods for Aquatic Toxicity Identification Evaluations, Phase II Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/080) and "Methods for Aquatic Toxicity Identification Evaluations, Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity" (EPA/600/R-92/081), as appropriate.

The documents referenced above may be obtained through the National Technical Information Service (NTIS) by phone at (703) 487-4650, or by writing:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161

(2) Sampling Plan (e.g., locations, methods, holding times, chain of custody, preservation, etc.). The effluent sample volume collected for all tests shall be adequate to perform the toxicity test, toxicity characterization, identification and confirmation procedures, and conduct chemical specific analyses when a probable toxicant has been identified. Where the permittee has identified or suspects specific pollutant(s) and/or source(s) of effluent toxicity, the permittee shall conduct, concurrent with toxicity testing, chemical specific analyses for the identified and/or suspected pollutant(s) and/or source(s) of

effluent toxicity. Where lethality was demonstrated within 48 hours of test initiation, each composite sample shall be analyzed independently. Otherwise, the permittee may substitute a composite sample, comprised of equal portions of the individual composite samples, for the chemical specific analysis.

- (3) Quality Assurance Plan (e.g., QA/QC implementation, corrective actions, etc.).
- (4) Project Organization (e.g., project staff, project manager, consulting services, etc.).
- b. The permittee shall initiate the TRE Action Plan within thirty (30) days of plan and schedule submittal. The permittee shall assume all risks for failure to achieve the required toxicity reduction.
- c. The permittee shall submit to the DEQ a quarterly TRE Activities Report with the Discharge Monitoring Report in the months of (to be specified), containing information on toxicity reduction evaluation activities including:
 - (1) any data and/or substantiating documentation which identifies the pollutant(s) and/or source(s) of effluent toxicity;
 - (2)-any-studies/evaluations and results on the treatability of the facility's effluent toxicity; and
 - (3) any data which identifies effluent toxicity control mechanisms that will reduce effluent toxicity to the level necessary to meet no significant lethality at the critical dilution.
- d. The permittee shall submit to the DEQ a Final Report on Toxicity Reduction Evaluation Activities no later than twenty-eight (28) months from confirming lethality in the retests, which provides information pertaining to the specific control mechanism selected that will, when implemented, result in reduction of effluent toxicity to no significant lethality at the critical dilution. The report will also provide a specific corrective action schedule for implementing the selected control mechanism.
- e. Quarterly testing during the TRE is a minimum monitoring requirement. The DEQ recommends that permittees required to perform a TRE not rely on quarterly testing alone to ensure success in the TRE, and that additional tests be performed to capture toxic samples for identification of toxicants. Failure to identify the specific chemical compound causing toxicity test failure will normally result in a permit limit for whole effluent toxicity per federal regulations at 40 CFR 122.44(d)(1)(v).

B. SEWAGE SLUDGE REQUIREMENTS

The sludge produced at the facility is presently sent to the Enid Municipal Landfill located in the NE of Sections 29, Township 22-N, Range 6 W. I.M., Garfield County, Oklahoma..

Sewage sludge disposal practices shall comply with the federal regulations for landfills, sludge, and solid waste disposal established at 40 CFR Part 257, 503 and the DEQ rules governing Sludge Management (OAC 252:648) as applicable.

The permittee shall give 120 days prior notice to DEQ of any change planned in the sewage sludge disposal practice.
In addition, the permittee shall comply with other sludge requirements specified in Part IV of this permit.

The permittee is required to maintain all records relevant to sewage sludge disposal for the life of the permit. These records shall be made available to DEQ upon request.

C. POLLUTION PREVENTION REQUIREMENTS

- 1. The permittee shall institute a program within 12 months of the effective date of the permit (or continue on existing one) directed towards optimizing the efficiency and extending the useful life of the facility. The permittee shall consider the following items in the program:
 - a. The influent loadings, flow and design capacity;
 - b. The effluent quality and plant performance;
 - c. The age and expected life of the wastewater treatment facility's equipment;
 - d. Bypasses and overflows of the tributary sewerage system and treatment works;
 - e. New developments at the facility;
 - f. Operator certification and training plans and status;
 - g. The financial status of the facility;
 - h. Preventative maintenance programs and equipment conditions and;
 - i. An overall evaluation of conditions at the facility.

2. The permittee shall prepare the following information on the sewage sludge generated by the facility.

- a. An annual quantitative tabulation of the ultimate disposition of all sewage sludge (including, but not limited to, the amount beneficially reused, landfilled, surface disposed, and incinerated).
- b. An assessment of technological processes and an economic analysis evaluating the potential for beneficial reuse of all sewage sludge not currently beneficially reused including a listing of any steps which would be required to achieve the sludge quality necessary to beneficially reuse the sludge.
- c. A description of, including the expected results and the anticipated timing for, all projects in process, in planning and/or being considered which are directed towards additional beneficial reuse of sewage sludge.
- d. An analysis of one composite sample of the sludge collected prior to ultimate re-use or disposal shall be performed for the pollutants listed in Part IV, Element 1, Section III, Table 3 of the permit.
- e. A listing of the specific steps (controls/changes) which would be necessary to achieve and sustain the quality of the sludge so that the pollutant concentrations in the sludge fall below the pollutant concentration criteria listed in Part IV, Element I, Section III, Table 3 of the permit.
- f. A listing of, and the anticipated timing for, all projects in process, in planning, and/or being considered which are directed towards meeting the sludge quality referenced in (c) above.

Enid – OK0021628 Permit Part II – Page 12

The permittee shall certify in writing, within three years of the effective date of the permit, that all pertinent information is available. This certification shall be submitted to:

Oklahoma Department of Environmental Quality Water Quality Division Wastewater Discharge Permit Section P. O. Box 1677; 707 North Robinson Street Oklahoma City, Oklahoma 73101-1677

D.

CONTRIBUTING INDUSTRIES AND PRETREATMENT REQUIREMENTS

- 1. The permittee shall operate an industrial pretreatment program in accordance with Section 402(b)(8) of the Clean Water Act, the General Pretreatment Regulations (40 CFR Part 403) and the approved POTW pretreatment program submitted by the permittee. The pretreatment program was approved on October 15, 1984 and modified on July 15, 1994 and March 1, 2001. A Publicly Owned Treatment Works (POTW) facility is defined in 40 CFR 403.3(o) "as any devices and systems used in storage, treatment, recycling and reclamation of municipal sewage and industrial wastes of a liquid nature. It also includes sewers, pipes and other conveyances only if they convey wastewater to a POTW Treatment Plant. The term also means the municipality as defined in section 502(4) of the Act, which has jurisdiction over the Indirect Discharges to and from such treatment works." The POTW pretreatment program is hereby incorporated by reference and shall be implemented in a manner consistent with the following requirements:
 - a. Industrial user information shall be updated at a frequency adequate to ensure that all IUs are properly characterized at all times;
 - b. The frequency and nature of industrial user compliance monitoring activities by the permittee shall be commensurate with the character, consistency and volume of waste. However, in keeping with the requirements of 40 CFR 403.8 (f)(2)(v), the permittee must inspect and sample the effluent from each Significant Industrial User at least once a year. This is in addition to any industrial self-monitoring activities;
 - c. The permittee shall enforce and obtain remedies for noncompliance by any industrial users with applicable pretreatment standards and requirements;
 - d. The The permittee shall control through permit, order, or similar means, the contribution to the POTW by each Industrial User to ensure compliance with applicable Pretreatment Standards and requirements. In the case of Industrial Users identified as significant under 40 CFR 403.3(t), this control shall be achieved through permits or equivalent individual control mechanisms issued to each such user. Such control mechanisms must be enforceable and contain, at a minimum, the following conditions:
 - (1). Statement of duration (in no case more than five years);
 - (2). Statement of non-transferability without, at a minimum, prior notification to the POTW and provision of a copy of the existing control mechanism to the new owner or operator;
 - (3). Effluent limits based on applicable general pretreatment standards, categorical pretreatment standards, local limits, and State and local law;

- (4). Self-monitoring, sampling, reporting, notification and record keeping requirements, including an identification of the pollutants to be monitored, sampling location, sampling frequency, and sample type, based on the applicable general pretreatment standards in 40 CFR 403, categorical pretreatment standards, local limits, and State and local law; and
- (5). Statement of applicable civil and criminal penaltics for violation of pretreatment standards and requirements and any applicable compliance schedule. Such schedules may not extend the compliance date beyond federal deadlines.
- e. The permittee shall evaluate, at least once every two years, whether each Significant Industrial User needs a plan to control slug discharges. If the POTW decides that a slug control plan is needed, the plan shall contain at least the minimum elements required in 40 CFR 403.8 (f)(2)(v);
- f. The permittee shall provide adequate staff, equipment, and support capabilities to carry out all elements of the pretreatment program; and,
- g. The approved program shall not be modified by the permittee without the prior approval of the DEQ.
- 2. The permittee shall establish and enforce specific limits to implement the provisions of 40 CFR Parts 403.5(a) and (b), as required by 40 CFR Part 403.5(c). Each POTW with an approved pretreatment program shall continue to develop these limits as necessary and effectively enforce such limits.

The permittee shall, within sixty days of the effective date of this permit, (1) submit a WRITTEN CERTIFICATION that a technical evaluation has been performed demonstrating that the existing technically based local limits (TBLL) are based on the current state water quality standards and are adequate to prevent pass through of pollutants, inhibition of or interference with the treatment facility, worker health and safety problems, and sludge contamination, OR (2) submit a WRITTEN NOTIFICATION that a technical evaluation revising the current TBLL and a draft sewer use ordinance which incorporates such revisions will be submitted within 12 months of the effective date of this permit.

All specific prohibitions or limits developed under this requirement are deemed to be conditions of this permit. The specific prohibitions set out in 40 CFR Part 403.5(b) shall be enforced by the permittee unless modified under this provision.

3. The permittee shall analyze the treatment facility influent and effluent for the presence of the toxic pollutants listed in 40 CFR 122 Appendix D (NPDES Application Testing Requirements) Table II at once per year and the toxic pollutants in Table III at least once every six months. If, based upon information available to the permittee there is reason to suspect the presence of any toxic or hazardous pollutant listed in Table V, or any other pollutant, known or suspected to adversely affect treatment plant operation, receiving water quality, or solids disposal procedures, analysis for those pollutants shall be performed at least once every six months on both the influent and the effluent.

The influent and effluent samples collected shall be composite samples consisting of at least 12 alignots collected at approximately equal intervals over a representative 24 hour period and

composited according to flow. Sampling and analytical procedures shall be in accordance with guidelines established in 40 CFR 136. The effluent samples shall be analyzed to a level as required in item 6 below. Where composite samples are inappropriate, due to sampling, holding time, or analytical constraints, at least 4 grab samples, taken at equal intervals over a representative 24 hour period, shall be taken.

4. The permittee shall prepare annually a list of Industrial Users which during the preceding twelve months were in significant noncompliance with applicable pretreatment requirements. For the purposes of this Part, significant noncompliance shall be determined based upon the more stringent of either criteria established at 40 CFR Part 403.8(f)(2)(vii) [rev. 7/24/90] or criteria established in the approved POTW pretreatment program. This list is to be published annually in the largest daily newspaper in the municipality during the month of December.

In addition, during the month of December the permittee shall submit an updated status report to DEO containing the following information:

- a. An updated list of all significant industrial users. For each industrial user listed the following information shall be included (Note: A sample table, which includes the requested information has been provided on Page 20 for your convenience):
 - (1). Standard Industrial Classification (SIC) code and categorical determination;
 - (2). Control document status. Whether the user has an effective control document, and the date such document was last issued, reissued, or modified, (indicate which industrial users were added to the system (or newly identified) within the previous 12 months);
 - (3). A summary of all monitoring activities performed within the previous 12 months. The following information shall be reported:
 - total number of inspections performed;
 - total number of sampling visits made;
 - (4). Status of compliance with both effluent limitations and reporting requirements. Compliance status shall be defined as follows:
 - Compliant (C) no violations during the previous 12 month period;
 - Non-compliant (NC) one or more violations during the previous
 12 months but does not meet the criteria for significantly non-compliant industrial users;
 - Significant Noncompliance (SN) in accordance with requirements described in d. above; and
 - (5). For significantly noncompliant industrial users, indicate the nature of the violations, the type and number of actions taken (notice of violation, administrative order, criminal or civil suit, fines or penalties collected, etc.) and current compliance status. If ANY industrial user was on a schedule to attain compliance with effluent limits, indicate the date the schedule was issued and the date compliance is to be attained (Note: A sample table, which includes the requested information has been provided on Page 19 for your convenience);

- b. A list of all significant industrial users whose authorization to discharge was terminated or revoked during the preceding 12 month period and the reason for termination;
- c. Λ report on any interference, pass through, upset or POTW permit violations known or suspected to be caused by industrial contributors and actions taken by the permittee in response;
- d. The results of all influent and effluent analyses performed pursuant to "item 3 above". These results and comparisons to the appropriate technically based local limit allowances and effluent water quality standards may be presented in tabular form as per the sample table provided on Page 18 for your convenience;
- e. A copy of the newspaper publication of the significantly non-compliant industrial users giving the name of the newspaper and the date published;
- 5. The permittee shall provide adequate notice of the following:
 - Any new introduction of pollutants into the treatment works from an indirect discharger which would be subject to Sections 301 and 306 of the CWA and/or Sections 40 CFR 405-499 if it were directly discharging those pollutants; and
 - b. Any substantial change in-the volume or character of pollutants being introduced into the treatment works by a source introducing pollutants into the treatment works at the time of issuance of the permit.

Adequate notice shall include information on (i) the quality and quantity of effluent to be introduced into the treatment works, and (ii) any anticipated impact of the change on the quality or quantity of effluent to be discharged from the POTW.

6. All effluent monitoring conducted in accordance with "item 3 above" shall meet the Minimum Quantification Levels (MQLs) shown in the attached tables.

Enid – OK0021628 Permit Part II – Page 16

MINIMUM QUANTIFICATION LEVELS (MQLs)

Autinavy (Toti) ¹ 60 200.7 I.1.2.2.Tetrachlowerdiane ⁴ 10 6/24 Averacie (Total) ¹ 10 206.2 Tetrachlowerdiane ⁴ 10 6/24 Iterylium (Total) ¹ 1 213.2 1.2.4rans.4.lichlorechlylene ⁴ 10 6/24 Chronium (Total) ¹ 10 200.7 1.1.1.Trickluonechlare ⁴ 10 6/24 Chronium (Total) ¹ 10 200.7 1.1.2.Trickluonechlare ⁴ 10 6/24 Chronium (Total) ¹ 10 200.7 Trickluonechlare ⁴ 10 6/24 Chronium (Total) ¹ 10 200.7 2.4.Ditachlorechlare ⁴ 10 6/24 Lead (Total) ¹ 0.2 243.2 ACID COMPOUNDING 10 6/25 Nickel (Total) ¹ 10 200.7 2.4.Ditachlorechlare ¹ 10 6/25 Nickel (Total) ¹ 10 20 20.7 2.4.Ditachlorechlarec		METALS AND CYANIDE	(ug/L)	EPA METHOD	VOLATILE COMPOUNDS	(ug/l.)	EPA METHOD
Ascric (Teigh) 10 206.2 Teracthorechylene* 10 6.44 Derytlium (Totah) 5 200.7 Tabase* 10 6.24 Cabrinum (Totah) 10 200.7 1.1.1-Trickhorechylene* 10 6.24 Chroniam (Totah) 10 200.7 1.1.2-Trickhorechylene* 10 6.24 Chroniam (Totah) 10 200.7 Trickhorechylene* 10 6.24 Chroniam (Totah) 10 200.7 Trickhorechylene* 10 6.24 Croper (Totah)* 5 292.2 ACID COMPOLINIS 6.25 5. 6.25 Mecket (Totah)* 10 20.2 24.51 2.4 Diatrophenol* 10 6.25 Nicket (Totah)* 5 240.2 2.4 Diatrophenol* 10 6.25 Scherium (Totah)* 10 272.2 12 methyl 4.6 dimitrophenol* 50 6.25 Theilium (Totah)* 10 272.2 12 methyl 4.6 dimitrophenol* 50 6.25 Theilium (Totah)* 10 272.2 2.4 Diatrophenol* 50 6.25 Dioxin (Totah)*		Antimony (Total) ¹	60	200.7	1,1,2,2-Tetrachloroethane	10	624
Perylliam (Total) 5 200.7 Tolacae ⁵ 10 6.21 Catiniam (Total) ¹ 1 213.2 1.2.4mas-1/kblonesthylore ¹ 10 624 Chroniam (Total) ¹ 10 200.7 1.1.1.2.Trichlomesthylore ¹ 10 624 Chroniam (Ls) ¹ 10 200.7 1.1.2.Trichlomesthylore ¹ 10 624 Copper (Total) ¹ 10 200.7 Trichlomesthylore ¹ 10 624 Copper (Total) ¹ 0 202.2 ACID COMPOINS 625 Mercary (Total) ¹ 0.2 24.5 24.5 625 Nicket (Total) ¹ 0.2 272.2 24.5 625 Sketer (Total) ¹ 5 202.2 24.5 625 Sketer (Total) ¹ 10 352 227.2 12 methyl 4.6 60 625 Taking (Total) ¹ 10 352 24.5 625 7.5 625 Taking (Total) ¹ 10 352 24.5 626 625 625 626 626		Arsenic (Total) ¹	10	206.2	Tetrachloroethylene ⁵	10	624
Caterniam (Total)* 1 213.2 1.2-transt-Dicklonethydex* 10 624 Chemainian (Total)* 10 200.7 1.1.1-Trickhorenthane* 10 624 Chemainian (S+)* 10 200.7 1.1.2-Trickhorenthane* 10 624 Comport (Total)* 10 200.7 Trickhorenthane* 10 624 Copper (Total)* 5 239.2 ACID COMPOUNDS 7 Mercury (Total)* 0.2 24.51 2.Chloropheno* 10 625 Nickel (Total)* [Marine] 5 270.2 2.4-Dickhorenthydens* 10 625 Sheer (Total)* [Marine] 5 270.2 2.4-Dickhorenthydens* 10 625 Sheer (Total)* 10 279.2 2.4-Dickhorenthydens* 50 625 Totalium (Total)* 10 279.2 2.4-Dickhorenthydens* 50 625 Dittor 10 35.2 4-Nitropheno* 50 625 Dittor 10 35.2 4-Nitropheno* 50 625 Dittor 10 35.2 4-Nitrophen		Beryllium (Total) ¹	5	200.7	Tolucne	10	624
Chromium (Trath) 10 200.7 1.1.1-Trickhoreshare* 10 624 Chromium (3+)* 10 200.7 1.1.2-Trickhoreshare* 10 624 Chromium (6+)* 10 200.7 Trichhoreshy/ee* 10 624 Copper (Toth)* 10 220.2 Visyl Ciloride* 10 624 Lead (Toth)* 5 239.2 ACID COMPUINDS 7 7 Mercury (Toth)* 0.2 245.1 2-Chorophend* 10 625 Nickel (Toth)* [Marine] 5 270.2 2.4-Dinkrophend* 10 625 Scientian (Total)* 20 207.2 2.4-Dinkrophend* 50 625 Thallium (Total)* 10 352.2 4-Ninophend* 50 625 Cycaida (Total)* 10 352.4 4-Ninophend* 50 625 Totalian (Total)* 10 352 4-Ninophend* 50 625 Cycaida (Total)* 10 352 4-Ninophend* 10 625 <		Cadmium (Total) ²	1	213.2	1,2-trans-Dichloroethylene5	10	624
Chromium (1+)* 10 200.7 1,1,2-Trichbroechane* 10 6,24 Chromium (6+)* 10 200.7 Trichbroechane* 10 6,24 Cupper (Total)* 10 220.2 Vinyl Chloride* 10 6,24 Cupper (Total)* 0 220.2 Xinyl Chloride* 10 6,24 Lead (Total)* 0.2 245.1 2-ChlorOhrOLNDS 10 6,25 Nickel (Total)* Marine] 5 270.2 2,4-Dinchphenol* 10 6,25 Nickel (Total)* 5 270.2 2,4-Dinchphenol* 50 6,25 Triathum (Total)* 7 277.2 12 methyl 4,6-dimitrophenol* 50 6,25 Triathum (Total)* 10 235.2 4-Nitophenol* 50 6,25 DioXIN - 10 335.2 4-Nitophenol* 50 6,25 DioXIN - Pertachlorophenol* 10 6,25 6,25 VI_ATTLE CONFOUNDS - Pentachlorophenol* 10 6		Chromium (Total) ¹	10	200.7	1,1,1-Trichloroethane ⁵	10	624
Chronium (6+) 10 200.7 Tricklonedbylene ⁵ 10 624 Copper (Toth) ⁵ 10 220.2 Vinyl Choride ⁵ 10 624 Lend (Total) ⁵ 5 239.2 ACID COMPOUNDS 625 Nicket (Total) ⁶ 10 625 Chierophenol ⁶ 10 625 Nicket (Total) ⁶ [Freshwater] 40 200.7 2.4-Dichlorophenol ⁶ 10 625 Nicket (Total) ⁶ 7 2.77.2 2.4-Dintrophenol ⁶ 50 625 Steer (Total) ⁷ 20 200.7 2.4-Dintrophenol ⁶ 50 625 Totalium (Total) ⁷ 20 200.7 2.4-Dintrophenol ⁶ 50 625 Zue (Total) ⁷ 10 279.2 2.4-Dintrophenol ⁶ 50 625 Dioxin (Tobl) ⁷ 10 279.2 2.4-Dintrophenol ⁶ 50 625 Dioxin (TDD) ⁷ 10 35.2 4-Nitrophenol ⁶ 10 625 Polioxin (TDD) ⁷ 50 624 2.4.6-Trichhorophenol ⁶ <td< td=""><td></td><td>Chromium (3+)¹</td><td>10</td><td>200.7</td><td>1,1,2-Trichlorocthane³</td><td>10</td><td>624</td></td<>		Chromium (3+) ¹	10	200.7	1,1,2-Trichlorocthane ³	10	624
Copper (Total) ¹ 10 220.2 Vinyl Chieride ⁴ 10 6.24 Lead (Total) ¹ 5 239.2 ACIL: CONFUNNS		Chromiam (6+) ¹	10	200.7	Trichloroethylene ⁵	10	624
Lead (Total)* 5 239.2 ACID COMPOUNDS Mercury (Total)* 0.2 245.1 2-Chlorophenol* 10 625 Nicket (Total)* [Freshwater] 40 200.7 2.4-Direkt/spherol* 10 625 Nicket (Total)* [Mirne] 5 240.2 2.4-Direkt/spherol* 10 625 Steve (Total)* 2 277.2 12 methyl 4.6-finitrophenol* 50 625 Thatlium (Total)* 10 279.2 2.4-Direktyherol* 20 625 Zinc (Total)* 10 235.2 4-Nitrophenol* 20 625 DOXIN 10 335.2 4-Nitrophenol* 50 625 DOXIN - Peltorin (TCD)* 50 625 625 VDIATILE COMPOUNDS - Peltorin (TCD)* 50 625 VDIATILE COMPOUNDS 50 624 2.4.5*Titcherophenol* 10 625 Renzes* 10 624 Accuraphtylenol* 10 625 Bronsoform*	•.	Copper (Total) ²	10	220.2	Vinyl Chloride ⁵	- 10	624
Mercury (Total) 0.2 245.1 2-Chlorophenol ¹ 10 625 Nickel (Total) ¹ [Freshwater] 40 200.7 2.4-Dichlorophenol ¹ 10 625 Nickel (Total) ² [Marine] 5 249.2 2.4-Dimutylphenol ¹ 10 625 Steetrium (Total) ¹ 2 272.2 12 methyl 4.6-dinitrophenol ¹ 50 625 Taulliam (Total) ¹ 10 279.2 2.4-Dimutylphenol ¹ 20 625 Taulliam (Total) ¹ 10 20 200.7 2.4Nitrophenol ¹ 50 625 Dixter (Total) ¹ 10 352.2 4-Nitrophenol ¹ 50 625 Dixter (Total) ¹ 10 355.2 4-Nitrophenol ¹ 50 625 DiXthN - p-Chloro-m-Cresol 10 625 625 VDATHE COMPOUNDS - Perturchtorophenol ¹ 10 625 Actrylonitrite ⁴ 50 624 Acenaphtylent ⁴ 10 625 Benzene ⁴ 10 624		Lead (Total) ²	5	239.2	ACID COMPOUNDS		
Nicket (Total)* [Freshwater] 40 200.7 2.4-Dichlorophenol* 10 625 Nicket (Total)* [Marine] 5 240.2 2.4-Dinethyphenol* 10 625 Selenium (Total)* 5 270.2 4.6-Dinitro-o-Cressol 50 625 Thathium (Total)* 2 272.2 12 methyl 4.6-dinitrophenol* 50 625 Zine (Total)* 10 279.2 2.4-Dinitrophenol* 50 625 Zine (Total)* 10 335.2 4-Nitrophenol* 50 625 DIOXIN - - - - - 625 DIOXIN - - - - 625 625 VOLATLE COMPOUNDS - - - - 625 625 VOLATLE COMPOUNDS - - - - 625 625 625 625 625 625 625 625 625 625 625 625 626 626 626 625 626 625 625 625 625 626 625 626 <td></td> <td>Mercury (Total)</td> <td>0.2</td> <td>245.1</td> <td>2-Chlorophenol^s</td> <td>10</td> <td>625</td>		Mercury (Total)	0.2	245.1	2-Chlorophenol ^s	10	625
Nicket (Total) ³ [Marine] 5 249.2 2.4-Dimethylphenol ³ 10 6.25 Setenium (Total) ⁴ 5 270.2 4.6-Dimitro-freesol 5 625 Sitver (Total) ⁴ 2 272.2 12 methyl 4.6-dimitrophenol ⁴ 50 625 Titallium (Total) ⁴ 20 200.7 2-Mitrophenol ⁴ 50 625 Zinc (Total) ⁴ 20 200.7 2-Mitrophenol ⁴ 50 625 DIOXIN 10 335.2 4-Nitrophenol ⁴ 50 625 p-dioxin (TODD) ⁴ 10 335.2 Pertuebilerophenol ⁴ 10 625 p-dioxin (TODD) ⁷ Pertuebilerophenol ⁴ 10 625 624 2.4.6-Trichlorophenol ⁴ 10 625 Acrolein ⁴ 50 624 PASE/NEUTRAL (COMPOUNDS) 70 625 Acrolein ⁴ 50 624 Acenaphthen ⁴ 10 625 Acrolein ⁴ 50 624 Acenaphthen ⁴ 10 625 Cahorobenzene 10		Nickel (Total) ¹ [Freshwater]	40	200.7	2,4-Dichlorophenol ⁵	10	625
Selenium (Total)* 5 270.2 4,6-Dinitro-or-Cresol Silver (Total)* 2 272.2 12 methyl 4,6-dinitrophenol* 50 625 Thallium (Total)* 10 279.2 2,4-Dinitrophenol* 50 625 Zine (Total)* 20 200.7 2-Minimphenol* 50 625 Zine (Total)* 10 335.2 4-Mitrophenol* 50 625 DIOXIN - p-Chioro-m-Cresol 1 7.7.8-Tetrachlora-dihenzo* 00001 1613 [4 chioro-3-metylphenol]* 10 625 P-dixin (TCDD)* - Prentachlorophenol* 10 625 VOLATILE COMPONINDS - Prentachlorophenol* 10 625 Accretcin* 50 624 DASE/NEUTRAL COMPONINDS - Remerset* 10 624 Accemptithere* 10 625 Bronnoform* 10 624 Accemptithylent* 10 625 Chiorocharde* 10 624 Accemptithylent* 10 625 Chiorocharde* 10 624 Accemptithylent* 10	•	Nickel (Total) ² [Marine]	5	249.2	2,4-Dimethylphenol ⁷	10	625
Silver (Total) ³ 2 272.2 12 methyl 4.6-dimitrophenol ⁴ 50 625 Thallion (Total) ¹ 10 279.2 2.4-Dimitrophenol ⁴ 50 625 Zine (Total) ¹ 20 200.7 2.4-Mitrophenol ⁴ 20 625 Cyanide (Total) ¹ 10 335.2 4-Mitrophenol ⁴ 20 625 DiXXIN p-C-thore-m-Cresol p-C-thore-m-Cresol p-C-thore-m-Cresol 625 VILATLE CONFOUNDS Prenachlørophenol ⁴ 10 625 Acrolein ⁴ 50 624 2.4.6-Trichlørophenol ⁴ 10 625 Acrolein ⁴ 50 624 DSE/NEUTRAL COMPOUNDS 625 Acrolein ⁴ 50 624 DSE/NEUTRAL COMPOUNDS 625 Acrolein ⁴ 50 624 DSE/NEUTRAL COMPOUNDS 625 Bernene ⁴ 10 624 Acenaphthene ⁴ 10 625 Brownsform ⁴ 10 624 Acenaphthene ⁴ 50 625 Chlorobrownethane ⁶ 10 624 Benzo(a)anthracene ⁵ 10 625 Chlorobrom		Selenium (Total)'	5	270.2	4,6-Dinitro-o-Crcsol		
Thallium (Total)* 10 279.2 2,4-Dinitrophenol* 50 625 Zinc (Total)* 20 200.7 2-Nimphenol* 20 625 Cyanide (Total)* 10 335.2 4-Nitrophenol* 50 625 DiXMN - - - 625 - - 625 DiXMN - - - 625 - - 625 VDIATLE COMPOUNDS - - - 10 625 - 625 - - 625 - 625 - - 625 - 625 - 625 - 625 - 625 - 625 - 625 - 625 - 625 - 625		Silver (Total) ²	2	272.2	12 methyl 4,6-dinitrophenol ⁵	50	625
Zine (Total) ¹ 20 200.7 2-Nitmphenol ¹ 20 625 Cyanide (Total) ¹ 10 335.2 4-Nitrophenol ¹ 50 625 DIXXIN p-ChloroTresol 1,7,8-Tetrachloro-diffenzo- 00001 1613 [4 chloro-3-methylphenol] ⁴ 10 625 DIXXIN p-ChloroTresol 1,7,8-Tetrachloro-diffenzo- Potosin (TCDD) ³ P-ChloroCresol VOLATTLE COMPOUNDS Phenol ¹ 10 625 Accrolein ⁴ 50 624 2,4,6-Trichkorophenol ¹ 10 625 Accrolein ⁴ 50 624 BASE/NE UTRAL COMPOUNDS Phenol ¹ 10 625 Benzene ⁴ 10 624 Accrolein ⁴ 10 625 Grabon Tetrachloride ⁴ 10 624 Accrolein ⁴ 50 625 C'hloro-chlance ⁶ 10 624 Benzola)prene ⁴ 10 625 C'hloro-diftromornethane ⁴ 10 624 Benzola)prene ⁴ 10 625 C'hloro-diftromornethane ⁴ 10 624 Benz		Thallium (Total) ¹	10	279.2	2,4-Dinitrophenol ⁵	50	625
Cyanide (Total) ⁴ 10 335.2 4-Nitrophenol ⁴ 50 625 HOXIN p-C'hloro-m-C'resol 1,7.8-Tetrachkoro-dikenzo- 00001 161.3 [4 chloro-3-methylphenol ⁴ 10 625 p-dioxin (TCDD) ³ Pentoshkorophenol ⁴ 50 625 VOLATILE COMPOUNDS Phenol ⁴ 10 625 Acrojeni Tise ⁴ 50 624 2.4.6-Trichkorophenol ⁴ 10 625 Acrojeni Tise ⁴ 50 624 Accomphthene ⁴ 10 625 Bernete ⁴ 10 624 Accomphthene ⁴ 10 625 Brownoform ⁵ 10 624 Accomphthene ⁴ 10 625 Grabon Tetrachkoride ⁶ 10 624 Accomphthene ⁴ 10 625 Chlorochane ⁶ 10 624 Accomphthene ⁴ 10 625 Chlorochane ⁶ 10 624 Benzot(a) anthracenes ⁵ 10 625 Chlorochane ⁶ 10 624 Benzot(a) anthracenes ⁵ 10 625 Chlorochane ⁶ 10 624 Benzot(a) anthracenes ⁵		Zinc (Total) ¹	20	200.7	2-Nituphenol*	20	625
DIXIN p-Chloro-m-Cresol 1,7,8-Tetrachloro-dihenzo- .00001 1613 [4 chloro-3-methylphenn]1 ⁶ 10 625 p-dioxin (T(C)D) ³ Pentachlorophenn ¹ 50 625 YOLATILE COMPOUNDS Phenol ⁴ 10 625 Acrolein ⁴ 50 624 2,4,6-Trichlorophenol ⁴ 10 625 Acerophithere ⁴ 10 624 Acenaphthere ⁶ 10 625 Benzree ⁴ 10 624 Acenaphthere ⁶ 10 625 Chlorobenzene ⁶ 10 624 Acenaphthere ⁶ 10 625 Chlorobenzene ⁶ 10 624 Acenaphthere ⁶ 10 625 Chlorobenzene ⁶ 10 624 Benzzidanthracene ⁸ 10 625)	Cyanide (Total) ¹	10	335.2	4-Nitrophenol ⁵	50	625
$1,7,8.$ -Tetrachkorn-dibenzo- .00001 1613 $[4 \text{ chloro-3-methylphenol}]^4$ 10 625 p -dioxin (TCDD) ³ Pentachkorn-dibenzo 50 625 $VOI ATTILE COMPOUNDS$ Phenol ¹ 10 625 $A crolein4$ 50 624 $2.4.6$ -Trichkorophenol ¹ 10 625 $A crolein4$ 50 624 $DASE/NEUTRAL COMPOUNDS$ 625 Benzene ⁴ 10 624 Acenaphthene ⁵ 10 625 Bronseform ⁵ 10 624 Acenaphthene ⁵ 10 625 Chlorohenzene ⁶ 10 624 Anthracene ⁵ 10 625 Chlorohenzene ⁶ 10 624 Benzot(a)anthracene ⁵ 10 625 Chlorohenzene ⁶ 10 624 Benzot(a)anthracene ⁵ 10 625 Chlorohenzene ⁶ 10 624 Benzot(a)anthracene ⁵ 10 625 Chlorohenzene ⁶ 10 624 Benzot(b)flooranthene ⁶ 10 625 Chlorohenzene ⁶ 10 624 Benzot(b)flooranthene ⁶ 10 625		DIOXIN	•		p-Chloro-m-Cresol		
p-dioxin (TCDD) ³ Pentachlorophenol ¹ 50 625 VOLATILE COMPOUNDS Phenol ¹ 10 625 Acrolein ⁴ 50 624 2.4,6-Trichkorophenol ¹ 10 625 Acrolein ⁴ 50 624 Phenol ¹ 10 625 Acrolein ⁴ 50 624 PASE/NEUTRAL COMPOUNDS Vol.ATILE Vol.ATILE Vol.ATILE Vol.ATILE Vol.ATILE Compound 625 Acrolein ⁴ 50 624 PASE/NEUTRAL COMPOUNDS Vol.ATILE Vo		1,7,8-Tetrachloro-dibenzo-	.00001	1613	[4 chloro-3-methylphenol] ⁶	10	625
VOLATILE COMPOUNDS Phenol ¹ 10 625 Aerolein ⁴ 50 624 2,4,6-Trichlorophenol ¹ 10 625 Aerolein ⁴ 50 624 BASE/NEUTRAL COMPOUNDS 7 Benzene ⁴ 10 624 Accenaphthene ⁴ 10 625 Bromoform ⁴ 10 624 Accenaphthene ⁴ 10 625 Carbon Tetrachloride ⁴ 10 624 Accenaphthene ⁴ 10 625 Chlorobenzene ⁵ 10 624 Accenaphthene ⁴ 10 625 Chlorobenzene ⁵ 10 624 Benzo(a) anthracene ⁵ 10 625 Chlorobethane ⁶ 50 624 Benzo(a) anthracene ⁵ 10 625 Chlorobethane ⁶ 50 624 Benzo(a) pyrene ⁶ 10 625 Chlorobethan ⁶ 10 624 Benzo(a) pyrene ⁶ 10 625 Chlorobethane ⁶ 10 624 Benzo(a) pyrene ⁶ 10 625 Lotobethane ⁶ 10 624 Bis(2-chlorobray) methane ⁶ 10 625 Lotobet		p-dioxin (TCDD) ⁵	:		Pentachlorophenol	50	625
Aerolein* 50 624 2,4,6-Trichlorophenol* 10 625 Acrylonitrile* 50 624 BASE/NEUTRAL COMPOUNDS Benzene* 10 624 Accnaphthene* 10 625 Bronnoform* 10 624 Accnaphthene* 10 625 Bronnoform* 10 624 Accnaphthylent* 10 625 Carbon Tetrachloride* 10 624 Accnaphthylent* 10 625 Chlorobenzene* 10 624 Benzot(a)anthracene* 10 625 Chlorobitronomethane* 10 624 Benzo(a)anthracenes* 10 625 Chlorobitronomethane* 10 624 Benzo(a)anthracenes* 10 625 Chlorofitrm* 10 624 Benzo(a)pyrene* 10 625 Chloroform* 10 624 Benzo(a)pyrene* 10 625 Dicklorobronometharm* 10 624 Benzo(k)fluoranthene* 10 625 1,1-Dichloteethane* <t< td=""><td></td><td>VOLATILE COMPOUNDS</td><td></td><td></td><td>Phenol⁵</td><td>10</td><td>625</td></t<>		VOLATILE COMPOUNDS			Phenol ⁵	10	625
Acrylonitrike*50624BASE/NEUTRAL COMPOUNDSBenzene*10624Acenaphthene*10625Bronnoform*10624Acenaphthene*10625Bronnoform*10624Acenaphthene*10625Chlorohenzene*10624Benzalane*50625Chlorohenzene*10624Benzalanthracenes*10625Chloroethane*50624Benzalanthracenes*10625Chloroethyl vinyl ether*10624Benzalanthracenes*106252-Chloroethyl vinyl ether*10624Benzalanthracenes*106252-Chloroethyl vinyl ether*10624Benzalanthracenes*10625Dichloroform*10624Benzalanthracenes*106251.1-Dichloroethane*10624Benzalanthracenes*106251.1-Dichloroethane*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethane*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroethylenyl)		Aerolein ⁴	50	624	2,4,6-Trichlorophenol ⁵	10	625
Benzene*10624Acenaphthene*10625Bromoform*10624Acenaphthylent*10625Carbon Tetrachloride*10624Anthracene*10625Chlorodhrazene*10624Benzidine*50625Chlorodhrazene*10624Benzidine*50625Chlorodhrazene*10624Benzo(a)nuthracenes*10625Chlorodhyl vinyl ether*10624Benzo(a)pyrene*106252-Chloroethyl vinyl ether*10624Benzo(a)pyrene*106252-Chloroethyl vinyl ether*10624Benzo(p)pyrene*10625Dichlorobromometharm*10624Benzo(p)pyrene*106251.1-Dichloroethylene*10624Benzo(p)pyrene*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10<		Acrylonitrile ⁴	50	624	BASE/NEUTRAL COMPOUND	<u>s</u>	
Bromoform*10624Accenaphilylent*10625Carbon Tetrachloride*10624Anthracene*10625Chlorodhronomethane*10624Benzidine*50625Chlorodhronomethane*10624Benzo(a)anthracenes*10625Chlorodhronomethane*10624Benzo(a)anthracenes*10625Chlorodhronomethane*10624Benzo(a)anthracenes*10625Chloroform*10624Benzo(a)pyrene*10625Chloroform*10624Benzo(ghi)perylene*20625Dichlorobronometharm*10624Benzo(ghi)perylene*10625Li-Dichloroethane*10624Benzo(ghi)perylene*10625Li-Dichloroethane*10624Benzo(ghi)perylene*10625Li-Dichloroethane*10624Bis(2-chloroethoxy) methane*10625Li-Dichloroethane*10624Bis(2-chloroethoxy) methane*10625Li-Dichloroethane*10624Bis(2-chloroisopropyl) ether*10625Li-Dichloropropare*10624Bis(2-chlorosthoxy) phthalate*10625Li-Dichloropropare*10624Bis(2-chlorosthoxy) phthalate*10625Li-Dichloropropare*10624Bis(2-chlorosthoxy) phthalate*10625Li-Dichloropropare*10624Bis(2-chlorosthoxy) phthalate*10625Li		Benzene	10	624	Accuaphthene	10	625
\cdot Carbon Tetrachloride*10624Anthracene*10625Chlorobenzene*10624Benzidine*50625Chlorodibronomethane*10624Benzo(a)anthracenes*10625Chloroethane*50624Benzo(a)pyrene*106252.Chloroethyl vinyl ether*10624Benzo(a)pyrene*106252.Chloroethyl vinyl ether*10624Benzo(a)pyrene*106252.Chloroethyl vinyl ether*10624Benzo(ghi)perylene*10625Dichlorobromometharm*10624Benzo(k)fluoranthene*10625Dichlorobromometharm*10624Bis(2-chloroethoxy) methane*106251.1-Dichloroethylene*10624Bis(2-chloroethoxy) methane*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroptopane*10624Bis(2-chloroethyl) ether*106251.1-Dichloroptopane*10624Bis(2-chlorosthyl) phthalate*106251.1-Dichloroptopane*10624Bis(2-chlorosthyl) phthalate*106251.1-Dichloroptopane*10624Bis(2-chlorosthyl) phthalate*106251.1-Dichloroptopane*10624Bis(2-chlorosthyl) phthalate*106251.1-Dichloroptopane*10624Bis(2-chlorosthyl) phthalate*106251.1-Dichloroptopane*10624		Bromoform	10	624	Accuaphthylent	10	625
Chlorobenzene's10624Benzidine'50625Chlorodibronomethane's10624Benzo(a)anthracenes's10625Chloroethane's50624Benzo(a)anthracenes's106252-Chloroethyl vinyl ether's10624Benzo(a)pyrene's106252-Chloroethyl vinyl ether's10624Benzo(ghi)perylene's20625Chloroform's10624Benzo(ghi)perylene's10625Dichlorobromometharm's10624Benzo(k)fluoranthene's106251,1-Dichloroethane's10624Bis(2-chloroethoxy) methane's106251,1-Dichloroethylene's10624Bis(2-chloroethyl) ether's106251,1-Dichloropropane's10624Bis(2-chloroethyl) ether's106251,1-Dichloropropane's10624Bis(2-chloroethyl) pthalate's106251,1-Dichloropropane's10624Bis(2-chloroethyl) pthalate's106251,1-Dichloropropane's10624Bis(2-chloroapthalate's106251,1-Dichloropropane's10624Bis(2-chloroapthalate's106251,1-Dichloropropane's10624Bis(2-chloroapthalate's106251,1-Dichloropropane's10624Bis(2-chloroapthalate's106251,1-Dichloropropylene's10624Bis(2-chloroapthalate's106251,1-Dichloropropylene's10624 <t< td=""><td><u>.</u> 4</td><td>Carbon Tetrachloride</td><td>10</td><td>624</td><td>Anthracene⁵</td><td>- 10</td><td>625</td></t<>	<u>.</u> 4	Carbon Tetrachloride	10	624	Anthracene ⁵	- 10	625
Chlorodibronomethane*10624Benzo(a)anthracenes*10625C'hloroethare*50624Benzo(a)pyrene*106252-C'hloroethyl vinyl ether*10624 3.4 -Benzofluonmthene*10625C'hloroform*10624Benzo(ghi)perylene*20625Dichlorobromometharm*10624Benzo(ghi)perylene*106251.1-Dichloroethane*10624Benzo(k)fluoranthene*106251.2-Dichloroethano*10624Bis(2-chloroethyl) ether*106251.2-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.2-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.2-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.2-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.2-Dichloroethylene*10624Bis(2-chlorostypopyl) ether*106251.2-Dichloropropane*10624Bis(2-chlorostypopyl) ether*106251.3-Dichloropropylene*10624Bis(2-chlorostyplyl phthalate*10625Methyl Bromide [Bromomethane]*506242-Chloronapthalene*10625Methyl Chloride [Chloromethane]*506244-C'hlorophenyl phenyl ethers*10625Methyl Chloride [Chloro		Chlorobenzene ⁵	10	624	Benzidine ⁴	50	625
Chloroethane ⁴ 50624Benzo(a)pyrene ⁴ 106252-Chloroethyl vinyl ether ⁴ 106243.4-Benzofluomuthene ⁴ 10625Chloroform ⁵ 10624Benzo(ghi)perylene ⁶ 20625Dichlorobromometharm ⁵ 10624Benzo(k)fluoranthene ⁵ 106251.1-Dichloroethane ⁵ 10624Bis(2-chloroethoxy) methane ⁵ 106251.2-Dichloroethane ⁵ 10624Bis(2-chloroethyl) ether ⁵ 106251.2-Dichloroethylene ⁵ 10624Bis(2-chloroisopropyl) ether ⁵ 106251.2-Dichloroptylene ⁵ 10624Bis(2-chloroisopropyl) ether ⁵ 106251.3-Dichloroptylene ⁵ 10624Butyl benzyl phthalate ⁵ 10625Fithylbenzene ⁶ 106242-Chloronapthalene ⁵ 10625Methyl Bromide [Bromomethane] ⁶ 506242-Chlorophenyl phenyl ether ⁵ 10625Methyl Chloride [Chloromethane] ⁶ 506244-Chlorophenyl phenyl ether ⁵ 10625Methylene Chloride ⁵ 20624Chrysene ⁵ 10625		Chlorodibromomethane ⁵	10	624	Benzo(a)anthracenes	10	625
2-Chloroethyl vinyl ether410624 $3,4$ -Benzofluonnthene510625Chloroform510624Benzo(ghi)perylene620625Dichlorobromonetharm510624Benzo(k)fluoranthene5106251.1-Dichloroethane510624Bis(2-chloroethoxy) methane5106251.2-Dichloroethane510624Bis(2-chloroethyl) ether5106251.1-Dichloroethylene510624Bis(2-chloroethyl) ether5106251.2-Dichloroptopane510624Bis(2-chloroisopropyl) ether5106251.3-Dichloroptopane510624Bis(2-chloroisopropyl) ether5106251.3-Dichloroptopane510624Bis(2-chloroisopropyl) ether5106251.3-Dichloroptopane510624Bis(2-chloroisopropyl) ether5106251.3-Dichloroptopane510624Bis(2-chloroisopropyl) ether5106251.3-Dichloroptopane510624Bis(2-chloroisopropyl) ether5106251.3-Dichloroptopylene510624Bis(2-chloroisopropyl) ether510625Methyl Bronnide [Bronomethane]6506242-Chloronapthalene510625Methyl Chloride [Chloromethane]6506244-Chlorophenyl phenyl ether510625Methyl Chloride [Chloride520624Chrysene510625		Chloroethane ⁶	50	624	Benzo(a)pyrene	10	625
Chloroform*10624Benzo(ghi)perylene*20625Dichlorobromometharm*10624Benzo(k)fluoranthene*106251.1-Dichloroethane*10624Bis(2-chloroethoxy) methane*106251.2-Dichloroethano*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroethyl) ether*106251.1-Dichloroptopane*10624Bis(2-chloroisopropyl) ether*106251.2-Dichloropropylene*10624Bis(2-chloroisopropyl) ether*106251.3-Dichloropropylene*10624Bis(2-chloroisopropyl) ether*106251.3-Dichloropropylene*10624Bis(2-chloroisopropyl) ether*10625Methyl Bromide [Bromomethane]*506242-Chloronapthalene*10625Methyl Chloride [Chloromethane]*506244-Chlorophenyl phenyl ethers*10625Methyl Chloride [Chloromethane]*20624Chrysene*10625		2-Chloroethyl vinyl ether ⁴	10	624	3.4-Benzofluonmthene*	10	625
Dichlorobromonetharm*10624Benzo(k)fluoranthene*106251.1-Dichloroethane*10624Bis(2-chloroethoxy) methane*106251.2-Dichloroethano*10624Bis(2-chloroethyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroisopropyl) ether*106251.1-Dichloroethylene*10624Bis(2-chloroisopropyl) ether*106251.2-Dichloropropane*10624Bis(2-chloroisopropyl) ether*106251.3-Dichloropropylene*10624Bis(2-chloroisopropyl) ether*106251.3-Dichloropropylene*10624Bis(2-chloroisopropyl) ether*106251.3-Dichloropropylene*10624Butyl benzyl phthalate*106251.4-Dichloropropylene*10624Butyl benzyl phthalate*106251.5-Dichloropropylene*10624Butyl benzyl phthalate*106251.4-Dichloropropylene*106242-C'hloronapthalcue*10625Methyl Bromide [Bromomethane]*506242-C'hloronapthalcue*10625Methyl Chloride [C'hloromethane]*20624C'hlorophenyl phenyl ethers*10625Methylene C'hloride*20624C'hlorophenyl phenyl ethers*106251.620624C'hlorophenyl phenyl ethers*106251.520624C'hlorophenyl phenyl ethers*106251.6 <td></td> <td>Chloroform⁵</td> <td>10</td> <td>624</td> <td>Benzo(ghi)perylene6</td> <td>20</td> <td>625</td>		Chloroform ⁵	10	624	Benzo(ghi)perylene6	20	625
1,1-Dichlotocthane ⁵ 10624Bis(2-chlorocthoxy) methane ⁵ 10625 $1,2$ -Dichlotocthano ⁵ 10624Bis(2-chloroethyl) ether ⁵ 10625 $1,1$ -Dichlotocthylene ⁵ 10624Bis(2-chloroisopropyl) ether ⁵ 10625 $1,1$ -Dichlotoptoppane ⁵ 10624Bis(2-chloroisopropyl) ether ⁵ 10625 $1,3$ -Dichlotoptopylene ⁵ 10624Bis(2-chlythexyl) phthalate ⁵ 10625 $1,3$ -Dichlotoptopylene ⁵ 106244-Bromophenyl phenyl ether ⁴ 10625 $1,3$ -Dichlotoptopylene ⁵ 10624Butyl benzyl phthalate ⁵ 10625 $1,3$ -Dichlotoptopylene ⁵ 10624Butyl benzyl phthalate ⁵ 10625 $1,4$ -Dichlotoptopylene ⁵ 106242-Chloronapthalene ⁵ 10625 $1,4$ -Dichlotoptopylene ⁵ 106242-Chloronapthalene ⁵ 10625 $1,4$ -Dichlotoptopylene ⁵ 206242-Chloronapthalene ⁵ 10625 $1,4$ -Dichlotoptopylene ⁶ 206242-Chloronapthalene ⁵ 10625 $1,4$ -Chlorophenyl phenyl ethers106256242-Chlorophenyl phenyl ethers10625 $1,4$ -Chlorophenyl phenyl ethers106256242-Chlorophenyl phenyl ethers10625 $1,4$ -Chlorophenyl phenyl ethers106256242-Chlorophenyl phenyl ethers10625 $1,4$ -Chlorophenyl phenyl ethers106256242-Chlorophenyl phenyl ethe		Dichlorobromonetharm ⁵	10	624	Benzo(k)fluoranthene ⁵	10	625
1,2-Dichloroethano*10624Bis(2-chloroethyl) ether*10625 $1,1$ -Dichloroethylene*10624Bis(2-chloroisopropyl) ether*10625 $1,2$ -Dichloropropane*10624Bis(2-cthylhexyl) phthalate*10625 $1,3$ -Dichloropropylene*10624Bis(2-cthylhexyl) phthalate*10625 $1,3$ -Dichloropropylene*106244-Bromophenyl phenyl ether*10625 $1,3$ -Dichloropropylene*10624Butyl benzyl phthalate*10625 $1,3$ -Dichloromethane!*506242-Chloronapthalene*10625Methyl Chloride [Chloromethane]*506244-Chlorophenyl phenyl ethers*10625Methyl Chloride [Chloromethane]*20624Chrysene*10625	•	1.1-Dichloroethane ⁵	10	624	Bis(2-chloroethoxy) methane ⁵	10	625
1,1-Dichloroethylene ⁵ 10624Bis(2-chloroisopropyl) cther ⁵ 10625 $1,2$ -Dichloropropane ⁵ 10624Bis(2-chlylhexyl) phthalate ⁵ 10625 $1,3$ -Dichloropropylene ⁵ 106244-Bromophenyl phenyl ether ⁴ 10625 $1,3$ -Dichloropropylene ⁵ 10624Butyl benzyl phthalate ⁵ 10625 $1,3$ -Dichloropropylene ⁵ 10624Butyl benzyl phthalate ⁵ 10625 $1,3$ -Dichloromethanel ⁶ 506242-Chloronapthalene ⁵ 10625Methyl Bromide [Bromomethane] ⁶ 506244-Chlorophenyl phenyl ethers ⁵ 10625Methyl Chloride [Chloromethane] ⁶ 20624Chrysene ⁵ 10625		1,2-Dichloroethano ⁵	10	624	Bis(2-chloroethyl) ether ⁵	10	625
1.2-Dichloropropane ⁵ 10624Bis(2-cthylhexyl) phthalate ⁵ 106251.3-Dichloropropylene ⁵ 106244-Bromophenyl phenyl ether ¹ 10625Fthylbenzene ⁵ 10624Butyl benzyl phthalate ⁵ 10625Methyl Bromide [Bromomethane] ⁶ 506242-Chloronapthalene ⁵ 10625Methyl Chloride [Chloromethane] ⁶ 506244-Chlorophenyl phenyl ethers ⁵ 10625Methyl Chloride [Chloromethane] ⁶ 20624Chrysene ⁵ 10625		1.1-Dichloroethylene*	10	624	Bis(2-chloroisopropyl) cther ⁵	10	625
1.3-Dichloropropylene*106244-Bromophenyl phenyl ether*10625Fthylbenzene*10624Butyl benzyl phthalate*10625Methyl Bromide [Bromomethane]*506242-Chloronapthalene*10625Methyl Chloride [Chloromethane]*506244-Chlorophenyl phenyl ethers*10625Methyl Chloride [Chloromethane]*506244-Chlorophenyl phenyl ethers*10625Methylene Chloride*20624Chrysene*10625		1,2-Dichloropropane ⁵	10	624	Bis(2-cthylhexyl) phthalate ⁵	10	625
Fithylbenzene ⁵ 10 624 Butyl benzyl phthalate ⁵ 10 625 Methyl Bromide [Bromonethane] ⁶ 50 624 2-Chloronapthalene ⁵ 10 625 Methyl Chloride [Chloronethane] ⁶ 50 624 4-Chlorophenyl phenyl ethers ⁵ 10 625 Methyl Chloride [Chloronethane] ⁶ 20 624 Chrysene ⁵ 10 625		1.3-Dichloropropylene*	10	624	4-Bromophenyl phenyl ether'	10	625
Methyl Bromide [Bromomethane] ⁶ 50 624 2-Chloronapthalene ⁵ 10 625 Methyl Chloride [Chloromethane] ⁶ 50 624 4-Chlorophenyl phenyl ethers ⁵ 10 625 Methylene Chloride ⁵ 20 624 Chrysene ⁵ 10 625) 	Fthylbenzene	10	624	Butyl benzyl phthalate'	10	625
Methyl Chloride [Chloromethane] ⁶ 50 624 4-Chlorophenyl phenyl ethers ⁵ 10 625 Methylene Chloride ⁵ 20 624 Chrysene ⁵ 10 625		Methyl Bromide [Bromomethane]6	50	624	2-Chloronaphalene	10	625
Methylene Chloride ⁵ 20 624 Chrysene ⁵ 10 625		Methyl Chloride [Chloromethane]	50	624	4-Chlorophenyl phenyl ethers ⁵	10	625
pre aryche e andrae		Methylene Chloride	20	624	Chrysene ⁵	10	625

Enid -- OK0021628 Permit Part II -- Page 17

MINIMUM QUANTIFICATION LEVELS (MQLs)

BASE/NUETRAL COMPOUNDS	(ug/L)	EPA METHOD	<u>PE</u>
Dibenzo (a,h) anthaccue	20	625	Ene
1,2-Dichlorobenzene*	10	625	Fne
1,3-Dichlorobenzene ⁵	10	625	He
1,4-Dichlorohenzene ⁵	10	625	lic
3.3'-Dichlorobenzidirm"	50	625	(F
Diethyl Phthalate ⁵	10.	625	PC
Dimethyl Phthalate ⁴	10	625	PC
Di-n-Butyl Phthalate ⁵	10	625	ዮር
2,4-Dinitrotoluene ⁵	· 10	625	PC
2.6-Dinitrotoluene ⁵	10 .	625	PC
Di-n-octyl Phthalate ⁵	10	625	PC
1.2-1)iphenythydmzine ⁴	20	625	PC
Fluoranthene	10	625	To
Fluorene	10	625	
Hexachlorobenzene ⁵	10	625	
Hexachlorobutadiene*	10	625	¹ B
Hexachlorocyclopentadiene ⁶	10	625	րս
Hexachlorocthane ⁶	20	625	2
Indeno (1,2,3-cd) pyrene ⁶	20	625	312
(2.3-o-phenylene pyrene)			4 N
Isophorone ⁵	10	625	pu
Naphthalene ⁵	10	625	5 C
Nitrobenzene	10	625	⁶ N
N-nitrosodimethylamine ⁶	50	625	⁷ C
N-nitrosodi-n-propylamine ⁶	20	625	^R C
N-nitrosodiphenylamine ⁶	20	625	÷
Phenanthrene ^s	10	625	
Pyrene	10	625	
1,2,4-Trichlorobenzene	10	625	
PESTICIDES			
Aldrin ⁷	0.05	608	
Alpha-BHC ⁷	0.05	608	
Bet&-BHC ⁷	0.05	609	
Gamma-BHC (Lindanc) ⁷	0.05	608	•
Delta-BHC ⁷	0.05	608	
Chlordaue ⁷	0.2	608	
A A-DDDT ⁷	0.1	608	
4.4 (b) 100 (c) 100 10	0.1	608	
	0.1	608	
ча-налицир-нала) манаца ⁷	0.1	608	
Cricking	0.1	688	
Aipha-choostilian	01	608	
Heia-endosultan	0.1	600	
Endosultan sullate	<i>v.</i> (0.00	

PESTICIDES	(ug/l_)	EPA METHOD
Findrin ⁷	.1	609
Fudiin aldehyde'	.1	609
Heptachlor ⁷	.05	608
Heptachlor epoxide ⁷	.05	608
(BHC-hexachlorocyclohexane)		
PCB-12427	1.0	608
PCB-1254	1.0	608
PCB-1221	1.0	608
PCB-1232	1.0	608
PCB-1248	1.0	608
PCB-1260	1.0	609
PCB,1016	1.0	608
Toxaphene ⁷	5.0	608

Based on Contract Required Detection level (CRDL) developed pursuant to 40 CFR Part 300.430(b)(8) ² Method 213.2, 239.2, 220.2, 272.2 ³Dioxin National Strategy ⁴No CRQL(Contract required Quantification Level developed

pursuant to 40 CFR Part 300.430(h)(8)) established ⁵CRQL basis, equivalent to ML ⁶ML basis, higher than CRQL ⁷CRQL basis, no ML established ⁸CRQL basis, bigher than ML

H & YEAR)	Comparative Standards (Loadings in Ibs/day; concentration in mg/l unless otherwise noted)	Average Maximum Permut or CK Limits Effluent Allowable Concentrations Concentration Headworks Daily Concentration Loading or Maximum	Concentration												
AHOMA DEQ SAMPLE UNG RESULTS ^I SUMMARY TABLE L PRETREATMENT REPORT, <u>(MONT</u>	POTW. Monitoring Results mcentrations in mg/ unless otherwise noted)	Calculated Maximum A Headworks Effluent E Loading (lbs/d) Concentration C	· · ·			· · · · · · · · · · · · · · · · · · ·								· · ·	
OKL POTW MONITOR FOR THE <u>(CA NAME)</u> ANNUAL	Detection Level (DL) Concentrati on Used (Co	ug/l) Average POTW Influent Average Concentration Flow (M								-					
	Minimum Quantification POLLUTANT	Concentration (mg/l or ug/l) ²	Arsenic (Total	Cadmium (Total	Chromium (Total)	Copper (Total)	Lead (Total)	Mercury (Total))	Nickel (Total)	Silver (Total))	Zinc (Total ¹	Cyanide (Total) Other pollutants detected:		•	

Eni, JK 021628 Permit Part II ge 18

1¹ it is advised that the influent amples are collected considering flow detention time through each plant. Analytical MQLs should be used so that the data can also be used for Local Limits assessment and application purposes.

The same of a

- 62

ກ່ດ	l			
En JK 02162 nit Part II jge 1		COMMENTS		
Реп	·	CURRENT STATUS		
	NEN	ANCE	DATE DUE	
	IONS TAI	COMPLI	DA TE ISSUED	
•	CEMENT ACT	PENALTIES		
	S - ENFOR	-	OTHER	
	PLIANT USER	IONS TAKEN	CRIMINAL	
	ON-COMI	BER OF ACT	CIVIL	
	N TTLY N	WUN	A.O.	
	IGNIFIC.		N.O.V.	
:	S)	OF	LIMITS	
		NATURE VIOLATI	REPORTS	
			USER	

En. OK0021628 Permit Part I age 20

PRETREATMENT PROGRAM STATUS REPORT -- UPDATED SIGNIFICANT INDUSTRIAL USERS LIST

			· ·		
	EFFLUENT LIMITS				
COMPLIANCE STATUS		SELF- MONITORING			
	REPORTS	SEMI- ANNUAL			
		90-DAY			
•		BMR			
•	TIMES	SAMPLED	· · · · · · · · · · · · · · · · · · ·		· · · · ·
· .	TIMES	INSPECTED			
	NEW	USER	•		
IO ALLA	CUMENT	LAST ACTION		-	
. ر د	ŠĞ	NYY			2
CATEGORICAL DETERMINATION		DETERMINATION	· · · · · · · · · · · · · · · · · · ·		
INDUSTRIAL SIC USER CODE		CODE			
		USER			

PART HI. STANDARD CONDITIONS FOR OPDES MUNICIPAL/DOMESTIC PERMIT

SECTION A. Definitions

In addition to the definitions included in the Oklahoma Pollutant Discharge Elimination System Act (OPDFS Act), Title 27 O.S. Supp. 1996, Section 2-6-201 et seq., and the rules of the State of Oklahoma Department of Environmental Quality (DEQ) adopted thereunder (See OAC 252:605); the following definitions shall apply to this permit:

- 1. "Act" means the OPDES Act as amended.
- "Applicable effluent standards and limitations" means all state and federal effluent standards and limitations to which a discharge is subject under the Act, including, but not limited to, effluent limitations, standards of performance, toxic effluent standards and prohibitions, and pretreatment standards.
- 3. "Applicable water quality standards" means all water quality standards to which a discharge is subject under the Act.
- 4. "Average limitations"
 - a. "7-day average" (or weekly average), other than for coliform bacteria, is the arithmetic mean of the daily values for all effluent samples collected during a calendar week, calculated as the sum of all daily discharges measured during a calendar week divided by the number of daily discharges measured during that week. The "7-day average" for coliform bacteria is the geometric mean of the values for all effluent samples collected during a calendar week.
 - b. "30-day average" (or monthly average), other than for coliform bacteria, is the arithmetic mean of the daily values for all effluent samples collected during a calendar month, calculated as the sum of all daily discharges measured during a calendar month divided by the number of daily discharges measured during that month. The "30-day average" for coliform bacteria is the geometric mean of the values for all effluent samples collected during a calendar month.
- 5. "Bypass" means the diversion, whether intentional or unintentional, of waste streams from any portion of the collection system or treatment facility.
- 6. "Daily discharge" means the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in terms of mass, the "daily discharge" is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the "daily discharge" is calculated as the total mass of the pollutant discharged over the sampling day. For pollutants with limitations expressed in other units of measurement, the "daily discharge" is calculated as the concentrations made using a composite sample shall be the concentration of the composite sample. When grab samples are used, the "daily discharge" determination of concentration shall be the arithmetic average (weighted by flow value) of all samples collected during that sampling day.
- 7. "Daily maximum" discharge limitation means the highest allowable "daily discharge" during the calendar month.
- 8. "Environmental Protection Agency" (EPA) means the U.S. Environmental Protection Agency.
- "Executive Director" means the Executive Director of the State of Oklahoma Department of Environmental Quality (DFQ) or his/her authorized representative(s).
- 11. "Industrial user" means a nondomestic discharger, as identified in 40 CFR Part 403, introducing pollutants to a publicly owned treatment works.
- "Oklahoma Pollutant Discharge Elimination System" (OPDES) means the state program for issuing, modifying, revoking and reissuing, terminating, monitoring and enforcing permits, and imposing and enforcing pretreatment requirements, under the Act.
- 13. "Oklahoma Department of Environmental Quality" also known as (DEQ), means the State of Oklahoma Department of Environmental Quality.
- 14. "OPDES Act" means the Oklahoma Pollutant Discharge Elimination System Act, Title 27 O.S. Supp. 1996, Section 2-6-201 et seq.
- 15. "Samples"
 - a. For coliform bacteria, a sample consists of one effluent grab portion collected during a 24-hour period at peak loads.
 - b. "Grab sample" means an individual sample collected in less than 15 minutes.
 - c. "SBR (sequential batch reactor) sample and the various composite samples" are as defined in the OPDES Act, the Oklahoma Environmental Quality Code, rules transferred to or promulgated thereunder by DEQ.

SBR Composite Sample:

SBR Sample

A minimum of three aliquots collected from the discharge of a reactor. The first aliquot must be collected no later than '4 time, the second approximately '4 time, and the third no earlier than '4 time from the initiation of a discharge cycle to the stoppage of the discharge cycle. The three aliquots shall consist of equal portions unless the rate of discharge from the reactor varies significantly during the cycle, in which case the measurement of the flow occurring at the time of their collection

Single Composite SBR Sample

One SBR sample collected from each reactor during one discharge cycle and composited proportional to the volume discharged from each of the reactors. The sample from at least one of the reactors shall represent the expected period of peak influent organic loading.

Two-Cycle Composite SBR Sample

One SBR sample collected from two consecutive discharge cycles of each reactor and composited proportional to the volume discharged during each cycle of each reactor. The sample from at least one cycle shall represent the expected period of peak influent organic loading.

Three-Cycle Composite SBR Sample

One SBR sample collected from three consecutive discharge cycles of each reactor and composted proportional to the volume discharged during each cycle of each reactor. The sample from at least one cycle shall represent the expected period of peak influent organic loading.

- d. "24-hour composite sample" consists of a minimum of 12 effluent portions collected at equal time intervals over the 24-hour period and combined proportional to flow or a sample collected at frequent intervals proportional to flow over the 24-hour period.
- c. "12-hour composite sample" consists of 12 effluent portions collected no closer together than one hour and composited according to flow. The daily sampling intervals shall include the highest flow periods.
- f. "6-bour composite sample" consists of six effluent portions collected no closer together than one hour (with the first portion collected no earlier than 10:00 a.m.) and composited according to flow.
- g. "3-hour composite sample" consists of three effluent portions collected no closer together than one hour (with the first portion collected no carlier than 10:00 a.m.) and composited according to flow.
- 16. "Severe property damage" means substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.
- 17. "Sewage sludge" means the solids, residues and precipitates separated from or created in sewage by the unit processes of a publicly owned treatment works. Sewage as used in this definition means any wastes, including wastes from humans, households, commercial establishments, industries, and storm water runoff, that are discharged to or otherwise enter a publicly owned treatment works.
- 18. "Treatment works" means any devices and systems used in the storage, treatment, recycling and reclamation of municipal sewage and industrial wastes of a liquid nature to implement the Act, or necessary to recycle or reuse water at the most economical cost over the estimated life of the works, including intercepting sewers, sewage collection systems, pumping, power and other equipment, and their appurtenances, extension, improvement, remodeling, additions, and alterations thereof.
- 19. "Upset" means an exceptional incident in which there is unintentional and temporary noncompliance with technology-based permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.
- 20. "MGD" means million gallons per day.
- 21. "mg/l" means milligrams per liter or parts per million (ppm).
- 22. "µg/l" means micrograms per liter or parts per billion (pph).

SECTION B. Monitoring, Record Keeping, Reporting and Liabilities

Monitoring

a. Site and Frequency

All monitoring undertaken in compliance with the terms of this permit shall be conducted at the frequency and sample site specified in Part I, Section A of this permit and in accordance with the OPDES Act and the Oklahoma Environmental Quality Code. Grab or composite in Part III, Section B.5 below.

b. Representative Samples

Samples and measurements taken for the purpose of monitoring shall be representative of the monitored adjuity.

c. Averaging of Measurements

Calculations of all limitations which require averaging of measurements shall utilize an arithmetic mean unless otherwise specified by the Executive Director in the permit.

d. Additional Monitoring by the Permittee

If the permittee monitors any pollutant more frequently than required by this permit, using test procedures approved under 40 CFR Part 136 or as specified in this permit, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the Discharge Monitoring Report (DMR). Such increased monitoring frequency shall also be indicated on the DMR.

2. Testing Requirements

a. Methods

All sampling and analytical methods used to meet monitoring requirements specified above shall conform to the Act, 40 CFR Part 136, and DEQ rules and regulations.

b. Maintenance and Calibration

The permittee shall calibrate and perform maintenance procedures on all monitoring and analytical instruments at intervals frequent enough to ensure accuracy of measurements and shall maintain appropriate records of such activities.

c. Quality Control

An adequate analytical quality control program, including the analyses of sufficient standards, spikes, and duplicate samples to insure the accuracy to all required analytical results shall be maintained by the permittee or designated commercial laboratory.

3. Flow Measurements

Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to ensure the accuracy and reliability of measurements of the volume of monitored discharges. The devices shall be installed, calibrated, and maintained to insure that the accuracy of the measurements is consistent with the accepted capability of that type of device. Devices selected shall be capable of measuring flows with a maximum deviation of less than 10% from true discharge rates throughout the range of expected discharge rates.

Records

a. Contents

Records of monitoring information shall include:

- (1) The date, exact place, and time of sampling or measurements;
- (2) The individual(s) who performed the sampling or measurements;
- (3) The date(s) and time(s) analyses were performed;
- (4) The individual(s) who performed the analyses:
- (5) The analytical techniques or methods used; and
- (6) The results of such analyses.

b. Retention

The permittee shall retain records of all monitoring information, including all calibration and maintenance records and all original chart recordings for continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit, for a period of at least three (3) years from the date of the sample, measurement, report, or application. This period may be extended by request of the Executive Director at any time.

5. Discharge Monitoring Reports (DMRs)

All monitoring information required in Part I, Section A of this permit shall be included on DMRs (FPA form 3320-1). Reporting periods shall end on the last day of the month. The reports shall be prepared monthly. The original and one copy shall be submitted to the Oklahoma Department of Environmental Quality at the address shown below no later than the tenth (10th) day of the following month. A copy shall also be submitted simultaneously to the appropriate local DFQ office. All operating records and reports shall comply with the OPDFS Act, the Oklahoma Environmental Quality Code, and the requirements of 40 CFR 122.41(j).

Water Quality Division Oklahoma Department of Environmental Quality P.O. Box 1677 Oklahoma City, OK 73101-1677

Noncompliance Reports 6.

- Twenty-Four Hour Reporting
 - The permittee shall report any noncompliance which may endanger health or the environment. Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. The DFO shall be notified by calling 1-800-256-2365 or 702-8290 (Oklahoma City Metropolitan Area). A written submission shall be provided within five (5) days of the time the permittee becomes aware of the circumstances. The report shall contain the following information:
 - (a) A description of the noncompliance and its cause;
 - The period of noncompliance including exact dates and times, and if the noncompliance has not been corrected, the anticipated (b) time it is expected to continue; and,
 - Steps being taken to reduce, eliminate, and prevent recurrence of the noncomplying discharge. (c)
 - The following shall be included as information which must be reported within 24 hours: (2)
 - Any unanticipated bypass which exceeds any effluent limitation in the permit: (a)
 - Any upset which exceeds any effluent limitation in the permit; (b)
 - Any violation of a maximum daily discharge limit for any of the pollutants listed by the Executive Director in Part I, Section A; (c)and.
 - (d) Any bypass in the collection system [sanitary sewer overflow (SSO)].
 - The Executive Director may waive the written report on a case-by-case basis if the oral report has been received within 24 bours. (3)
- Other Noncompliance h.

The permittee shall report all instances of noncompliance not reported under Part III, Sections B.5 and B.6.a or the reporting requirements of any Schedule of Compliance included in Part I. Section B at the time monitoring reports are submitted. The reports shall contain the information listed at Part III, Section B.6.a.

Oil and Hazardous Substance Liability 7.

Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties to which the permittee is or may be subject under the Act.

Federal Penalties for Violations of Permit Conditions

Nothing in this permit shall be construed to relieve the permittee from civil or criminal penalties for noncompliance. Any false or materially misleading representation or concealment of information required to be reported by the provisions of the permit, the Act, or applicable regulations, which avoids or effectively defeats the regulatory purpose of the permit may subject the Permittee to criminal enforcement pursuant to 18 U.S.C. Section 1001.

- ('riminal а.
 - (1) Negligent Violations

The Act provides that any person who negligently violates permit conditions implementing the Act is subject to a fine of not less than \$2,500 nor more than \$25,000 per day of violation, or by imprisonment for not more than one (1) year, or both.

Knowing Violations (2)

> The Act provides that any person who knowingly violates permit conditions implementing the Act is subject to a fine of not less than \$5,000 nor more than \$50,000 per day of violation, or by imprisonment for not more than three (3) years, or both.

Knowing Endangerment (3)

> The Act provides that any person who knowingly violates permit conditions implementing the Act and who knows at that time that he is placing another person in imminent danger of death or serious bodily injury is subject to a fine of not more than \$250,000, or by imprisonment for not more than fifteen (15) years, or both.

False Statements (4)

> The Act provides that any person who knowingly makes any false material statement, representation, or certification in any application, record, report, plan, or other document filed or required to be maintained under the Act or who knowingly falsifies, tampers with, or renders inaccurate, any monitoring device or method required to be maintained under the Act, shall upon conviction, be punished by a fine of not more than \$10,000, or by imprisonment for not more than two (2) years, or by both. If a conviction of a person is for a violation committed after a first conviction of such person under this paragraph, punishment shall be by a fine of not more than \$20,000 per day of violation, or by imprisonment of not more than four (4) years, or by both. (See Section 2-6-206 of the Act).

b. Civil Penaltics

The Act provides that any person who violates a permit condition implementing the Act is subject to a civil penalty not to exceed \$27,500 per day for each violation.

c. Administrative Penaltics

The Act provides that any person who violates a permit condition implementing the Act is subject to an administrative penalty, as follows:

(1) Class I Penalty

Not to exceed \$11,000 per violation nor shall the maximum amount exceed \$27,500.

(2) Class II Penalty

Not to exceed \$11,000 per day for each day during which the violation continues nor shall the maximum amount exceed \$137,500.

9. State Penalties

a. Civil and Administrative

For any violation of the limitations and/or conditions of this permit, the State may assess a fine of up to \$10,000 per day per violation.

b. Criminal

Violations of the terms of this permit constitute a misdemeanor under Oklahoma-Statutes with various provisions for fines and jail terms

ECTION C. Other Conditions

1. Permit Application

a. Timely Application

Upon timely application for a permit, any prior permit remains in effect until a new one is issued.

h. Date of Application

If the permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the permittee must apply for and obtain a new permit. The application shall be submitted at least 180 days before the expiration date of this permit unless otherwise authorized by the Executive Director. He or she may grant permission to submit an application less than 180 days in advance but no later than the permit expiration date. Continuation of expiring permits shall be governed by regulations promulgated at 40 CFR 122.6 and any subsequent amendments.

c. Relevant Facts

When the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the Executive Director, it shall promptly submit such facts or information.

2. Changes

- a. Change in discharge
 - (1) Anticipated Noncompliance

The permittee shall give advance notice of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements.

(2) Municipal Permits

Any change in the facility discharge (including the introduction of any new source or significant discharge or significant changes in the quantity or quality of existing discharges to the treatment system that may result in new or increased discharges of pollutants) must be reported to the permitting authorities. In no case are any new connections, increased flows, or significant changes in influent quality permitted that will cause violations or add to existing violations of the effluent limitations specified berein.

(3) Other Permits

The permittee shall give notice to the Executive Director as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required only when:

- (a) The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR 122.29(b); or.
- (b) The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to all pollutants whether or not they are subject to effluent limitations in the permit.
- b. Transfer of ownership or control

This permit is not transferable to any person except after notice to the Executive Director. The Executive Director may require modification or revocation and reissuance of the permit to change the name of the permittee and incorporate such other requirements as necessary under the Act.

.3. Property Rights

This permit does not convey any property rights of any sort, or any exclusive privilege.

4. Duty to Comply

- a. All authorized discharges shall comply with the rules of the DFQ, which are hereby incorporated by reference: the Act and OPDES Regulations, and all provisions, conditions, and requirements included in this permit.
- b. The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of applicable state and federal laws and the Act, the Oklahoma Environmental Quality Code and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.
- c. The permittee shall comply with effluent standards or prohibitions established under the Act for toxic pollutants within the time provided in the regulations that establish these standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.

5. Duty to mitigate

The permittee shall take all reasonable steps to minimize or prevent any discharge in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.

Duty to halt or reduce activity

It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.

7. Duty to provide information

The permittee shall furnish within a reasonable time, any information which the Executive Director may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. The permittee shall also furnish, upon request, copies of records required to be kept by this permit.

8. Permit modification, suspension and revocation

After notice and opportunity for a heating, as is required by law, this permit may be modified, suspended, revoked and reissued, or terminated during its term in accordance with 40 CFR 122.62 and 122.64; and Title 27 O.S. Supp. 1996, Section 2-6-201 et seq., and the rules of the State of Oklahoma Department of Environmental Quality (DEQ) adopted thereunder (See OAC 252:605). The filing of a request for a permit modification or reissuance, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition.

9. Proper operation and maintenance

- a. The permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by permittee as efficiently as possible and in a manner which will minimize upsets and discharges of excessive pollutants and will achieve compliance with the conditions of this permit. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of backup or auxiliary facilities or similar systems which are installed by a permittee only when the operation is necessary to achieve compliance with the conditions of this permit.
- b. The permittee shall provide an adequate operating staff which is duly qualified to carry out operation, maintenance and testing functions required to insure compliance with the conditions of this permit.
- c. Collected screenings, slurries, sludges and other solids shall be disposed of in accordance with the Oklahoma Solid Waste Management Act and in such a manner as to prevent entry of those wastes (or runoff from the wastes) into waters of the state and in compliance with applicable rules of the DEQ.

10. Power Failure

The permittee is responsible for maintaining adequate safeguards to prevent the discharge of untreated or inadequately treated wastes during electrical power failures either by means of alternative power sources, standby generators, or retention of inadequately treated effluent.

11. Upsets and Bypasses

a. Hpsets

- (1) An upset constitutes an affirmative defense to an enforcement action brought for noncompliance with technology-based permit effluent limitations if the following requirements are met. A permittee who wishes to establish the affirmative defense of upset shall demonstrate through properly signed, contemporaneous operating logs, or other relevant evidence that:
 - (a)' An upset occurred and that the permittee can identify the specific cause(s) of the upset;
 - (b) The permitted facility was at the time being properly operated;
 - (c) The permittee submitted notice of the upset as required in Part III, Section B.6 of this permit;
 - (d) The permittee complied with any remedial measures under Part III, Section C.5.
- (2) Burden of Proof. In any enforcement proceeding, the permittee seeking to establish the occurrence of an upset has the burden of proof.

b. Bypasses

- (1) Anticipated bypass. If the permittee knows in advance of the need for a bypass, it shall submit prior notice, if possible at least ten days before the date of the bypass.
 - (a) Bypass not exceeding limitations. The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the reporting requirements of Part III, Sections C.11.b(1) and (2).
 - (b) Bypass exceeding limitations is prohibited, and the Executive Director may take enforcement action against a permittee for bypass, unless:
 - i. Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;
 - ii. There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, relention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgement to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and,
 - iii. The permittee submitted notices required by Part III, Section B.6.
 - (c) The Executive Director may allow an anticipated hypass that exceeds limitations after considering its adverse effects, if he/she determines that it will meet the three conditions listed at Part III, Section C.11.b.(1)(b).
 - (2) Unanticipated bypass. The permittee shall, within 24 hours, submit notice of an unanticipated hypass as required in Part III, Section B.6
- 12. Percent Removal

For publicly owned treatment works, the 30-day average (or monthly average) percent removal for Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) shall not be less than 85 percent unless otherwise authorized by the permitting authority in accordance with 40 CFR 133.103. This requirement may be waived in permits containing mass loading limits for BOD and TSS.

13. Right of entry

The permittee shall allow the Executive Director, and/or his/her authorized representative(s), upon presentation of credentials and such other documents as may be required by the law to:

- a. Enter upon the permittee's premises or other premises under the control of the permittee, where an effluent source is located or may be located or in which any records are required to be kept under the terms and conditions of this permit;
- Have access to and copy at reasonable times any records required to be kept under the terms and conditions of this permit, or the Act or DEQ rules;

- c. Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), maintenance, practices or operations regulated or required under this permit; and
- d. Sample or monitor at reasonable times, for the purpose of assuring permit compliance or as otherwise authorized by the Act, any substances or parameters at any location.

14. Toxic Effluent Standards

Notwithstanding Section III.C.8 of this permit, if any toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is pronulgated under the Act for a toxic pollutant which is present in the discharge and that standard or prohibition is more stringent than any limitation on the pollutant in this permit, this permit shall be modified or revoked and reissued to conform to the toxic effluent standard or prohibition.

15. Signatory Requirements

All applications, reports, or information submitted to the Executive Director shall be signed and certified.

- All permit applications shall be signed as follows:
 - (1) For a corporation by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means:
 - (a) A president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision making functions for the corporation; or,
 - (b) The manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25 million (in second-quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance-with corporate procedures.
 - (2) For a partnership or sole proprietorship by a general partner or the proprietor, respectively.
 - (3) For a municipality, state, federal, or other public agency by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a federal agency includes:
 - (a) The chief executive officer of the agency, or
 - (b) A senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency.
 - b. All reports required by the permit and other information requested by the Executive Director shall be signed by a person described above or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 - (1) The authorization is made in writing by a person described above;
 - (2) The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity, such as the position of plant manager, operator of a well or a well field, superintendent, or position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company. A duly authorized representative may thus be either a named individual or an individual occupying a named position; and,
 - (3) The written authorization is submitted to the Executive Director.
 - Certification. Any person signing a document under this section shall make the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

16. Confidentiality

c.

Except for applications, effluent data, permits, and other data specified in 40 CFR 122.7, any information submitted pursuant to this permit may be claimed as confidential by the submitter. The Executive Director will rule upon such claim in accordance with the Act. If no claim is made at the time of submission, information may be made available to the public without further notice.

Ebstandard municipal permit documents/part ili doc updated 12/6/1999

Part IV SEWAGE SLUDGE REQUIREMENTS PERMIT

INSTRUCTIONS TO PERMITTEES

Select only those Elements and Sections which apply to your sludge reuse or disposal practice.

If your facility utilizes more than one type of disposal or reuse method (for example, Element 1 and Element 2 apply) or the quality of your sludge varies (for example, Section II and Section III of Element 1 apply) use a separate Discharge Monitoring Report (DMR) for each Section that is applicable.

The sludge DMRs shall be due by February 19th of each year and shall cover the previous January through December time period.

The sludge conditions <u>do not apply</u> to wastewater treatment lagoons where sludge is not wasted for final reuse/disposal. If the sludge is not removed, the permittee shall indicate on the DMR "No Discharge."

ELEMENT 1 - LAND APPLICATION

SECTION I:	Page 1 - Requirements Applying to All Sewage Sludge Land Application			
SECTION II:	Page 4 - Requirements Specific to Bulk Sewage Sludge for Application to the Land Meeting Class A or B Pathogen Reduction and the Cumulative Loading Rates in Table 2, or Class B Pathogen Reduction			
·	and the Pollutant Concentrations in Table 3			
TION III:	Page 7 - Requirements Specific to Bulk Sewage Sludge Meeting Pollutant Concentrations in Table 3 and Class A Pathogen Reduction Requirements			
ECTION IV:	Page 8 - Requirements Specific to Sludge Sold or Given Away in a Bag or Other Container for Application to the Land that does not Meet the Pollutant Concentrations in Table 3			

ELEMENT 2 - MUNICIPAL SOLID WASTE LANDFILL DISPOSAL

SECTION I:

۸.

Page 10 - Requirements Applying to All Municipal Solid Waste Landfill Disposal Activities

ELEMENT 1 - LAND APPLICATION

SECTION I. REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE LAND APPLICATION

General Requirements

- The permittee shall handle and dispose of sewage sludge in accordance with the Oklahoma Pollutant Discharge Elimination System (OPDES) Act (hereafter "the Act") and all other applicable federal and state regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants which may be present in the sludge.
- 2. If requirements for sludge management practices or pollutant criteria become more stringent than the sludge pollutant limits or acceptable management practices in this permit, or control a pollutant not listed in this permit, this permit may be modified or revoked and reissued to conform to the requirements promulgated under the Act. If new limits for molybdenum are promulgated prior to permit expiration, then those limits shall become directly enforceable.
- 3. In all cases, if the person (permit holder) who prepares the sewage sludge supplies the sewage sludge to another person for land application use or to the owner or lease holder of the land, the permit holder shall provide necessary information to the parties who receive the sludge to assure compliance with these regulations.
- 4. The permittee shall give prior notice to the Director, Water Quality Division, State of Oklahoma Partment of Environmental Quality (DEQ), 707 North Robinson, Oklahoma City, Oklahoma 73101-1677 of any planned changes in the sewage sludge disposal practice, in accordance with 40 CFR 122.41(l)(1)(iii). These changes may justify the application of permit conditions that are different from or absent in the existing permit. Change in the sludge use or disposal practice may be cause for modification of the permit in accordance with 40 CFR 122.62(a)(1).

Testing Requirements

Sewage sludge shall be tested once during the life of the permit within one year from the effective date of the permit in accordance with the method specified at 40 CFR Part 268, Appendix I [Toxicity Characteristic Leaching Procedure (TC1P)] or other approved methods. Sludge shall be tested after final treatment prior to leaving the publicly owned treatment works (POTW) site. Sewage sludge determined to be a hazardous waste in accordance with 40 CFR Part 261, shall be handled according to Resource Conservation and Recovery Act (RCRA) standards for the disposal of hazardous waste in accordance with 40 CFR Part 262. The disposal of sewage sludge determined to be a hazardous waste, in other than a certified hazardous waste disposal facility shall be prohibited. The DEO, Waste Management Division at 405-702-5100, shall be notified of test failure within 24 hours. A written report shall be provided to this division within 7 days after failing the TCLP. The report will contain test results, certification that unauthorized disposal has not occurred and a summary of alternative disposal plans that comply with RCRA standards for the disposal of hazardous waste. The report shall be addressed to the Director, Waste Management Division, DEQ, 707 N. Robinson, Oklahoma City, Oklahoma 73101-1677 and a copy sent to the Director, Water Quality Division, DEQ, at the same address.

Sewage sludge shall not be applied to the land if the concentration of the pollutants exceeds the pollutant concentration criteria in Table 1. The frequency of testing for pollutants in Table 1 is found in Element 1, Section I.C.

TABLE 1	
Pollutant	Ceiling Concentration (milligrams per kilogram)*
Arcenic	75
Cadmium	85
Camputan	4,300
Copper	840
Lead	57
Mercury	75
Molybdenum	470
Nickel	420
-PCBs	49
Scienium	100
Zinc	7500
· · · · ·	

Dry weight hasis

Pathogen Control

All sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by either the Class A or Class B pathogen requirements. Sewage sludge that is applied to a lawn or home garden shall be treated by the Class A pathogen requirements. Sewage sludge that is sold or given away in a bag shall be treated by the Class A pathogen requirements.

Class A Sludge Requirements:

a.

Six alternatives are available to demonstrate compliance with Class A sewage sludge. All 6 options require either the density of fecal coliform in the sewage sludge be less than 1000 Most Probable Number (MPN) per gram of total solids (dry weight basis), or the density of *Salmonella sp.* bacteria in the sewage sludge be less than three MPN per four grams of total solids (dry weight basis) at the time the sewage sludge is used or disposed; at the time the sewage sludge is prepared for sale or given away in a hag or other container for application to the land. Below are the <u>additional</u> requirements necessary to meet the definition of a Class A sludge.

Alternative 1 - The temperature of the sewage studge that is used or disposed shall be maintained at a specific value for a period of time. See 40 CFR 503.32(a)(3)(ii) and OAC 252:648 for specific information.

Alternative 2 - The pH of the sewage sludge that is used or disposed shall be raised to above 12 and shall remain above 12 for 72 hours.

The temperature of the sewage sludge shall be above 52 degrees Celsius for 12 hours or longer during the period that the pH of the sewage sludge is above 12.

At the end of the 72 hour period during which the pH of the sewage sludge is above 12, the sewage sludge shall be air dried to achieve a percent solids in the sewage sludge greater than 50 percent.

Alternative 3 - The sewage sludge shall be analyzed for enteric viruses prior to pathogen treatment. The limit for enteric viruses is one Plaque-forming Unit per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 40 CFR 503.32(a)(5)(ii) for specific information. The sewage sludge shall be analyzed for viable behninth ova prior to pathogen treatment. The limit for viable belininth ova is less than one per four grams of total solids (dry weight basis) either before or following pathogen treatment. See 40 CFR 503.32(a)(5)(iii) and OAC 252.648 for specific information.

Alternative 4 - The density of enteric viruses in the sewage sludge shall be less than one Plaque-forming Unit per four grants of total solids (dry weight basis) at the time the sewage sludge is used or disposed or at the time the sludge is prepared for sale or given away in a bag or other container for application to the land.

The density of viable helminth ova in the sewage sludge shall be less than one per four grams of total solids (dry weight

В.

2.

3.

1

basis) at the time the sewage sludge is used or disposed or at the time the sewage sludge is prepared for sale or given away in a bag or other container for application to the land.

Alternative 5 - Sewage sludge shall be treated by one of the Processes to Further Reduce Pathogens (PFRP) described in 40 CFR 503 Appendix B. PFRPs include composting, heat drying, heat treatment, and thermophilic aerobic digestion.

Alternative 6 - Sewage shudge shall be treated by a process that is equivalent to a PERP, if individually approved by the Pathogen Equivalency Committee representing the DE/Q.

Class B Sludge Requirements:

Three alternatives are available to demonstrate compliance with Class B sewage sludge.

ii.

(i) Seven separate random samples representative of the sewage sludge shall be collected for one Alternative 1 monitoring episode at the time the sewage sludge is used or disposed.

> (ii) The geometric mean of the density of feeal coliform in the samples collected shall be less than cither 2,000,000 MPN per gram of total solids (dry weight basis) or 2,000,000 Colony Forming Units per gram of total solids (dry weight basis).

Alternative 2 - Sewage sludge shall be treated in one of the Processes to Significantly Reduce Pathogens (PSRP) described in 40 CFR 503 Appendix B.

Alternative 3 - Sewage sludge shall be treated in a process that is equivalent to a PSRP, if individually approved by the Pathogen Equivalency Committee representing the DEQ.

In addition, the following site restrictions must be met if Class B shudge is land applied:

- Food crops with harvested parts that touch the sewage sludge/soil mixture and are totally above the land surface shall not be harvested for 14 months after application of sewage sludge.
- Food crops with harvested parts below the surface of the land shall not be harvested for 20 months after application of sewage sludge when the sewage sludge remains on the land surface for 4 months or longer prior to incorporation into the soil.
- Food crops with harvested parts below the surface of the land shall not be harvested for 38 months after iii. application of sewage sludge when the sewage sludge remains on the land surface for less than 4 months prior to incorporation into the soil.
- Food crops, feed crops, and fiber crops shall not be harvested for 30 days after application of sewage sludge. iv.
- Animals shall not be allowed to graze on the land for 30 days after application of sewage shudge. ν.
- Turf grown on land where sewage sludge is applied shall not be harvested for 1 year after application of the Ni. sewage sludge when the harvested turf is placed on either land with a high potential for public exposure or a lawn, unless otherwise specified by the permitting authority.
- Public access to land with a high potential for public exposure shall be restricted for 1 year after application of vii. sewage sludge.
- Public access to land with a low potential for public exposure shall be restricted for 30 days after application of viii. sewage sludge.

Vector Attraction Reduction Requirements

4.

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, or a reclamation site shall be treated by one of the following alternatives I through 10 for Vector Attraction Reduction. If bulk sewage sludge is applied to a home garden, or hagged sewage sludge is applied to the land, only Alternatives 1 through 8 shall be used.

Alternative 1 - The mass of volatile solids in the sewage sludge shall be reduced by a minimum of 38 percent.

Alternative 2 - If Alternative 1 cannot be met for an anaerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge anacrobically in the laboratory in a bench-scale unit for 40 additional days at a temperature between 30 and 37 degrees Celsius. Volatile solids must be reduced by less than 17 percent to demonstrate compliance.

Alternative 3 - If Alternative 1 cannot be met for an aerobically digested sludge, demonstration can be made by digesting a portion of the previously digested sludge with a percent solids of two percent or less aerobically in the laboratory in a bench-scale unit for 30 additional days at 20 degrees Celsius. Volatile solids must be reduced by less than 15 percent to demonstrate compliance.

Attemptive 4 - The specific oxygen uptake rate (SOUR) for sewage shudge treated in an aerobic process shall be equal to or less than 1.5 milligrams of oxygen per hour per gram of total solids (dry weight basis) at a temperature of 20 degrees Celsius.

days or longer. During that time, the temperature of the transition 5. Sources chulge shall be treated in an arrubic process for

sewage shudge shall be higher than 40 degrees Celsius and the average temperature of the sewage sludge shall be higher than 45 degrees Celsius.

Alternative 6 - The pl1 of sewage sludge shall be raised to 12 or higher by alkali addition and, without the addition of more alkali, shall remain at 12 or higher for two hours and then at 11.5 or higher for an additional 22 hours.

Alternative 7 - The percent solids of sewage sludge that does not contain unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 75 percent based on the moisture content and total solids prior to mixing with other materials. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anacrobic treatment process.

<u>Alternative 8</u> - The percent solids of sewage sludge that contains unstabilized solids generated in a primary wastewater treatment process shall be equal to or greater than 90 percent based on the moisture content and total solids prior to mixing with other materials. Unstabilized solids are defined as organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Alternative 9 -	(i)	Sewage sludge shall be injected below the surface of the land.
	(ii)	No significant amount of the sewage sludge shall be present on the land surface within one hour after the sewage sludge is injected.
	(iii)	When sewage sludge that is injected below the surface of the land is Class Λ with respect to pathogens, the sewage sludge shall be injected below the land surface within eight hours after being discharged from the pathogen treatment process.
<u>Alternative 10</u> -	(i)	Sewage sludge applied to the land surface or placed on a surface disposal site shall be incorporated into the soil within six hours after application to or placement on the land.
,	(ii)	When sewage sludge that is incorporated into the soil is Class Λ with respect to pathogens, the sewage sludge shall be applied to or placed on the land within eight hours after being discharged from the pathogen treatment process.

Once/Permit Life

Once/Year

Monitoring Requirements

 Toxicity Characteristic Leaching Procedure (TCLP) Test performed within one year from the effective date of the permit.

2. PCBs

C.

3. All other pollutants shall be monitored at the frequency shown below:

Amount of scwage sludge* (metric tons per 365 day period)	Frequency
0 ≤ Sludgc < 290	Once/Year
290 ≤ Sludge < 1,500	Once/Quarter
1,500 ≤ Sludge < 15,000 .	Once/Two Months
15.000 < Sludge	Once/Month

*Either the amount of bulk sewage studge applied to the land or the amount of sewage studge received by a person who prepares sewage studge that is sold or given away in a bag or other container for application to the land (dry weight basis).

Representative samples of sewage sludge shall be collected and analyzed in accordance with the methods referenced in 40 CTR 503.8(b) and OAC 252:648.

SECTION IL

REQUIREMENTS SPECIFIC TO BULK SEWAGE SLUDGE FOR APPLICATION TO THE LAND MEETING CLASS A or B PATHOGEN REDUCTION AND THE CUMULATIVE LOADING RATES IN TABLE 2, OR CLASS B PATHOGEN REDUCTION AND THE POLLUTANT CONCENTRATIONS IN TABLE 3

For those permittees meeting Class A or B pathogen reduction requirements and that meet the cumulative loading rates in Table 2 below, or the Class B pathogen reduction requirements and contain concentrations of pollutants below those listed in Table 3 found in Flement 1, Section III, the following conditions apply:

TABLE 2

Pollutant	Cumulative Pollutant Loading Rate (kilograms per hectare)
Arsenic	41
Cadmium	<u>יז</u>
Copper	1500
Lead	3(8)
Mercury	17
Molybdenum	Report
Nickel	420
Selenium	100
Zinc	2800

2. Pathogen Control

ถ.

c.

d.

a.

4.

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, or lawn or home garden shall be treated by either Class A or Class B pathogen reduction requirements as defined above in Element 1, Section 1.B.3.

3. Management Practices

- Bulk sewage sludge shall not be applied to agricultural land, forest, a public contact site, or a reclamation site that is flooded, frozen, or snow-covered so that the bulk sewage sludge enters a wetland or other waters of the state, as defined in 40 CFR 122.2, except as provided in a permit issued pursuant to the Act.
- b. Bulk sewage sludge shall not be applied within 100 feet of a water of the state.
 - Bulk sewage sludge shall be applied at or below the agronomic rate in accordance with recommendations from the following references:
 - i. <u>STANDARDS 1992, Standards, Engineering Practices and Data</u>, 39th Edition (1992) American Society of Agricultural Engineers, 2950 Niles Road, St. Joseph, MI 49085-9659.
 - ii. <u>National Engineering Handbook</u> Part 651, Agricultural Waste Management Field Handbook (1992), P.O. Box 2890, Washington, D.C. 20013.
 - iii. Recommendations of local extension services or Soil Conservation Services.
 - iv. Recommendations of a major university's Agronomic Department.
 - An information sheet shall be provided to the person who receives bulk sewage sludge that is sold or given away. The information sheet shall contain the following information:
 - i. The name and address of the person who prepared the sewage sludge that is sold or given away in a bag or other container for application to the land.
 - ii. A statement that application of the sewage sludge to the land is prohibited except in accordance with the instructions on the label or information sheet.
 - iii. The annual whole sludge application rate for the sewage sludge that does not cause any of the cumulative pollutant loading rates in Table 2 above to be exceeded, unless the pollutant concentrations in Table 3 found in Element 1. Section III below are met.

Notification requirements

- If bulk sewage sludge is applied to land in a state other than the state in which the sludge is prepared, written notice shall be provided prior to the initial land application to the permitting authority for the state in which the bulk sewage sludge is proposed to be applied. The notice shall include:
 - i. The location, by either street address or latitude and longitude, of each land application site.
 - ii. The approximate time period bulk sewage sludge will be applied to the site.
 - iii. The name, address, telephone number, and Oklahoma Pollutant Discharge Flimination System or National Pollutant Discharge Flimination System, whichever is applicable, permit number (if appropriate) for the person who prepares the bulk sewage sludge.
 - iv. The name, address, telephone number, and Oklahoma Pollutant Discharge Flimination System or National Pollutant Discharge Elimination System, whichever is applicable, permit number (if appropriate) for the person who will apply the bulk sewage sludge.

The permittee shall give 60 days prior notice to the DEQ of any change planned in the sewage sludge practice. Any change shall include any planned physical alterations or additions to the permitted treatment works, changes in the permittee's sludge use or disposal practice, and also alterations, additions, or deletions of disposal sites. These changes may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional disposal sites not reported during the permit application process or absent in the existing permit. Change in the sludge use or disposal practice may be cause for modification of the permit in accordance with 40 CFR 122.62(a)(1).

The permittee shall provide the location of all existing sludge disposal/use sites to the State Historical Commission within 90 days of the effective date of this permit. In addition, the permittee shall provide the location of any new disposal/use site to the State Historical Commission prior to use of the site.

The permittee shall within 30 days after notification by the State Historical Commission that a specific studge disposal/use area will adversely effect a National Historic Site, cease use of such area.

Record keeping Requirements - The sludge documents will be retained on site at the same location as other OPDES records.

The person who prepares bulk sewage sludge or a sewage sludge material shall develop the following information and shall retain the information for five years. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for recordscepting found in 40 CFR 503.17 and OAC 252:648 for persons who land apply.

The concentration (mg/Kg) in the sludge of each pollutant listed in Table 3 found in Flement 1. Section III and the applicable pollutant concentration criteria (mg/Kg), or the applicable cumulative pollutant loading rate and the applicable cumulative pollutant loading rate limit (kg/ha) listed in Table 2 above.

A description of how the pathogen reduction requirements are met (including site restrictions for Class B sludges, if applicable).

A description of how the vector attraction reduction requirements are met.

d. A description of how the management practices listed above in Section II.3 are being met.

The recommended agronomic loading rate from the references listed in Section II.3.c above, as well as the actual agronomic loading rate shall be retained.

f. Λ description of how the site restrictions in 40 CFR 503.32(h)(5) and OAC 252:648 are met for each site on which Class B bulk sewage sludge is applied.

The following certification statement:

Ь.

ċ.

a.

h.

c.

c.

g

h.

i.

i.

vi.

5

"I certify, under penalty of law, that the management practices in 40 CFR 503.14 have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."

A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penalties for false certification including fine and imprisonment. See 40 (TR 503.17(a)(4)(i)(B) or 40 CFR 503.17(a)(5)(i)(B) as applicable to the permittees sludge treatment activities.

The permittee shall maintain information that describes future geographical areas where sludge may be land applied.

The permittee shall maintain information identifying site selection criteria regarding land application sites not identified at the time of permit application submission.

k. The permittee shall maintain information regarding how future land application sites will be managed.

The person who prepares bulk sewage sludge or a sewage sludge material shall develop the following information and shall retain the information indefinitely. If the permittee supplies the sludge to another person who land applies the sludge, the permittee shall notify the land applier of the requirements for recordsceping found in 40 CFR 503.17 and OAC 252:648 for persons who land apply.

- i. The location, by either street address or latitude and longitude, of each site on which sludge is applied.
- ii. The number of hectares in each site on which bulk sludge is applied.
- iii. The date and time sludge is applied to each site.
- iv. The cumulative amount of each pollutant in kilograms/hectare listed in Table 2 applied to each site.
- v. The total amount of sludge applied to each site in metric tons.
 - The following certification statement:

"I certify, under penalty of law, that the requirements to obtain information in 40 CLP 503 12(e)(2) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision

in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the requirements to obtain information have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."

vii. A description of how the requirements to obtain information in 40 CFR 503.12(e)(2) and OAC 252:648 are met.

Reporting Requirements - The permittee shall report annually on the DMR the following information:

- a. Pollutant Table (2 or 3) appropriate for permittee's land application practices.
- b. The frequency of monitoring listed in Element 1, Section LC which applies to the permittee.
- c. Toxicity Characteristic Leaching Procedure (TCLP) results (Pass/Fail).
- d. The concentration (mg/Kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) as well as the applicable pollutant concentration criteria (mg/Kg) listed in Table 3 found in Element 1, Section 11, or the applicable pollutant loading rate limit (kg/ha) listed in Table 2 above if it exceeds 90% of the limit.
- c. Level of pathogen reduction achieved (Class \underline{A} or Class \underline{B}).

6.

g.

ħ.

j.

k.

i.

- f. Alternative used as listed in Section LB.3.(a, or b.). Alternatives describe how the pathogen reduction requirements are met. If Class B sludge, include information on how site restrictions were met in the DMR comment section or attach a separate sheet to the DMR.
 - Vector attraction reduction alternative used as listed in Section LB.4.
 - Annual sludge production in dry metric tons/year.
 - Amount of sludge land applied in dry metric tons/year.
 - Amount of sludge transported interstate in dry metric tons/year.
 - The certification statement listed in 40 CFR 503.17(a)(4)(i)(B) or 40 CFR 503.17(a)(5)(i)(B) whichever applies to the permittees sludge treatment activities shall be attached to the DMR.
 - When the amount of any pollutant applied to the land exceeds 90% of the cumulative pollutant loading rate for that pollutant, as described in Table 2, the permittee shall report the following information as an attachment to the DMR.
 - The location, by either street address or latitude and longitude.
 - ii. The number of hectares in each site on which bulk sewage sludge is applied.
 - iii. The date and time bulk sewage sludge is applied to each site.
 - iv. The cumulative amount of each pollutant (i.e., kilograms/hectare) listed in Table 2 in the bulk sewage sludge applied to each site.
 - v. The amount of sewage sludge (i.e., metric tons) applied to each site.
 - vi. The following certification statement:

"I certify, under penalty of law, that the requirements to obtain information in 40 (T-R 503 12(e)(2) have been met for each site on which bulk sewage sludge is applied. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the requirements to obtain information have been met. I am aware that there are significant penalties for false certification including fine and imprisonment."

vii. A description of how the requirements to obtain information in 40 CFR 503.12(c)(2) and OAC 252:648 are met.

SECTION III. REQUIREMENTS SPECIFIC TO BULK OR BAGGED SEWAGE SLUDGE MEETING POLIUTANT CONCENTRATIONS IN TABLE 3 AND CLASS A PATHOGEN REDUCTION REQUIREMENTS

For those permittees with sludge that contains concentrations of pollutants below those pollutant limits listed in Table 3 for bulk or bagged (containerized) sewage sludge and also meet the Class A pathogen reduction requirements, the following conditions apply (Note: All bagged sewage sludge must be treated by Class A pathogen reduction requirements.):

Pollutant limits - The concentration of the pollutants in the municipal sewage sludge is at or below the values listed.

TABLE 3

Monthly Average Concentration (millionams per kilogram)*

Page 8 of Part IV

Arronic	. 41
Calarium	39
	1500
Copper	3(11)
Lend	
Mercury	17
Molybdenum	Report
Nickel	420
Satanium	36
	28(0)
Zinc	

Dry weight basis

Pathogen Control

b.,

c.

đ.

c.

i.

j.

1.

2.

3

All bulk sewage sludge that is applied to agricultural land, forest, a public contact site, a reclamation site, or lawn or home garden shall be treated by the Class A pathogen reduction requirements as defined above in Element I. Section I.B.3. All bagged sewage sludge must be treated by Class A pathogen reduction requirements.

Management Practices - None.

Notification Requirements - None.

Record keeping Requirements - The permittee shall develop the following information and shall retain the information for five years. The studge documents will be retained on site at the same location as other OPDES records.

a. The concentration (mg/Kg) in the sludge of each pollutant listed in Table 3 and the applicable pollutant concentration criteria listed in Table 3.

A certification statement that all applicable requirements (specifically listed) have been met, and that the permittee understands that there are significant penalties for false certification including fine and imprisonment. See 40 CFR 503.17(a)(1)(ii) or 40 CFR 503.17(a)(1)(iii) o

- A description of how the Class A pathogen reduction requirements are met.
- A description of how the vector attraction reduction requirements are met.

Reporting Requirements - The permittee shall report annually on the DMR the following information:

- a. <u>Pollutant Table 3</u> appropriate for permittee's land application practices.
- b. The frequency of monitoring listed in Element 1, Section LC which applies to the permittee.
- c. Toxicity Characteristic Leaching Procedure (TCLP) results. (Pass/l'ail).
- d. The concentration (mg/Kg) in the sludge of each pollutant listed in Table 1 (defined as a monthly average) found in Element 1, Section I. In addition, the applicable pollutant concentration criteria listed in Table 3 should be included on the DMR.
 - Pathogen reduction Alternative used for Class A bagged or bulk sludge as listed in Section 1.B.3.a.
- f. Vector attraction reduction Alternative used as listed in Section 1.B.4.
- Annual sludge production in dry metric tons/year.
- h. Amount of sludge land applied in dry metric tons/year.
 - Amount of sludge transported interstate in dry metric tons/year.
 - The certification statement listed in 40 CFR 503.17(a)(1)(ii) or 40 CFR 503.17(a)(3)(i)(B), and OAC 252:648 whichever applies to the permittees shudge treatment activities, shall be attached to the DMR.

SECTION IV. REQUIREMENTS SPECIFIC TO SLUDGE SOLD OR GIVEN AWAY IN A BAG OR OTHER CONTAINER FOR APPLICATION TO THE LAND THAT DOES NOT MEET THE POLLUTANT CONCENTRATIONS in Table 3

Pollutant Limits

TABLE 4

Annual Pollutant Loading Rate (kilograms per bectare per 365 day period)

1

Page 9 of Part IV

2.0
1.9
75.0
15.0
0.85
Report
21.0
5.0
140.0
1-1-1-1

Pathogen Control

2.

٤3.

All sewage sludge that is sold or given away in a bag or other container for application to the land shall be treated by the Class A pathogen requirements as defined in Section LB.3.a.

Management Practices

Fither a label shall be affixed to the bag or other container in which sewage sludge that is sold or given away for application to the land, or an information sheet shall be provided to the person who receives sewage sludge sold or given away in another container for application to the land. The label or information sheet shall contain the following information:

- a. The name and address of the person who prepared the sewage sludge that is sold or given away in a hag or other container for application to the land.
- b. A statement that application of the sewage sludge to the land is prohibited except in accordance with the instructions on the label or information sheet.
 - The annual whole sludge application rate for the sewage sludge that will not cause any of the annual pollutant loading rates in Table 4 above to be exceeded.

Notification Requirements - None.

Recordkeeping Requirements - The sludge documents will be retained on site at the same location as other OPDES records.

The person who prepares sewage sludge or a sewage sludge material shall develop the following information and shall retain the information for five years.

The concentration in the sludge of each pollutant listed above in found in Element 1, Section I, Table 1.

a. b.

c.

The following certification statement found in 40 CFR 503.17(a)(6)(iii).

"I certify, under penalty of law, that the management practices in 40 CFR 503.14(c), the Class A pathogen requirement in 40 CFR 503.32(a), and the vector attraction reduction requirement in (insert vector attraction reduction option) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate the information used to determine that the management practices, pathogen requirements, and vector attraction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment".

- A description of how the Class A pathogen reduction requirements are met.
- d. A description of how the vector attraction reduction requirements are met.
- c. The annual whole sludge application rate for the sewage sludge that does not cause the annual pollutant loading rates in Table 4 to be exceeded. See Appendix A to 40 CER Part 503 Procedure to Determine the Annual Whole Sludge Application Rate for a Sewage Sludge.

Reporting Requirements - The permittee shall report annually on the DMR the following information:

- a. Pollutant listed in, Table 4 as appropriate for permittee's land application practices.
- b. The frequency of monitoring listed in Element 1, Section 1.C which applies to the permittee.
- c. Toxicity Characteristic Leaching Procedure (TCLP) results (Pass/Fail).
- d. The concentration (mg/Kg) in the sludge of each pollutant listed above in Table 1 (defined as a monthly average) found in Element 1, Section 1.
- e. Class A pathogen reduction Alternative used as listed in Section LB.3.a. Alternatives describe how the pathogen reduction requirements are met.
- f. Vector attraction reduction Alternative used as listed in Section LB.4.
- Annual sludge production in dry metric tons/year.

Amount of sludge land applied in dry metric tons/year.

h.

i.

j.

1.

2.

1

4.

5.

6.

7.

9.

Amount of sludge transported interstate in dry metric tons/year.

The following certification statement found in 40 CFR 503.17(a)(6)(iii) shall be attached to the DMR.

"I certify, under penalty of law, that the management practice in 40 (FR 503.14(c), the Class A pathogen requirement in 40 CFR 503.32(a), and the vector attraction reduction requirement (insert appropriate option) have been met. This determination has been made under my direction and supervision in accordance with the system designed to ensure that qualified personnel gather and evaluate the information used to determine that the management practice, pathogen requirements, and vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

ELEMENT 2 - MUNICIPAL SOLID WASTE LANDFILL DISPOSAL

SECTION L REQUIREMENTS APPLYING TO ALL SEWAGE SLUDGE DISPOSED IN A MUNICIPAL SOLID WASTE LANDEIL.

The permittee shall handle and dispose of sewage sludge in accordance with the Act and all other applicable federal and state regulations to protect public health and the environment from any reasonably anticipated adverse effects due to any toxic pollutants that may be present. The permittee shall ensure that the sewage sludge meets the requirements in 40 CFR Part 258 concerning the quality of the sludge disposed in the municipal solid waste landfill (MSWLF) unit.

If requirements for sludge management practices or pollutant criteria become more stringent than the sludge pollutant limits or acceptable management practices in this permit, or control a pollutant not listed in this permit, this permit may be modified or revoked and reissued to conform to the requirements promulgated under the Act.

If the permittee generates sewage sludge and supplies that sewage sludge to the owner or operator of a MSWLF for disposal, the permittee shall provide to the owner or operator of the MSWLF appropriate information needed to be in compliance with the provisions of this permit. The permittee shall give prior notice to the Director, Water Quality Division, DEO, 707 N. Robinson, Oklahoma City, Oklahoma 73101-1677, of any planned changes in the sewage sludge disposal practice, in accordance with 40 (TER 122.41(1)(1)(iii)). These changes may justify the application of permit conditions that are different from or absent in the existing permit. Change in the sludge use or disposal practice may be cause for modification of the permit in accordance with 40 CFR 122.62(a)(1).

The permittee shall provide the location of all existing sludge disposal/use sites to the State Historical Commission within 90 days of the effective date of this permit. In addition, the permittee shall provide the location of any new disposal/use site to the State Historical Commission prior to use of the site.

The permittee shall within 30 days after notification by the State Historical Commission that a specific sludge disposal/use area will adversely afteet a National Historic Site, cease use of such area.

Sewage sludge shall be tested once during the life of the permit within one year from the effective date of the permit in accordance with the method specified at 40 CFR Part 268, Appendix 1 [Toxicity Characteristic I eaching Procedure (TC1.P)] or other approved methods. Shudge shall be tested after final treatment prior to leaving the POTW site. Sewage sludge determined to be a hazardous waste in accordance with 40 CFR Part 261, shall be handled according to RCRA standards for the disposal of hazardous waste in accordance with 40 CFR Part 261, shall be handled according to RCRA standards for the disposal of hazardous waste disposal facility shall be prohibited. The disposal of sewage sludge determined to be a hazardous waste, in other than a certified hazardous waste disposal facility shall be provided to this DEQ. Waste Management Division at (405) 271-5338, shall be notified of test failure within 24 hours. A written report shall be provided to this office within 7 days after failing the TC1.P. The report will contain test results, certification that unauthorized disposal has not occurred and a summary of alternative disposal plans that comply with RCRA standards for the disposal of hazardous waste. The report shall be addressed to the Director, Waste Management Division, DEQ, 707 N. Robinson, Oklahoma City, Oklahoma 73101-1677, and a copy sent to the Director, Waster Quality Division, DEQ, at the same address.

- Sewage sludge shall be tested as needed, or at a minimum, once/year in accordance with the method 9095 (Paint Filter Liquids Test) as described in "Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods" (EPA Pub, No. SW-846).
- 8. Recordsceping requirements The permittee shall develop the following information and shall retain the information for five years.
 - a. The description, including procedures followed, and results of the Paint Filter Tests performed.
 - h. The description, including procedures followed, and results of the TCLP Test.
 - Reporting requirements The permittee shall report annually on the Discharge Monitoring Report the following information:
 - a. Results of the Toxicity Characteristic Leaching Procedure Test conducted on the sludge to be disposed (Pass/Fail).
 - b. Annual sludge production in dry metric tons/year.
 - c. Amount of sludge disposed in a municipal solid waste landfill in dry metric tons/year.
 - Amount of sludge transported interstate in dry metric tons/year.
 - c. A certification that sewage sludge meets the requirements in 40 CFR Part 258 concerning the quality of the sludge disposed in a

municipal solid waste landfill unit shall be attached to the DMR.

f.\standard municipal permit documents\part iv.doc updated 8/21/98

APPENDIX TM 1-4

TEMPLATE FOR CONDITION RATING

Photo Examples				
General Description of Condition	 Newly built to recently built No wear Operates as designed No maintenance needed 	 Recently built Little to no appreciable wear Operates as designed Normal maintenance 	 Within first half of useful life Slight wear Operates as designed Normal to slight maintenance needed 	 At or beyond first half of useful life Slight to significant wear Normally operates as designed Slight to supplementary maintenance needed
Percent of Useful Life Remaining	100-90	90-75	75-55	55-35
Condition Rating	New	Excellent	Good	Fair

offer one of the

eren also and transmission and compared to be a set of the set of

FACILITY INSPECTIONS Condition Assessment Ratings

)

 \cdot

	Photo Examples			
	 General Description of Condition Beyond first half of useful life to at the end of useful life 	 Significant to major wear Operates as designed with additional to significant maintenance Significant to burdensome maintenance 	 Beyond useful life in need of replacement Major wear 	 Will not operate as designed without significant and constant maintenance, is inoperable or abandoned Significant to burdensome constant maintenance necessary
Doutout of Toologic	Lercent of Userul Life Remaining 35-15		15-0	
Condition Define	Conduton Kaung Poor		Replace	

a dia mangina di

APPENDIX TM 1-5

NITRIFICATION CLARIFIER OPERATIONAL ISSUES

Memorandum

To: Robert Hitt; Jim McClain, Muralikumar, Joyce Hight,

From: Jose Pereira

Date: September 19, 2005

Re: Nitrification Clarifiers – Handling capacity & operational issues - S-0505A

During a site visit on 08/31/05 to the City of Enid Water Pollution Control Facility, the facility staff indicated that when flows exceed 7 mgd there is high solids carryover in the final effluent, although the design capacity of the final clarifiers in the nitrification plant were designed to handle 8.5 mgd. This technical memorandum offers our comments/recommendation on the operation of the nitrification plant following our inspection of the nitrification plant and review of as-built plans.

As you know, the nitrification plant was originally designed to handle average and peak flows of 8.5 mgd and 21 mgd, respectively at an average BOD_5 of 30 mg/l and TSS of 20 mg/l. The nitrification plant is equipped with four rectangular clarifiers, each 30' wide by 120' long by 12' SWD. These rectangular clarifiers are equipped with traveling bridge mechanisms for the collection and removal of settled sludge and effluent troughs with V- notch weirs to distribute the flow uniformly and improve the effluent quality. Our calculations show that the surface overflow rates at average and peak flows are 590gpd/ft² and 1,458gpd/ft² respectively. The weir loading rates at average and peak flows are estimated to be 5,902 gpd/ft and 14,583 gpd/ft respectively, which are within recommended design criteria (10,000 gpd/ft at average flow and 15,000 gpd/ft at peak flow). However, during our visual inspection of the traveling bridge clarifiers, we noticed few operational issues that could possibly impair the effluent quality, particularly during high flow conditions. These Observations are as follow:

- a. The nitrification plant rectangular clarifier effluent troughs are not leveled, which affects the V-notch weirs elevation. The elevation of the V-notch weirs at the east end of the clarifiers is lower than the west end. As a result, there is no overflow on the V- notch weirs located at the west end of the clarifier troughs and most of the flow occurs through the east end creating more undercurrent and turbulence. This is confirmed by the operators when the flow exceeds 7 mgd the v-notch weirs at the east end of the clarifier troughs become submerged. The V-notch weir submergence does not reflect under designed of the weirs but instead overcharge due to the unleveled surface.
- b. The traveling bridge mechanism used for sludge collection has a supporting truss extending all the way down in to the clarifier bottom. The traveling bridge also has too many moving parts for its operation and the movement of the bridge on the rail is not smooth and at times, creating a jerk sudden movement possibly due to wear and tear on the traveling parts as result of the equipment age. The truss/other parts on the traveling bridge, and agitation due to the sudden jerk movement could possibly create an under current wave that could stir the settled/settling solids in the clarifier through out the basin and impact the effluent quality, particularly during the high flow conditions.

In summary, it is our opinion that if the plant is operated within the design range and if the above operational deficiencies are corrected, as well as other manufacturer recommendations to fine tune its operation, we anticipate that the final clarifiers could see a major improvement and handle the flow as originally designed. However, additional information and evaluation will be required before final conclusions are recommended.

:\32158005\Technical\Technical memo - Nitrification basin.doc

Dewberry

TECHNICAL MEMORANDUM 2 EVALUATION OF THE EXISTING COLLECTION SYSTEM AND RECOMMENDED IMPROVEMENTS

05123-00-02

TABLE 4. PIPELINES AND ASSOCIATED FLOW DATA AND CAPACITIES									
Name	Basin	Location	Actual Peak (gpm)	Model Flow (gpm)	Capacity (gpm)	Pipe Full (gpm)			
North Main	1-A	West 16 TH	1,700	3,495''	4,560	5,050			
NOC	1-B 1-C	NOC	930	875	3,980	4,360			
		19 [™] & Randolph	65	71	1,150	1,260			
30 TH Street	1-D	30 [™] & Garriott	140	135	670	740			
	1-F Fect by 1-G and 1-H	⁻ 2 ND & Randolph	14	16	330	420			
		Pasttimes	78	77	760	970			
Daunstown		` 3 RD & Main	110	130	510	650			
Downtown	1G2	5 [™] & Randolph	225	220 [,]	460	590			
	1-I Fed by 1-J and 1-K	Indian & Oklahoma	300	280	540	660			
		Integris Pavilion	775	744	2,090	2,290			
		4 [™] & Beech	275	295	360	460			
North Enia	I-IN	3 RD & Beech	300	320	360	460			
N. Van Buren	1-0	N. Van Buren	330	356	3,940	4,330			
54 TH Street	1-P	54 TH Street Lift	(1,200)	1,210	(1,300)	1,420			
Dualaida	2-B	BS Trunk Line	1,750	2,470	10,160	11,150			
Brookside		BS Res.	20	N/A	320	440			
Cauth Main	2-C	East 16 TH Street	1,650	1,450	14,180	15,550			
South Main		West 16 TH Street	1,700	2,373	9,220	10,120			
S. Van Buren	2-D	S. Van Buren	240	245	1,800	1,980			
Frantz Main	2-E	Jeff & Frantz	1,850	2,200	20,140	22,090			
	2-G	Mall	920	890	1,670	1,830			
Oakwood Mail		Indian Oaks	650	758	670	740			
Cleveland	2-H	Randolph & McKinley	500	512	2,110	2,310			
	2-1	Lisa Lane	143	130	1,000	1,100			
	2-К	Cleveland & Chestnut	240	270	650	710			

4.2.2 Wet Flow Condition Analysis. During precipitation events, flows in the sanitary sewer pipelines greatly increase due to Inflow and Infiltration (I/I). According to the wet condition model, the capacity of most pipelines is sufficient to accommodate the

9

Engineering Calculations (I/I Study)

Engineering Notes:

Problem: Determine amount of I/I in each Sewer Basin

Assumption: The maximum allowable inflow/infiltration for a sewer operating within "normal" limits is 200 gallons/mile/day/in-diameter

Step 1:	TM 2-1	From the flow data gathered from the city sewers, determine average and peak daily flows as well as peak storm water flows. Correlate the storm flows with their individual storm Flow data was divided into yearly quarters and analyzed for peak flows. Flow data was analyzed on a 15 minute basis to determine flow profile and base flow for each monitoring point. Some conditions were taken into account, such as line back ups, surcharging, and seasonal flows
Step 2:	TM 2-2	Calculate the Municipal sewer inflows Utilizing typical inflows from municipal sources, inflows in the various sub-basins were
Step 3:	TM 2-3	calculated throughout the city. Determine the US SCS curve numbers, % impervious, and conductivity for each sub-
Step 4:	TM 2-3	Caculated utilizing TR-55 techniques through observation Determine the length*in-diameter of the sewer pipe and area of each sub-basin.
ctop ii		Calculated by observation.
Step 5:	TM 2-4	Determine the rainfall for the 100-year storm and the individual storms in Enid Data obtained from TR-55 and weatherunderground.com in combination with the City of Enid raingauges
Step 6:	TM 2-5	Determine the hydrograph of the infiltration/inflow The SWMM model is divides the I/I hydrograph into Start Tern Response (ST), Median Term Response (MT), and Long Term Reponses (LT). Within each hydrograph is a ratio of the flow (R) Proportional to the Response Term, a Time to the Peak (T), and (K) the Step 4a Find Proportionality between each response
		From the CN values, a Proportionality curve was generated for each response time Step 2b Determine the T and K factors The conductivity of the soil divided by the depth of soil/manhole was used to calculate the T factor. In general the K factor is approximately 2:1 for a typical curve (Twice the lag time to initial concentration)
Step 7:	TM 2-5	Determine the sewer area necessary to provide a 200 gal/mil/day/in-dia flow. Step 5a: Find the amount of inflow required to provide the 200 g/m/d/in for the sub-basin. The 200 g/m/d/in term was multiplied by the observed length*dia term in Step 3. Step 5b: Find the relationship between sewer inflow area and required inflow The relationship between inflow and the sewer basin inflow area term is liner with a 0 y- intercept for a given CN value and MH depth. Step 5c: Find the relationship between CN and sewer inflow Since the inflow relationship is liner with a y-intercept = 0, the slopes of the CN values for each manhole depth were fit to a inflow*area vs. CN graph. Step 5d: Determine the sewer inflow area. The CN value was inputted into the graphical relationship in 5c and an area*inflow value was found. The factor was divided by the necessary inflow rate determined in Step 5a, and an area value was determined on a 5-ft depth basis (5, 10, 15, 20, and 25-ft deep
Step 8:	TM 2-6	sewers). The values were interpolated against the actual sewer depth and the inflow area term was determined for an infiltration value of 200 gallon/mile/in-diameter/day. SWMM Model and Output The SWMM model was developed from the above data. The input/final output report appear in Appendix F.

FLOW METERS

F

	Basin	Location	Metered Flow		Model Flow	
Name			Base Flow	Peak Flow	Base Flow	Peak Flow
			gpm	gpm	gpm	gpm
North Main	1-A	West 16th	550	1700	1352	3495
NOC	1-B and 1-	NOC	280	930	350	875
	С	19th & Randolph	15	65	30	71
30th St	1-D	30th and Garriott	65	140	56	135
Down Town	1-F Fed by	2nd & Randolph	2	14	7	16
	1-G and 1-	Pasttimes	31	78	32	77
	н	3rd and Main	40	110	53	130
	1G2	5th & Randolph	60	225	50	220
	1-I (Fed by	Ind.&Okla	150	300	167	280
	1-J and 1-	Integris Pav	363	775	330	744
North Enid	1-N	4th and Beech	70	275	123	295
		3rd and Beech	85	300	166	320
N. Van Buren	1-0	N. Van Buren	NA	330	148	356
54th Street	1-P	54th St. Lift	274	1200	504	1210
Brookside		BS Trunk Line	500	1750	1377	2470
	2-Б	Brookside Res	2	20	NA	NA
South Main	2-C	East 16th St	440	1650	390	1450
		West 16th	550	1700	1258	2373
S. Van	2-D	S. Van Buren	40	240	101	245
Frantz Main	2-E	Jeff. & Frantz	650	1850	1050	2200
Oakwood Mall	20	Mall	330	920	278	890
	2-0	Indian Oaks	200	650	300	758
Cleveland	2-H	Rand & Mck	100	500	219	512
	2-1	Lisa Lane	35	143	53	130
	2-K	Cleve & Chest	120	240	111	270

Basin Inflow and Infiltration Study

DOWNTOWN

l

r.

5th and Randolph - 2006 2nd Quarter

Central Fire Station Bernanger Flow ی تی Rainfall (in.) 1.6 1.4 1.2 0.6 0.2 0.4 •**••* 30-Sep-06 23-Sep-06 16-Sep-06 5th and Randolph - 2006 - 3rd Quiarter 9-Sep-06 2-Sep-06 26-Aug-06 19-Aug-06 12-Aug-06 5-Aug-06 29-Jul-06 22-Jul-06 15-Jul-06 8-Jul-06 1-Jul-06 0.00 Peak Flow (GPM) 300.00 250.00 200.00 100.00 50.00

06 - 3rd Quarter

06 - 4th Quarter

2nd and Randolph - 2006 - 2nd Quarter

Flow ی ت Rainfall (in.) 1.6 1.4 1.2 0.6 0.4 0.2 30-Sep-06 23-Sep-06 16-Sep-06 2nd and Randolph - 2006 - 3rd Quarter 9-Sep-06 2-Sep-06 26-Aug-06 19-Aug-06 12-Aug-06 5-Aug-06 ********** 29-Jul-06 22-Jul-06 15-Jul-06 -8 Jul-06 1-Jul-06 3.00 00 Peak Flow (GPM) 18 .00 33.00 28.00 23.00 13.00 8.00

06-3rd Quarter

Page 1

SW of RailRoad

SW of Rail Road

Peak Flow (GPM)

: : .

Page 1

Integris Pavilion

Integris Chart

Past Times - 2006 - 3rd Quarter

06-3rd Quarter

Page 2

r L

1

Past Times - 2006 - 4th Quarter

Page 3

the state of the s

06-4th Quarter

Independence and Oklahoma - 2006 - 4th Quarter

06 - 4th Quarter

Independence and Oklahoma - 2007 - 1st Quarter

07 - 1st Quarter

07 - 2nd Quarter

Page 1

INO. & OKLahuma

EAST SIDE

r

r : 06-2nd Quarter

NOC - 2006 - 2nd Quarter

06-2nd Quarter (2)

06 - 2nd Quarter

NORTH SIDE

06-2nd Quarter

 $\langle \rangle$

.

Page 1

1

:

r i

NORTHWEST

r i

Lisa Lane - 2005 - 4th Quarter

Page 1

Ē

05 - 4th Quarter

Lisa Lane - 2006 - 1st Quarter

Lisa_Lane 06 - 1st Quarter

r I

06 - 2nd Quarter

0

07 - 2nd Quarter

Page 1

F I

:

Cleveland and Chestnut - 2006 - 2nd Quarter

Cleveland and Chestnut - 2006 - 3rd Quarter

Page 1

WEST SIDE

¢

Daily Chart

Page 1

06 - 2nd Quarter

Page 1

ie -

1.....

07 - 1st Quarter

Page 1

F :: ,

SOUTH SIDE

÷

e e

06-2nd Quart

Page 1

-

East 16th - 2006 - 3rd Quarter

06-3rd Quart

Page 1

East 16th - 2006 - 4th Quarter

06-4th Quarter

Page 1

-

07-1št Quarter

Page 1

. # 1

г 1

S. Van Buren - 2006 - 4th Quarter

06-4th Quarter

Page 1

South Van Buren - 2007 - 1st Quarter

07-1st Quarter

Page 2

South Van Buren - 2007 - 2nd Quarter

07-2nd Quarter

Page 1

с ...

Peak Flow (GPM)

West 16th - 2006 - 2nd Quarter

06-2nd Quart

Page 1

West 16th - 2006 - 3rd Quarter

06-3rd Quart

Page 2

SOUTHEAST

Page 1

Brookside - 2007 - 2nd Quarter

Page 1

07 - 2nd Quarter

Page 1

:

Page 1

-

Page 1

-

Ì

Advance South - 2006 - 3rd Quarter

Peak Flow (GPM)

Page 1

:

TM 2-2

SANITARY SEWER INFLOWS

÷

BASIN 1

1.1

*

Sanitary Sewer Municipal Inflows

erage	Dry Flow 3.49 1.18	3.48 5.02 2.23	2.1 1.58 1.18 0.59	3.69 1.55 0.68	2.54 0.85 0.85 0.85	1.13 5.36 1.41 0.85 2.37 2.37
is 1/3 of ave	Base Flow 0.484 0.164	0.482 0.695 0.308	0.291 0.219 0.164 0.082	0.51 0.215 0.094	0.352 0.117 0.117 0.117	0.742 0.742 0.195 0.117 0.328
*Note Peak	Total gpm 9.67152 12.95324	22.59003 36.49827 42.66234	48.47915 52.85477 56.13649 57.77735	67.98714 72.29331 74.16858 74.16858 0	7.032254 9.376339 11.72042 14.06451	17.18996 32.03583 35.94263 38.28672 44.85016 44.85016 0
S A L	Total cfs 0.021548 0.02886	0.050331 0.081319 0.095052	0.108012 0.117761 0.125073 0.128729	0.151476 0.161071 0.165249 0.165249	0.015668 0.020891 0.026113 0.031336	0.038299 0.071376 0.080081 0.085303 0.099927 0.099927
gpm to cfs 448.83 % Base Flor 5% 38% 38% Dry Multiplie 33%	Sum cfs 0.021548 0.007312	0.021471 0.030988 0.013734	0.01296 0.009749 0.007312 0.003656	0.022748 0.009594 0.004178 0	0.015668 0.005223 0.005223 0.005223	0.006964 0.033077 0.008704 0.005223 0.014623 0
	Total 13925 4725	13875 20025 8875	8375 8375 6300 4725 2362.5	14700 6200 2700 0	10125 3375 3375 3375 3375	4500 21375 5625 3375 9450 0
	Recreation					
gpd 100 300 4000 500 4000 85 100	Industrial 800	2000				
e Values (per person) sdroom) tiple) Faundry) Food) Stores) Office) M)	Commercial	2000 9000 1000	200	2000		
Some Averag Group Living Housing (2 be Housing (Mul Commercial (Commercial (Commercial (Industrial (Lov Recreation	Housing 13125 4725	9875 9875 11025 7875	7875 6300 4725 2362.5	14700 4200 2700	10125 3375 3375 3375	4500 21375 5625 3375 9450
	Man Hole (1D)023 (1D)022	(1D)020 (1D)020 (1D)018	(1D)017 (1D)016 (1D)015 (1D)015 (1D)014	(1D)012 (1D)005 (1D)001 (1A)017*	(1C)182 (1C)181 (1C)180A (1C)180A (1C)180	(1C)179 (1C)178 (1C)177 (1C)176 (1C)002 (1C)001*

1.1.1.1

į

•

Inflows
Municipal
Sewer N
Sanitary

erage	Dry Flow 2.71	1.35	3.01	1.81	1.5	0.6		20 76	0.3		, c	0.0	13.04	2.07			1.2	1.81	0.38	0.9	2.61	
k is 1/3 of av	Base Flow	0.188	0.417	0.25 0.188	0.208	0.083		0 07E	0.042			0.083	1.889	0.703	2	-	0.167	0.25	0.052	0.125	0.361	
*Note Peak	Total gpm 7.501071	11.25161	19.58613	24.58685	32.50464	34.17155	34.17155	0 E7 E0021	58.34167	58.34167	0	94.18012	131.9633	153 0100	153.9109	0	157.2447	162.2454	163.2872	165.7876	173.0108	173.0108
	Total cfs 0.016713	0.025069	0.043638	0.063136	0.072421	0.076135	0.076135		0.129986	0.129986		0.209835	0.294016	0.342046	0.342916		0.350344	0.361485	0.363806	0.369377	0.385471	0.385471
gpm to cfs 448.83 % Base Flo 5% 38% 38% Dry Multipli	Sum cfs 0.016713	0.008356	0.018569	0.008356	0.009285	0.003714	0	0010010	0.001857	0		0.003/14	0.084181	0.013027	0		0.007428	0.011142	0.002321	0.005571	0.016094	0
	n Total 10800	5400	12000	/200 5400	6000	2400	0	00000	1200	0		2400	54400	0000)	4800	7200	1500	3600	10400	0
	Recreation										-											
gpd 100 225 300 4000 500 85 85 100	I Industrial										-	-				1 - - -	•				:	
e Values per person) droom) iple) -aundry) -aundry) -ood) Stores) Stores) h)	Commercia								47000		:		22000	13000	0006		:	:		• • •	8000	
Some Average Group Living (Group Living (Housing (Aulti Housing (Multi Commercial (Commercial (Commercial (Industrial (Industrial (Low Recreation	Housing 10800	5400	12000	7200	6000	2400			1200	2007		2400	32400	9600			4800	7200	1500	3600	2400	
	Man Hole (1C)028	(1C)027	(1C)026	(1C)024	(1C)020	(1C)019	(1C)016*		(10)021B (10)016A	(1C)016*		(1C)016	(1C)015D	(1C)015A			(1C)041	(1C)007	(1C)006	(1C)004	(1C)003	(1C)001*

÷

Sanitary Sewer Municipal Inflows

			erade) 77 1		Dry Flow		1.5	29.51	13.04	25.02	23.19				34.9	1.68	1.65	0.8	20.11	0.5	1.96	2.41	2.41	1.5	0.83	-		57.57		
			is 1/3 of av			Base Flow		0.208	4.087	1.806	3.466	3.212			1	4.834	0.233	0.229	0.111	2.785	0.069	0.271	0.333	0.333	0.208	0.115			7.974	a an a statement - second	
			*Note Peak			Total gpm	0	375.9391	457.6869	493.8032	563.1186	627.3639	627.3639	627.3639	0	96.68048	101.3339	105.9179	108.1404	163.8428	165.2319	170.6494	177.317	183.9846	188.1519	190.4439	190.4439	0	159.4846	159.4846	0
						Total cfs		0.837598	1.019733	1.100201	1.254637	1.397776	1.397776	1.397776		0.215406	0.225773	0.235987	0.240939	0.365044	0.368139	0.380209	0.395065	0.40992	0.419205	0.424312	0.424312		0.355334	0.355334	
gpm to cfs 448.83	6 Base Flow 5%	% Dry Flow	0/ 00	Jry Multiplie	33%	Sum cfs		0.009285	0.182135	0.080468	0.154436	0.143139	0	0		0.215406	0.010368	0.010213	0.004952	0.124106	0.003095	0.01207	0.014856	0.014856	0.009285	0.005107	0		0.355334	0	
	5	-				Total	and a state of the	6000	117700	52000	99800	92500	0	0		139200	6700	6600	3200	80200	2000	7800	9600	9600	6000	3300	0		229625	0	
						Recreation										20 T T T T	1500				-		-	-						and and the second s	
gpd 100	225 300 4000 1000	500	0007	400	100	Industrial	And a second								•	120000				80000	1500		•					a and a contract of the	202000		
e Values per person)	droom) ple) _aundry)	stores)	(e) (ce)		×	Commercial		6000	65500	49000	83000	88100	0	i			400	1800	3200	200	500	3000					•		5425		
Some Average Group Living (_I	Housing (2 be Housing (Multi Commercial (L	Commercial (S	Commercall (C	Industrial (Low	Recreation	Housing			52200	3000	16800	4400	0	•	-	19200	4800	4800				4800	0096	9600	6000	3300			22200		· ·
						Man Hole		(1C)001	(1B)014	(1B)010	(1B)009	(1B)005	(1B)001	(1A)024A*	· · · · · · · · · · · · · · · · · · ·	(1N)025	(1N)022	(1N)021	(1N)020	(1N)018	(1N)015	(1N)014	(1N)013	(11)011	(1N)009	(1N)008	(1N)007*		(1N)047	(1N)007*	

In some of the control of

A construction with the construction of the co

Sanitary Sewer Municipal Inflows

erage	Dry Flow 31.44	37.95	0 46	3.46	0.9 13.54 3.28	0.53	2.86 3.26	1.41 0.76	u U C	1.76	1.28	1.13	0.34	7.02
is 1/3 of av	Base Flow 4.355	5.256	0.064	0.479	0.125 1.875 0.455	0.073	0.396 0.451	0.195 0.106		0.243	0.178	0.156	0.047	0.972
*Note Peak	Total gpm 87.09577 87.09577	105.1192 105.1192	192.215	203.0846	243.0903	253.6473	261.5651 270.5942	274.501 276.6194	276.6194 0	632.9724	636,5319	639.6573	640.595	660.0422
>	Total cfs 0.194051 0.194051	0.234207 0.234207	0.428258	0.452475	0.541609	0.56513	0.582771 0.602888	0.611592 0.616312	0.616312	1.410272	1.418203	1.425166	1.427255	1.470584
gpm to cfs 448.83 % Base Flov 5% 38% 38% Dry Multiplie 33%	Sum cfs 0.194051 0	0.234207 0	0 002863	0.021355	0.083563	0.00325	0.017641 0.020117	0.008704 0.00472	0	0.010832	0.007931	0.006964	0.002089	0.043329
6° I	Total 125400 0	151350 0	0 1850	13800	3600 54000	2100	11400 13000	5625 3050	0	0002	5125	4500	1350	28000
	Recreation											ann an the second and the second second		
gpd 100 225 300 4000 85 85 400 100	Industrial 36000	60000							+					10000
e Values (per person) (droom) (ple) Food) Stores) Office) (h)	Commercial 28000	28850	1860	3000		009	1000	800		2500	2425	500		
Some Averag Group Living (Housing (2 be Housing (Mult Commercial () Commercial () Commercial () Commercial (Hig Industrial (Lov Recreation	Housing 61400	62500	- - - - - -	10800	3600 54000	12600 2100	11400	5625 2250)) [2250	0004	4000	1350	18000
	Man Hole (10)157 (10)308*	(10)309 (10)308*	(10)308	(10)306 (10)306	(10)305 (10)305A	(10)072 (10)303	(10)302	(1M)286A	(1N)007*	(1N)007	(1N)000	(1N)004	(1M)283	(1M)281B

7 11 1

and a second contract of the second second

the state of the second s

and the second sec

basin 1

Sanitary Sewer Municipal Inflows

erage	Dry Flow	4.85 1.55 1.58	1.5 1.13 10.56	2.7 1.58 1.47 1.47 0.68 1.3 0.45 0.45 0.23 4.61 1.5 1.5
is 1/3 of av	Base Flow	0.672 0.215 0.219	0.208 0.156 1.462	0.373 0.219 0.203 0.094 0.18 0.063 0.639 0.639 0.639 0.638 0.638 0.638
'Note Peak	Total gpm 660.0422	13.43942 17.74559 22.12122	26.28848 26.28848 29.41392 58.65421 58.65421	0 7.466344 11.84197 15.90505 17.78032 22.62476 53.23677 72.75345 89.68295 89.68295 89.68295 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Total cfs 1.470584	0.029943 0.039537	0.058571 0.065535 0.130682 0.130682	0.016635 0.026384 0.035437 0.035615 0.039615 0.039615 0.051801 0.18612 0.18612 0.18612 0.18612 0.190815 0.199815 0.199815 0.199815 0.330497
gpm to cfs 448.83 6 Base Flow 5% 38% 38% 33% 33%	Sum cfs 0	0.0095943	0.005148 0.006964 0.065148 0	0.016635 0.009749 0.009053 0.004178 0.008008 0.001393 0.001393 0.001393 0.001393 0.0028473 0.028434 0.028434 0.002285 0.002285 0.002285 0.0002285
	Total 0	19350 6200 6300	6000 6000 4500 42100 0	10750 6300 5850 5850 5850 5850 5175 1800 900 9700 18375 6000 0 0
	Recreation			
gpd 100 225 300 4000 85 85 400 100	Industrial		13600	8000
Values ber person) troom) ble) aundry) ood) tores) ffice)	Commercial	7350 800	15000	4000 3000 4000 6000 2000
Some Average Group Living (<i>f</i> Housing (2 bec Housing (Multij Commercial (L Commercial (S Commercial (C thut thutstrial (Low Recreation	Housing	12000 5400	6000 6000 13500	6750 6300 5850 5175 1800 900 32175 14400 5700 12375 4000
	Man Hole (1M)281*	(10)005A (10)004 (10)004	(10)002 (10)001 (1M)022 (1M)020 (1M)012*	(1M)133 (1M)132 (1M)131 (1M)129 (1M)128 (1M)128 (1M)128 (1M)123 (1M)092 (1M)092 (1M)092 (1M)039 (1M)039 (1M)039 (1M)012*

.

· # ·

Sanitary Sewer Municipal Inflows

					erage			Dry Flow	0.68	0.53				2.26	2.87	1.08	0.75			21.69	3.01	20.77	0.98			90)))		7.77	3.21	0.38	
					is 1/3 of av			Base Flow	0.094	0.073				0.313	0.398	0.149	0.104			3.004	0.417	2.877	0.135		-	0003			1.077	0.445	0.052	
					*Note Peak			Total gpm	150.2124	151.671	151.671	0	811.7132	817.9641	825.92	828,9066	830.9867	830.9867	0	60.07803	68.41255	125.9555	128.6642	128.6642	0	100.909	9613179		21.53085	30.42101	31.46283	31.46283
	~					Ji		Total cfs	0.334676	0.337925	0.337925		1.808509	1.822436	1.840162	1.846816	1.851451	1.851451		0.133855	0.152424	0.280631	0.286666	0.286666		2.13811/	2 141831		0.047971	0.067778	0.0701	0.0701
gpm to cfs 448.83	% Base Flov	5%	% Dry Flow	38%		Dry Multiplie	33%	Sum cfs	0.004178	0.00325	0		0	0.013927	0.017726	0.006654	0.004635	0		0.133855	0.018569	0.128207	0.006035	0		0	41 /0000	>	0.047971	0.019807	0.002321	0
	5							Total	2700	2100	0		0	0006	11455	4300	2995	0		86500	12000	82850	3900	0	c	0 0	2400 0		31000	12800	1500	0
								Recreation												-						-						
gpd 100 225	300	4000 1000	500	85	4000	400	100	Industrial					• • • •		1200	1600	800			•		6000					2400		RNON			
e Values per person)	uroom) iple)	Laundry) Food)	Stores)	Office)	н) (H	() ()		Commercial							1255		170		:	28000	12000	3500	3000				:	:	ENNO	11000	1500	
Some Average Group Living (Housing (2 be Housing (Mult	Commercial (I Commercial (I	Commercial (Commercail (Industrial (Hig	Industrial (Low	Recreation	Housing	2700	2100				0006	0006	2700	2025	2		58500		73350	006						10000	1800)))	: :
								Man Hole	(1M)037	(1M)035	(1M)281*		(1M)281	(1M)278	(1M)003	(1G)012	(1G)010	(1G)009E*		(1G)047	(1G)045	(1G)020	(1G)162	(1G)009E*		(1G)009E	(1G)009C	പ്രംഗ്രംപ	1101048	(10,016	(16)014	(1G)009B*

. . .

Sanitary Sewer Municipal Inflows

		erage	Dry Flow		0.88	0.17	0.0	70.77	3.19	0.4	· ·		2.32	0.43	0.43	1.07	0.53	-		11.7	0.43	1.49	1.28	2.01		· · · · · · · · · · · · · · · · · · ·
		is 1/3 of ave	Base Flow		0.122 0.139	0.023	0.125	10.799	0.442	0.056			0.321	0.059	0.059	0.148	0.074			1.62	0.059	0.207	0.177	0.278		
		*Note Peak	Total gpm	0 992.7807	995.2116 997.9898	998.4586	1000.959	1216.934	1225.783	1226.894	1226.894	0	6.424529	7.605253	8.785977	11.73779	13.21369	13.21369	0	32.40046	33.58119	37.71372	41.25589	46.81224	46.81224	0
~		L	Total cfs	2.21193	2.217346 2.223536	2.224581	2.230152	2.711348	2.731062	2.733538	2.733538		0.014314	0.016945	0.019575	0.026152	0.02944	0.02944		0.072189	0.074819	0.084027	0.091919	0.104298	0.104298	
gpm to cfs 448.83 % Base Flov 5%	% Dry Flow 38%	Dry Multiplie 33%	Sum cfs	0	0.005416 0.00619	0.001045	0.005571	0.481196	0.019715	0.002476	0		0.014314	0.002631	0.002631	0.006577	0.003288	0		0.072189	0.002631	0.009207	0.007892	0.01238	0	
Ŭ			Total	0	3500 4000	675	3600	310960	12740	1600	0		9250	1700	1700	4250	2125	0		46650	1700	5950	5100	8000	0	
			Recreation				-	98560					-													
gpd 100 300 4000	1000 500 85	4000 400 100	Industrial				3600	800	400	1600				• • •			:			5 1 1 1				8000		
 Values Per person) droom) ple) aundry) 	food) Stores) Office)		Commercial		3500 4000		- - -	10000	5500				9250	1700	1700	4250	2125			17850	1700	5950	5100			
Some Average Group Living (Housing (2 be Housing (Multi Commercial (1	Commercial (5 Commercial (5 Commercial (6	Industrial (High Industrial (Low Recreation	Housing			675		201600	6840										A	28800						
			Man Hole	(1G)009B	(1G)009A (1G)008C	(1G)008A	(1G)005	(1G)003	(1G)002	(1G)001	(1F)017*		(1F)030	(1F)028	(1F)027	(1F)026A	(1F)025	(1F)023*	~	(1H)045	(1H)044	(1H)043	(1H)038	(1H)001	(1F)023*	~

7 2 2

-

÷

.

Sanitary Sewer Municipal Inflows

srage	Dry Flow 3.43 0.21 0.26	1.99 3.2	40.67 0.9 1.35 2.03 0.62 0.34 0.6 1.81 1.99 1.99	
is 1/3 of ave	Base Flow 0.476 0.03 0.035	0.276 0.444	$\begin{array}{c} 5.633\\ 0.125\\ 0.128\\ 0.281\\ 0.086\\ 0.047\\ 0.047\\ 0.125\\ 0.349\\ 0.583\\ 0.583\\ 0.256\\ 0.083\\ 0.276\\ 0.276\end{array}$	
*Note Peak	Total gpm 60.02593 69.54118 70.13154 70.83998 70.83998	1297.734 1303.256 1312.13 1312.13	112.655 115.1553 118.9059 124.5317 124.5317 126.2507 127.1883 127.1883 127.1883 127.1883 127.1883 127.1883 127.1883 127.1883 127.1883 127.1883 127.1883 126.2507 155.0048 155.0048 160.5264	0
N La	Total cfs 0.133739 0.154939 0.156254 0.157833 0.157833	2.891371 2.903673 2.923446 2.923446	0.250997 0.256568 0.256568 0.264924 0.271458 0.281288 0.281288 0.283377 0.283377 0.283377 0.2833497 0.30497 0.341639 0.341639 0.341639 0.357655 0.357655	
gpm to cfs 448.83 % Base Flov 5% 38% 38% Dry Multiplie	Sum cfs 0 0.0212 0.001315 0.001578	0 0.012302 0.019773 0	0.250997 0.005571 0.008356 0.012534 0.012534 0.002089 0.015571 0.015552 0.015552 0.015552 0.0155997 0.011142 0.003714 0.012302	
с —	n Total 0 13700 850 1020 0	0 7950 12777.5 0	162200 3600 5400 8100 8100 1350 3600 10050 16800 7200 7200 7950 0	,
	Recreation		200	
gpd 100 225 300 500 4000 85 400	Industrial 12000			
Values ter person) room) ble) aundry) aundry) ood) tores) fflice)	Commercial 1700 850 1020	2550 2540	2000 850 8400 4050	
Some Average Group Living (p Housing (2 bed Housing (Multir Commercial (L: Commercial (E Commercial (F Commercial (F Commercial (D Industrial (Low)	Housing	5400 10237.5	160200 3600 5400 8100 8100 8700 8700 8400 7200 3900 3900	:
	Man Hole (1F)023 (1F)021 (1F)021 (1F)018 (1F)017G (1F)017F*	(1F)017F (1F)017C (1F)017A (1J)014*	(1K)011 (1K)010 (1K)009 (1K)008A (1K)008A (1K)008 (1K)005 (1K)005 (1K)005 (1K)002A (1K)001 (1K)001 (1L)053	nen(rl)

. . . .

and a second sec

the second se

Sanitary Sewer Municipal Inflows

			erade	5		Dry Flow	19	0.25			27.Uð	11.3	43.83				3.51	5.37	0.15			4.33	2.78	0.58	0.56	0.45	0.34	3.71	0.85	1.4.1	3.46
			is 1/3 of av			Base Flow	2.631	0.035			3.039	1.564	6.07				0.486	0.743	0.021			0.599	0.385	0.08	0.078	0.063	0.047	0.514	0.117	0.195	0.479
			*Note Peak			Total gpm	52.62904	53.32359	53.32359	0	6170.017	306.3111	427.7173	427.7173	0	1739.847	1749.571	1764.434	1764.851	1764.851	0	11.98088	19.69031	21.28776	22.85049	24.10066	25.0383	35.31754	37.66163	41.56844	51,15314
	>			Ļ		Total cfs	0.117258	0.118806	0.118806	0.1010	501210.U	0.682466	0.952961	0.952961		3.876406	3.898071	3.931186	3.932115	3.932115		0.026694	0.04387	0.047429	0.050911	0.053697	0.055786	0.078688	0.083911	0.092615	0.11397
gpm to cfs 448.83	% Base Flov 5%	% Dry Flow 38%	0000	Dry Multiplie	33%	Sum cfs	0.117258	0.001547	0		0.130292	0.069713	0.270495	0		0	0.021664	0.033116	0.000928	0		0.026694	0.017177	0.003559	0.003482	0.002785	0.002089	0.022902	0.005223	0.008704	0.021355
	0.]		Total	75775	1000	0	00071	C/020	45050	174800	0		0	14000	21400	600	0		17250	11100	2300	2250	1800	1350	14800	3375	5625	13800
						Recreation	and a second sec				700							400				-	100			· • • • • •					
gpd 100 225	300 4000 1000	500 86	4000	400	100	Industrial				0000	suuu													1 1				800			
e Values per person) droom)	ple) .aundry) ⁻ ood)	stores)	(auno))			Commercial	20875	1000			c/024	500	20000				500	6000	: : : :			17250	11000	500	-			500		•	
Some Average Group Living (Housing (2 be	Housing (Multi Commercial (I Commercial (F	Commercial (S	Lounne can (Industrial (High	Industrial (Low	Recreation	Housing	54900				30000	44550	154800				13500	15000	600					1800	2250	1800	1350	13500	3375	5625	13800
						Man Hole	(1H)011	(1H)009	(11)050*		ncn(rl)	(1J)046	(1)044	(1))014*		(11)014	(11)011	(11)006	(11)003	(11)002*	<u>.</u>	(1F)016	(1F)013	(1F)011	(1F)010	(1F)009	(1F)008	(1F)006	(1F)004	(1F)003	(1F)001

the state of a

a filment and a state of the st

Sanitary Sewer Municipal Inflows

erage	Dry Flow	1.07	5.27 0.45	7.22 1.81	0.03	1.25 0.75 0.3
is 1/3 of av	Base Flow	0.148	0.731 0.063	1 0.25	0.003	0.174 0.104 0.042
*Note Peak	Total gpm 51.15314	0 1816.004 1818.973 1818.973	14.61146 15.86164 15.86164 15.86164 15.86164	0 1834.835 1834.835 1854.838 1854.838 1859.839 1859.839	2487.202 2487.272 2487.272 2487.272 0	2561.441 2564.913 2566.997 2567.83
N I	Total cfs 0.11397	4.046085 4.0527 4.0527	0.032555 0.03534 0.03534 0.03534	4.08804 4.08804 4.132607 4.143748 4.143748	5.541525 5.541679 5.541679	5.706928 5.714665 5.719308 5.721165
gpm to cfs 448.83 % Base Flov 5% 38% 38% Dry Multiplie	Sum cfs	0 0.006615 0	0.032555 0.002785 0 0	0 0 0.044567 0.011142 0	0 0.000155 0	0 0.007737 0.004642 0.001857
с <u> </u>	n Total 0	0 4275 0	21037.5 1800 0 0	0 0 28800 7200 0	0 100	0 5000 3000 1200
	Recreation				100	
gpd 100 225 300 4000 85 85 400 400	Industrial	4275				
e Values per person) droom) ple) -aundry) -aundry) -ood) Stores) Dffice) h)	Commercial					2000
Some Average Group Living (Housing (2 be Housing (Multi Housing (Multi Commercial (1 Commercial (5 Commercial (6 Industrial (Hig) Industrial (Low	Housing		21037.5 1800	28800 7200		3000 1200
	Man Hole (1J)002*	(1J)002 (1A)042 (1A)041*	(1E)009 (1E)005 (1E)001 (1E)001 (1A)041*	(1A)041 (1A)034 (1A)027 (1A)027 (1A)026 (1A)024A*	(1A)024A (1A)023 (1A)017*	(1A)017 (1A)015 (1A)014 (1A)014 (1A)007

7

. .

· · · · ·

.

Sanitary Sewer Municipal Inflows

								1/3 of average			ise Flow Dry Flow	0.141 1.02	0.052 0.38	
								e Peak is			I gpm Ba	0.643	.685	.685
								*Note			Total	2570	2571	2571
			>						_		Total cfs	5.727432	5.729753	5.729753
gpm to cfs	448.83		% Base Flov	5%		% Dry Flow	38%		Dry Multiplie	33%	Sum cfs	0.006267	0.002321	0
			0.						Ļ		Total	4050	1500	0
											Recreation			
pdɓ	100	225	300	4000	1000	500	85	4000	400	100	Industrial	800		
e Values	per person)	droom)	ple)	-aundry)	-ood)	Stores)	Office)	(c	()		Commercial	1000	1500	
Some Average	Group Living (Housing (2 be	Housing (Multi	Commercial (L	Commercial (F	Commercial (S	Commercail (C	Industrial (Higl	Industrial (Low	Recreation	Housing	2250		
											Man Hole	(1A)004	(1A)001	(1A)000

End

- Britani - F

Basin 1
BASIN 2

ž.

е ; Basin 2

Inflows
Municipal
Sewer
Sanitary

FULL	2																				
PEARLord	Dry Flow	4.89 10.98	4.51	6.52	1.35	4.81	1.28	0.68	5.12		13.25	7.02	4.36	4.76			0.98	2.61	7.45	2.63	
which	Base Flow	0.677 1.521	0.625	0.903	0.188	0.667	0.177	0.094	0.708		1.835	0.972	0.604	0.66			0.135	0.361	1.031	0.365	
	Total gpm	13.5436 43.96461	56,4664	74.52453	/8.2/50/ 81.60888	94.94412	98.48629	100.3616	114.5302	114.5302	36.70663	56.15385	68.23891	81.43524	81.43524	195.9655	198.6742	205.8975	226.5254	233.8181	233.8181 0
3 、	Total cfs	0.097954	0,125808	0.166042	0.174398	0.211537	0.219429	0.223607	0.255175	0.255175	0.081783	0.125112	0.152037	0.181439	0.181439	0.436614	0.442649	0.458743	0.504702	0.52095	0.52095
gpm to cfs 448.83 % Base Flo 5% 38% 38%	Sum cfs	0.067778	0.027854	0.040234	0.008356	0.029711	0.007892	0.004178	0.031568	0	0.081783	0.043329	0.026926	0.029402	0	0	0.006035	0.016094	0.045959	0.016248	0
	Total	43800	18000	26000	5400 4800	19200	5100	2700	20400	0	52850	28000	17400	19000	0	0	3900	10400	29700	10500	0
	Recreation	300											3200								
9pd 100 225 300 4000 85 85 400 100	Industrial									-	5600		· · · · · · · · · · · · · · · · · · ·			!					
e Values (per person) edroom) tiple) Laundry) Food) Stores) Office) th)	Commercial	0009	· · ·	2000			-			· · ·	11250	8000	1000	10000	· · ·			500	5400	1500	
Some Averag Group Living Housing (2 be Housing (Mult Commercial (Commercial (Commercial (Industrial (Lov Recreation	Housing	19500 37500	18000	24000	5400 4800	19200	5100	2700	20400	:	36000	20000	13200	0006			3900	0066	24300	0006	
	Man Hole	(21)029 (21)028	(21)025A	(21)021B	(21)020	(21)014	(21)011	(21)009	(21)008	(21)005*	(21)059	(21)055	(21)051	(21)049	(21)005*	(21)005	(21)003	(21)002	(21)001	(2H)002	(2H)021*

10.00

..................

Basin 2

Sanitary Sewer Municipal Inflows

					Dry Flow	9.78	2.71	1.58			3.61	0.0	0.75				1.13	0.63	1.5	2.26	0.38			0.23	0.23	0.75	1.2	0.6	0.53	1.71
					Base Flow	1.354	0.375	0.219			0.5	0.125	0.104				0.156	0.087	0.208	0.313	0.052			0.031	0.031	0.104	0.167	0.083	0.073	0.236
					Total gpm	27.0872	34.58827	38.9639	38.9639		10.00143	12.50179	14.58542	14.58542		53.54932	30.21265	31.94901	36.11627	42.36716	43.40898	43.40898	0	277.8522	278.4773	280.5609	283.8947	285.5616	287.0202	291.7431
	Ņ	,			Total cfs	0.060351	0.077063	0.086812	0.086812		0.022283	0.027854	0.032497	0.032497		0.119309	0.067314	0.071183	0.080468	0.094395	0.096716	0.096716		0.619059	0.620452	0.625094	0.632522	0.636236	0.639485	0.650008
gpm to cfs 448.83	% Base Flo ^v 5%	% Dry Flow	38%		Sum cfs	0.060351	0.016713	0.009749	0		0.022283	0.005571	0.004642	0		0	0.006964	0.003869	0.009285	0.013927	0.002321	0		0.001393	0.001393	0.004642	0.007428	0.003714	0.00325	0.010523
					Total	39000	10800	6300	0		14400	3600	3000	0		0	4500	2500	6000	0006	1500	0		006	006	3000	4800	2400	2100	6800
					Recreation			-													-								1	
gpd 100	300 300 4000	500	85 4000 400	100	Industrial				a television of the second sec		12000													1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		And a second of the second sec	Amount of the second		-	
Values ber person)	iroom) de) aundry)	tores)	office) t))		Commercial				2	· · ·					:			2500						:		-			:	2000
Some Average Group Living (p	Housing (2 bec Housing (Multi Commercial (L	Commercial (S	Commercail (C Industrial (High Industrial (Low	Recreation	Housing	39000	10800	6300			2400	3600	3000				4500		6000	0006	1500			006	006	3000	4800	2400	2100	4800
					Man Hole	(2H)289	(2H)286	(2H)285	(2H)053*		(2H)058	(2H)057	(2H)054A	(2H)053*		(2H)053	(2H)049	(2H)036	(2H)032	(2H)030	(2H)026	(2H)021*	~	(2H)021	(2H)020	(2H)019	(2H)017A	(2H)016	(2H)014	(2H)013

<u>.</u>

.

. 5

Sanitary Sewer Municipal Inflows

Basin 2

							Dry Flow	13.69	3.68			15.24	0.38	1.47	0.56	10.23	0.15	6.22	4.81	0.6	0.68	2.11	0.45	0.3	0.45	7.52	1.58	0.63	0.45	7.52	10.53	
							Base Flow	1.896	0.51			2.111	0.052	0.203	0.078	1.417	0.021	0.862	0.667	0.083	0.094	0.292	0.063	0.042	0.063	1.042	0.219	0.087	0.063	1.042	1.459	
							Total gpm	329.6651	339.8576	339.8576	0	42.22825	43.27007	47.33315	48.89587	77.23325	77.64998	94.89203	108.2273	109.8942	111.7694	117.6036	118.8538	119.6872	120.9374	141.7737	146.1493	147.8857	149.1359	169.9722	199.143	199.143
	\$		1				Total cfs	0.734499	0.757208	0.757208		0.094085	0.096406	0.105459	0.108941	0.172077	0.173005	0.211421	0.241132	0.244846	0.249024	0.262023	0.264808	0.266665	0.26945	0.315874	0.325623	0.329492	0.332277	0.378701	0.443694	0.443694
gpm to cfs 448.83	% Base Flo ^v 5%	•	% Dry Flow	38%			Sum cfs	0.084491	0.022/09	0		0.094085	0.002321	0.009053	0.003482	0.063136	0.000928	0.038416	0.029711	0.003714	0.004178	0.012999	0.002785	0.001857	0.002785	0.046424	0.009749	0.003869	0.002785	0.046424	0.064993	0
							Total	54600	146/5	0		60800	1500	5850	2250	40800	600	24825	19200	2400	2700	8400	1800	1200	1800	30000	6300	2500	1800	30000	42000	0
							Recreation								-			-														
gpd 100 225	300 4000	1000	500	85	4000 400	100	Industrial								· • • • • •			*							-	-						
e Values per person) droom)	iple) aundrv)	(poo_	Stores)	Office)	(H) (V)		Commercial		009			42500			- -	•			:		4	-						2500		:	•	
Some Average Group Living (Housing (2 be	Housing (Mult Commercial (I	Commercial (I	Commercial (;	Commercail (I	Industrial (Hig Industrial (Lov	Recreation	Housing	54600	141/5			18300	1500	5850	2250	40800	600	24825	19200	2400	2700	8400	1800	1200	1800	30000	6300		1800	30000	42000	
							Man Hole	(2H)012	(2H)00/	(2J)018*		(2K)037	(2K)033A	(2K)033	(2K)032	(2K)029	(2K)027	(2K)025	(2K)024A	(2K)022	(2K)021	(2K)019	(2K)018	(2K)017	(2K)016	(2K)014	(2K)013	(2K)011	(2K)003	(2K)002	(2K)001	(2J)018*

1

. . .

Basin 2

Sanitary Sewer Municipal Inflows

				Dry Flow		6.9			19.48			12.64	2.11	2.03	2.78	1.05	2.78	4.94	1.13	0.83	1.48	1.5	1.33		-		1,19	5.3/
				Base Flow	•	0.955			2.698			1.75	0.292	0.281	0.385	0.146	0.385	0.684	0.156	0.115	0.205	0.208	0.184				0.165	0.744
				Total gpm	0 539 0006	558.1005	558.1005	0	53.96604	53.96604	0	35.005	40.83917	46.46497	54.1744	57.09149	64.80092	78.48343	81.60888	83.90087	87.99868	92.16594	95,84702	95.84702	0	149.8131	153.1226	167.9962
	>	>		Total cfs	1 200901	1.243456	1.243456		0.120237	0.120237		0.077992	0.09099	0.103525	0.120701	0.127201	0.144377	0.174862	0.181826	0.186932	0.196062	0.205347	0.213549	0.213549		0.333786	0.341159	0.374298
gpm to cfs 448.83	% Base Flo 5%	% Dry Flow 38%		Sum cfs	c	0.042555	0		0.120237	0		0.077992	0.012999	0.012534	0.017177	0.006499	0.017177	0.030485	0.006964	0.005107	0.00913	0.009285	0.008202	0		0	0.007374	0.033139
				Total	C	27500	0		77700	0		50400	8400	8100	11100	4200	11100	19700	4500	3300	5900	6000	5300	0		0	4765	21415
				Recreation			· · · · · · · · · · · · · · · · · · ·					-			· · · · · · · · · · · · · · · · · · ·				1									
gpd 100	225 300 4000	1000 500 85	4000 400 100	Industrial													-			•	:	•						
le Values (per person)	edroom) tiple) Laundry)	Food) Stores) Office)	(ht (v	Commercial	: ;	5000		•	4500	•			!	•	3000			12500	-		500	:	200				4765	21415
Some Averaç Group Living	Housing (2 bt Housing (Mul Commercial (Commercial (Commercial (Commercail (Industrial (Hig Industrial (Lo Recreation	Housing		22500	-		73200		:	50400	8400	8100	8100	4200	11100	7200	4500	3300	5400	6000	4800					
				Man Hole	0100107	(2.1)011	(2))010*		(2))026	(2J)025*	-	(21)060	(2J)056	(2))054	(21)053	(21)050	(2))048	(2))047	(21)046	(2.1)045	(2.1)044	(2.1)043	(2.1)040	(2))025*		(2))025	(2))021	(2J)020

Contraction of

. . .

Sanitary Sewer Municipal Inflows

2
asin
Ш

	Dry Flow		21.74	14.07	1 13	12075	0.75 8.12	5.42	21.00 1.96	5.52 1.88	0.75	9.15 2.9
	Base Flow		3.011	1.948	0 156	0.167	0.104	0.75	0.271	0.764	0.104	1.268 0.401
	Total gpm 167.9962	726.0968	u 60.21693 60.21693	0 38.9639 38.9639 0	99.18083 107 3063	105.6401	109.8074	147.3127	211.0718	226.3518	233.6445	258.9953 267.0173
2	Total cfs 0.374298	1.617755	0.134164 0.134164	0.086812 0.086812	0.220976	0.235368	0.244652	0.328215	0.470271	0.504315	0.520563	0.577045 0.594919
gpm to cfs 448.83 % Base Flov 5% 38% 38%	Sum cfs 0	0 0	0.134164	0.086812 0	0 0 006964	0.007428	0.004642	0.033425	0.0129980	0.034044	0.004642	0.056482 0.017873
	Total 0	0 0	86700 0	56100 0	0 4500	4800	3000	21600	84000 7800	22000	3000	36500 11550
	Recreation											
gpd 100 225 300 1000 85 85 100 100	I Industrial											
 Values Values Values droom) droom) droom) droom) aundry) aundry) cood) fice) fice) 	Commercia		15000							22000	7500 3000	36500 11550
Some Average Group Living (J Housing (2 bed Housing (Multi Commercial (L Commercial (S Commercial (S Commercial (S Industrial (High Industrial (Low Recreation	Housing		71700	56100	1500	4800	3000	21600	84000 7800			
	Man Hole (2J)010*	(2J)010 (2F)009*	(2G)359 (2G)025*	(2G)026 (2G)025*	(2G)025	(2G)022 (2G)022	(2G)020	(2G)018 (2G)018	(2G)016 (2G)015	(2G)013A	(2G)011 (2G)009	(2G)007 (2G)006

÷

ŗ

Basin 2

Sanitary Sewer Municipal Inflows

			Dry Flow 10.83	48.74	8.15	16.92 2.33	3.08	28.64 9.78 25.05	17.84
			Base Flow 1.5	6.751	1.129	2.344 0.323	0.427	3.967 1.354 2.504	2.471
			Total gpm 297.0216 297.0216	135.0241 135.0241	0 432.0457 454.6184 454.6184	46.8817 53.34095 53.34095	507.9594 516.5022 516.5022 0	1242.599 1321.933 1349.02	1470.323 1470.323 1470.323 1470.323
	8		Total cfs 0.661769 0.661769	0.300836	0.962604 1.012897 1.012897	0.104453 0.118844 0.118844	1.131741 1.150775 1.150775	2.768529 2.945287 3.005638	3.105/99 3.275901 3.275901 3.275901
gpm to cfs 448.83	% Base Flo [,] 5%	% Dry Flow 38%	Sum cfs 0.06685 0	0.300836	0 0.050292 0	0.104453 0.014391 0	0 0.019034 0	0 0.176758 0.060351	0.110101 0.110101 0 0
	-		Total 43200 0	194407 0	0 32500 0	67500 9300 0	0 12300 0	0 114225 39000	71150 0 0 0
			Recreation						
gpd 100 225	300 4000 1000	500 85 4000 400	Industrial						
e Values per person)	uruutit) iple) _aundry)	Stores) Office) n)	Commercial 43200	171907		40500			8000
Some Average Group Living (Housing (2 he	Housing (2 be Housing (Multi Commercial (I	Commercial (5 Commercial (6 Industrial (Hig) Industrial (Low Recreation	Housing	22500	32500	27000 9300	12300	114225 39000	103500 63150
			Man Hole (2G)004 (2G)002A*	(2G)045 (2G)002A*	(2G)002A (2G)002 (2F)022*	(2F)033 (2F)023 (2F)022*	(2F)022 (2F)017 (2F)009*	(2F)009 (2F)005 (2F)004	(2E)043 (2E)003 (2E)002 (2A)063*

Basin 2

Sanitary Sewer Municipal Inflows

			Dry Flow	29.92	0.05	1.07	1.3	4,14			38.66	0.5	~			44.25	3.51				 - -				0.2	32.53	1.69
			Base Flow	4.144	0.007	0.148	0.181	0.573			5.354	0.069	0.139			6.129	0.486	-						annin a shi basa a sa ma she anna anna	0.028	4.505	0.234
			Total gpm	0 82.87642	83.01533	85.9845	89.59613	101.0561	101.0561	0	107.0813	108.4704	111.2485	111.2485	0	122.587	132.3106	122.587	0	233.8355	233,8355	0	1704.158	1704.158	1704.714	1794.813	1799.501
	3	>	Total cfs	0.18465	0.184959	0.191575	0.199622	0.225155	0.225155		0.238579	0.241674	0.247863	0.247863		0.273126	0.29479	0.273126		0.520989	0.520989		3.79689	3.79689	3.798128	3.998871	4.009316
gpm to cfs 448.83	% Base Flo 5%	% Dry Flov 38%	Sum cfs	0.18465	0.000309	0.006615	0.008047	0.025533	0		0.238579	0.003095	0.00619	0		0.273126	0.021664	0		0	0		0	0	0.001238	0.200743	0.010445
			Total	119325	200	4275	5200	16500	0		154175	2000	4000	0		176500	14000	0		0	0		0	0	800	129725	6750
			Recreation		200				AL (400000 199149																and a second s		
gpd 100 225	300 4000	500 500 85 4000 4000	100 Industrial					16500			121200	-				54000					-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		· · · · · · · · · · · · · · · · · · ·			
Values per person)	ple) aundry)	- 00d) stores) Office) (r	Commercial				5200				7475	2000	4000		-	52500	5000		;				-	•	800		
Some Average Group Living ((Housing (2 bed Housing (Multi Commercial (L	Commercial (F Commercial (S Commercail (C Industrial (High Industrial (Low	Recreation Housing	119325	-	4275	- - - -				25500	-	:			20000	0006									129725	6750
			Man Hole	(2D)013	(2D)012	(2D)011	(2D)009	(2D)006	(2D)003*		(2D)046A	(2D)046	(2D)045	(2D)244*		(2D)267	(2D)263	(2D)244*	•	(2D)244	(2A)063*		(2A)063	(2A)043	(2A)034	(2A)020	(2A)015

- - - - -

e I

Sanitary Sewer Municipal Inflows

	gpm to cfs	448.83		% Base Flow	5%	
SWOII	bdg	100	225	300	4000	1000
iilary sewer imunicipal in	Some Average Values	Group Living (per person)	Housing (2 bedroom)	Housing (Multiple)	Commercial (Laundry)	Commercial (Food)

	y Flow	10.03	40.41	1.22		1.76 1	30.23	2.01 10.03	
	Base Flow Dr	1.389	19.447	0.168	0.154	0.244 0.139	11.113	0.278 1.389	
	Total gpm 1799.501	27.78175 27.78175	388.9444 388.9444	3.368537 3.368537	3.073356	428.0438 430.822	653.0759 653.0759 0	5.556349 33.3381 33.3381 33.3381	0 686.414 686.414
	Total cfs 4.009316	0.061898 0.061898	0.866574 0.866574	0.007505	0.006847 0.006847	0.953688 0.959878	1.455063 1.455063	0.01238 0.074278 0.074278	1.529341 1.529341
% Dry Flow 38%	Sum cfs	0.061898 0	0.866574 0	0.007505	0.006847	0.010863 0.00619	0.495185 0	0.01238 0.061898 0	0 0
	Total 0	40000 0	560000 0	4850 0	4425 0	7020 4000	320000 0	8000 40000 0	0 0
	Recreation								
500 85 4000 400	Industrial	40000	56000	4000	4425	6000 4000	320000	8000 40000	
tores) ffice)	Commercial			850	•	1020			
Commercial (S: Commercail (O Industrial (High Industrial (Low) Recreation	Housing								
	Man Hole (2A)001*	(1P)024 (1P)017*	(1P)018 (1P)017*	(1P)073 (1P)017*	(1P)079 (1P)017*	(1P)017 (1P)011	(1P)008 (1P)003*	(1P)065 (1P)043 (1P)003*	(1P)003 (2A)001*

· In our of

Sanitary Sewer Municipal Inflows

											Dry Flow		
											Base Flow		
											Total gpm	2485.915	
			8								Total cfs	5.538657	
gpm to cfs	448.83		% Base Flor	5%		% Dry Flow	38%				Sum cfs	0	
											Total	0	
											Recreation		
gpd	100	225	300	4000	1000	500	85	4000	400	100	Industria		
e Values	(per person)	droom)	iple)	Laundry)	Food)	Stores)	Office)	(h)	(»		Commercial		
Some Averag	Group Living (Housing (2 be	Housing (Mult	Commercial (I	Commercial (Commercial (Commercail (Industrial (Hig	Industrial (Lov	Recreation	Housing		
											Man Hole	(2A)001	

. 7

.

· F1 · · · · ·

Basin 2

TM 2-3

SUB-BASIN CALCULATIONS

SCS CN CALCULATIONS

()

F

San ^{i,}	~ · · S	ewe	r Ba	ısin	CN	Value	S															7	
CN Values	- Exist	ing C	onditi	ons					-	CN CN	ond L	ראינ											
A	Imperv	ious A	Vreas ((Soil A	A,B,C,	D) =				98 0	00.7	.84											
Ш	Comme	ercial	and B	usines	ss (So	= (O II				95 0	.01 7	.54											
U	Comm	ercial	and B	usine	ss (So	il C) =				94 0	.01 7	.43											
D	Comm	ercial	and B	usine	ss (So	il B) =				92 0	.02 7	.23											
ш	Comm	ercial	and B	usine:	ss (So	il A) =				89 0	.03 6	.92											
LL.	Reside	ntial 1	/4 Acı	re Lot	s (Soil	= (O				87 0	.04 6	.72											
U	Reside	ntial E	state	(Soil I	= ()					85 0	.06 6	.52											
I	Small (Grain	Conto	ured (300d ((Soil D)	11			84 0	.06 6	.41											
-	Herbac	seious	Open	Spac	e / Pa	sture -	Fair (Soil D	11 (83 0	.07 6	.31											
ر	Reside	ntial 1	/4 Aci	re Lot	s (Soil	= C)				83 0	.07 6	.31											
¥	Reside	ntial E	state	(Soil (C) =					81 0	9 60.	.11											
	Pasture	e - Fai	r (Soil	C)						76 0	.14 5	5.6											
Σ	Reside	ntial (:	Soil B							75 0	.15 5	5.5											
z	Reside	ntial E	state	(Soil I	B) II					70 0	.21 4	66.											
0	Pasture	e - Fai	r (Soil	= (B)						69 0	.23 4	.88											
۵.	Reside	ntial 1	/4 Acr	re Lots	s (Soil	A) =				61 0	.34 4	.07											
Ø	Small (Grain	St Go	od (Sc	= (A lic	н				60 0	.35 3	.97											
	Reside	ntiał E	state	(Soil /	A) = (A					57 0	.39 3	.66											
: v	Reside	ntial 1	/2 Acr		ii A) =					54 0	44 3	35											
)	Pacture	00 - e	en Sn		Fair (9	Soil AV	11			49 0	52 2	84											
-											1					6	4	4	6	}		Weighted	Comp
Basin	Area	<	n	د	ב	ш	L	פ	E	_		ן א	2	z	2	<u>ר</u>	z	¥	n	-	dui	Average	CN
	acres	acre	acre	acre	acre	acre	acre é	acre ¿	acre á	icre a	cre a	cre ac.	re acn	e acri	e acre	acre	acre	acre	acre	acre	%	Acre*CN	CN
Basin 1																		-	-				
Basin1A1	131.1				31.1										100		-				10%	9761	74.5
Basin1A2	128.8			10	105					4					9.75						85%	11605	90.1
Basin1A3	94.48				~								09		27.5			******			75%	7040	74.5
Basin1B1	38													31	2					A A AND A TIMANY A ANNA I NA	40%	2653	69.8
Basin1B2	51.57				36.6					-					15						65%	4399	85.3
Basin1B3	134.3				30						06				14						65%	11196	83.4
Basin1B4	66.24		12				10			-	40				4.2						65%	5620	84.8
Basin1C1	83.53		5		5		35			5	30				3.53						60%	7129	85.3
Basin1C1A	66.82		15				41.8			10											60%	5893	88.2
Basin1C1B	69.72						60) .72											55%	6027	86.4
Basin1C1C	89.15				An article matrices in the same of the		70			9.2											50%	7679	86.1
Basin1C1D	76.49						55			21.5											35%	6569	85.9
Basin1C2	59.5						50			9.5											65%	5139	86.4
Basin1C3	67		2				50	1		10											60%	5845	87.2
Basin1C4	62.19						55			7.19											60%	5382	86.5
Basin1D1	56.18		15		5					5			10	15	5.18						35%	4457	79.3
Basin1D2	50.46				2		10			2			30		6.46						55%	3916	77.6
Basin1D3	108.2		20				80			8.2											60%L	9541	88.2

and a second condition of

Ì

San ⁱ	V Se	wer	Bai	sin (CN <	'alue	ŝ				1											
Values - I	Existin	g Col	nditic	suc					CN	Cond	D'ry											
A In	npervio	us Ar	eas (5	Soil A	,B,C,D	= (98	0.00	7.84											
й В	ommer	cial a	nd Bu	Isines	is (Soil	D) =			95	0.01	7.54											
й с	ommer	cial a	nd Bu	Isines	is (Soil	= C)			94	0.01	7.43											
й D	ommer	cial a	nd Bu	Isines	is (Soil	B) =			92	0.02	7.23											
Ŭ Ш	ommer	cial a	nd Bu	Isines	is (Soil	= (Y			89	0.03	6.92											
Е К	esident	'ial 1/∠	4 Acr€	e Lots	(Soil I	= (C			87	0.04	6.72											
G R	esident	ial Es	state (Soil E	= ()				85	0.06	6.52											
H Sr	mall Gr	rain C	ontou	Ired G	3) boos	Soil D)	11		84	0.06	6.41											
Η	erbacei	ious C) pen	Space	e / Pas	ture - f	⁻ air (So	= (O I	83	0.07	6.31											
J R(esident	ial 1/ ²	4 Acre	e Lots	: (Soil (11 ()			83	0.07	6.31											
X R	esident	ial Es	state (Soil C	= ()				81	0.09	6.11											
Ц Ц	asture -	- Fair	(Soil	п С					76	0.14	5.6											
M R	esident	ial (S	oil B)	11					75	0.15	5.5											
N R	esident	lial Es	state (Soil E	3) =				70	0.21	4.99											
0 P;	asture -	- Fair	(Soil	B) =					69	0.23	4.88											
Р	esident	tial 1/	4 Acre	e Lots	(Soil ,	۲) = (۲			61	0.34	4.07											
Q Sr	mall Gr	ain S	t Goo	d (So	il A) =				60	0.35	3.97											
Ч Ч	esident	lial Es	state (Soil A	1 = (1				57	0.39	3.66											
S R	esident	tial 1/2	2 Acré	e (Soi	= (Y				54	0.44	3.35											
T P;	asture .	- Ope	n Spa	tce - F	⁻ air (S	oil A) =			49	0.52	2.84											
asin A	Area	۷	۵	ပ	Q	ш	ц Б	T	-	٦	×		z 5	0	٩.	Ø	К	S	F	lmp /	Weighted	Comp
			arre .	arre	acre	e aure	cre acr	e acre	acre	acre ;	acre a		sre aci	e acre	acre	acre	acre	acre	acre	%	Acre*CN	CN
in1D4 9	5.17	2				8	2.2		13											50%	8228	86.5
in1F1 4	4.37										100	34.4	1	0		 				10%	3312	74.6
in1E2 5	5.58					-							7.5	58 48						55%	3843	69.1
in1F1 1	93.5	1	1		35							-	29	30						40%	14928	77.1
sin1F2 5	2.03	 	-		20			 					0	22						20%	4110	79.0
in1F3 9	0.99				35		-					7	04	16						20%	7323	80.5
sin1F4 7	1.78		1		20							4	3.8	5					_	60%	5694	79.3
sin1F5 7	1.35	1			65									6.3	5					85%	6418	90.0
in1G1 4	6.72				35							-	 	2.7	2					80%	4083	87.4
in1G2 1	79.9						50					-	20	0 [.] 0	6				-		14033	78.0
in1G3 9	3.49		2		60								0	8.4	6					00%	8081	86.4
in164 1	43.5		40		25		40		4.5				õ	4						65%	12480	87.0
in1G5 1	73.2		70		-		80		23.2										- and the second second	55%	15536	89.7
in1G6 7	3.99		2				65		3.99											55%	6461	87.3
in1G7 9	7.06	1	10				75		12.1											50%	8476	87.3
sin1G8 7	7.69	i 1	40		-				37.7											35%	6929	89.2 20 r
sin1H1 1	65.3		50		35	ω	30.3													10% D/	00641	50.5 T
sin111 1	37.9		40		20	<u>_</u>	6.7.													/0% 	11.421	90
sin1J1 1	45.3				00								00	2°.4	~]%c/	12390	c.co

- - -

San ^{ir}	5	jew e	er Ba	asin	CN	Valu	es					, A										ľ	
CN Values	- Exis	ting C	onditi	ions						CN	ond 1) Jry J											
A	Imperv	/ious /	Areas	(Soil	A,B,C	= (O,				98	00.0	.84											
В	Comm	ercial	and B	3usin∈	sss (S	oil D) =				95 (0.01 7	.54											
с С	Comm	hercial	and B	susine	ess (S	oil C) =				94 (0.01 7	.43											
Ω	Comm	tercial	and B	ßusin∈	sss (S	oil B) =				92 (0.02 7	.23											
ш	Comm	ercial	and B	susine	ess (S	oil A) =				89	0.03 6	.92											
LL.	Reside	ential ·	1/4 Aci	re Lo	ts (So	il D) =				87 (0.04 6	6.72											
ი	Reside	ential 1	Estate	(Soil	" ()					85 (0.06	.52											
I	Small	Grain	Conto	bured	Good	(Soil D	= ()			84 (0.06	.41											
	Herba	ceious	s Open	i Spa	ce / P	asture	- Fair (Soil	= (83 (0.07	.31											
J	Reside	ential ·	1/4 Aci	re Lo	ts (So	ii C) =				83 (0.07 6	.31											
X	Reside	ential E	Estate	(Soil	п С					81 (0.09 6	.11											
_	Pastur	е - Fa	iir (Soi	= () =						76 (0.14	5.6											
Σ	Reside	sntial ((Soil B	=						75 (0.15	5.5											
z	Reside	ential 1	Estate	(Soil	B) =					20	0.21 4	.99											
0	Pastur	е - Fa	iir (Soi	B)) 69	0.23 4	.88											
ط	Reside	ential	1/4 Aci	re Lo	ts (So	il A) =				61	0.34 4	.07											
σ	Small	Grain	St Go	od (S	soil A)					60	0.35 3	.97											
Я	Reside	Intial E	Estate	(Soil	A) = (57 (.39 3	3.66											
S	Reside	intial .	1/2 Aci	re (Se	oil A)	H				54 (.44 3	.35											
T	Pastur	e - Op	oen Sp	ace -	- Fair ((Soil A)	11			49 (.52 2	.84											
Basin	Area	۷	ß	ပ	0	ш	ш	U	I	_	Ŀ	×	<u>م</u> 	z	0	٩	Ø	ĸ	s	T	up Weigh	ted C	omp
	00100	arra	arra	arra	acro	arra	arra	acre	acre			cre al	TP acr		acre	acre	acre			%	Acre*(Ne N	
Basin101	249.7		39.8	17	10	5	123	>		12.5	2 2		4	16.5				,		55	% 2158	63	36.5
Basin102	79.92	-	35			35											-		5	25 20	% 793	5	9.3
Basin103	111.7	-				15												06		<u>5.7</u> 60	% 679	3	0.8
Basin104	174	:	1	4		20				20		14	 					65	38	17 35	% 1116	66	34.1
Basin105	75.94	-	45	7		T		-		11.3		0	ю.					and the second second second second		10 55	% 684(0 0	0.1
Basin1P1	291.6		115							177						40 (rate - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				20	% 2558	3	37.7
Basin1P2	76.39		35							21.4					20					25	% 648(0	34.8
Basin1P3	180.6	1	35							100					45.6					20	% 1477	-1 	31.8
Basin 2				1																			
Basin2A1	55.28						e						5		50.3						% 388(0.2
Basin2A2	160.4									35.4					125						% 1150	4	7.1
Basin2B1	63.53	r 					63.5														% 552	2	37.0
Basin2B2	65.39	1					65.4													60	% 568	6	37.0
Basin2B3	119.5	: : :			 		120									_				09	% 1039	3	37.0
Basin2C1	72.7		, 	 +									65	10	7.7					45	% 540(0	4.4
Basin2C2	32.43	 	:	-									50		12.4					35	% 235	8	2.7
Basin2C3	114.7				15								8	~	17.7					55	. <u>4/8</u> %		
Basin2D1	34.78										_	ň	1.8							- 2	% 204	2	0.0
Basin2D2	315.1		2	 				75		17.1			_	216			_			na	%		4.0

- - - - -

San ⁱ	ry S	ewe	r Ba	ısin	CN	Valu	es					7											
N Values	- Exist	ing C	onditi	ions						CN	ond	лý											
A	Imperv	ious A	Vreas ((Soil ≜	A,B,C,	D) =				98 (00.7	.84											
В	Comm	ercial	and B	usines	ss (So	ii D) =				95 (01 7	.54											
ပ	Comm	ercial	and B	usine	ss (So	(C) =				94 (.01 7	.43											
D	Comm	ercial	and B	usine	ss (So	il B) =				92 (.02 7	.23											
ш	Comm	ercial	and B	usines	ss (So	il A) =				68	0.03 6	.92											
L	Reside	intial 1	/4 Acr	re Lot	s (Soil	= (O				87 (.04 6	.72											
Ċ	Reside	intial E	state	(Soil I	D) =					85 (0.06 6	.52											
I	Small (Grain	Conto	ured (Good ((Soil D	11			84 (0.06 6	.41											
_	Herbac	seious	Open	1 Spac	ie / Pa	Isture -	Fair ((Soil D	=	83	07 6	.31											
-7	Reside	intial 1	/4 Acr	re Lot:	s (Soil	= C				83	0.07 6	.31											
×	Reside	intial E	state	(Soil (" C)					81	0.09 6	.11											
<u> </u>	Pasture	e - Fai	ir (Soil	C) =						76 (14	5.6											
Σ	Reside	ntial (Soil B	=						75 (.15 5	5.5											
z	Reside	intial E	state	(Soil I	B)					02	.21 4	66.											
0	Pasture	e - Fai	ir (Soil	B) =						69	.23 4	.88											
٩	Reside	ntial 1	/4 Acr	re Lot	s (Soil	H) =				61 (.34 4	.07											
Ø	Small (Grain	St Goo	od (Sc	- (A lic	, II				00	.35 3	.97											
1 CL	Reside	ntial F	state	(Soil)	A) = (A					57 (39 3	66											
<u></u>	Reside	intial 1	12 Acr	re (So	ii A) =					54	.44 3	.35											
)	Pasture	- On	en Sn		Fair (Soil A)	11			49 (.52 2	.84											
	5					L	ŀ	•		-					_				0		M	eighted	Comp
Basin	Area	۲	n	<u>ں</u>	ב	Ц	1.,	פ	Γ ,			 	<u> </u>	Z	2	<u>۲</u>	J	Ľ	n	-	A du	verage	CN
	acres	acre	acre	acre	acre	acre	acre	acre	acre	acre a	cre a	cre aci	e acr	e acre	e acre	acre	acre	acre	acre é	Icre	% A	cre*CN	CN
Basin2D3	257.9											20 23	80								2%	19700	76.4
Basin2D4	75.74		4	42	-					2.74		2	7							9	5%	6607	87.2
Basin2D5	152.2		17	41						25.2		9	6							3	5%	12805	84.1
Basin2F1	12 18				2										10.2					-	0%	886	72.8
Basin2F2	105.0				21								62	18	4.01					0	5%	8119	77.3
Basin2F1	42.9	1				-					e	5.9			2					4	%0	3391	79.0
Basin2F2	121.9			12							110					-				9	5%	10250	84.1
Basin2F3	60.13			2						1.13		44	0							4	0%	4888	81.3
Basin2F4	21.09			15	-							6.(60							<u>م</u>	5%	1873	88.8
Rasin2F5	81			1						19		55 7								4	5%	6564	81.0
Rasin2G1	63.27			35.3								28								~	%0	5583	88.2
Bacin2G2	267.5		45	115	-							65 42	.5							2	0%	23580	88.2
Bacin 963	87 R	_	37.8	205																<u>6</u>	%0	8291	94.4
	158.6		5	о С			38				62			33.6	6					9	5%	13168	83.0
Dacin 206	80.00	_	Ľ	2			53			5	1.1									9	%0	7164	86.2
Dasin2Ca	101 0		כ	10			1			-		92 4	0	28.8	8 21					<u>.</u>	5%	14897	77.7
	0.101			2 4				29	2 16											2	%0	3116	86.2
Basin2H1	30.10 E2 66			2				315	217											<u>~</u>	0%	4454	84.6
Basinzmz	00.20						15	- 20	33	-				 	 					4	%0	11713	85.5
BasinzH3	13/	_					5	2	56	_										I]		

- Income - A

and the second second

San ¹⁴	S V.S	ewe	r Ba	asin	CN	Valu	es					2											
SN Values	- Existi	ing Co	onditi	ions						CN C	cond L	, L											
A	Imperv	ious A	vreas ((Soil ,	A,B,C,	D) =				98	00.0	.84											
В	Comme	ercial	and B	lusine	iss (Sc	i D) =				95 (0.01 7	.54											
ပ	Comm(ercial	and B	lusine	iss (Sc	ii C =				94 (0.01 7	.43											
Δ	Comme	ercial	and B	usine	iss (Sc	oil $B) =$				92 (0.02 7	.23											
ш	Comme	ercial	and B	usine	iss (Sc	ail A) =				89 (0.03 6	.92											
LL	Reside	ntial 1	/4 Acı	re Lot	s (Soil	= (O				87 (0.04 6	.72											
ი	Reside	ntial E	state	(Soil	= ()					85 (0.06 6	.52											
I	Small (Grain (Conto	ured	Good	(Soil D	=			84 (0.06 6	.41											
	Herbac	sious	Open) Spac	ce / Ρε	- erure	- Fair	(Soil E	= (83 (0.07 6	.31											
۔	Reside	ntial 1	/4 Acı	re Lot	ts (Soil	C) =				83 (0.07 6	.31											
×	Reside	ntial E	state	(Soil	= C)					81 (0.09 6	11											
	Pasture	e - Fai	r (Soi	= () =						76 (),14 5	6.6											
Σ	Reside	ntial (;	Soil B) 						75 (0.15 5	5.5											
z	Reside	ntial E	state	(Soil	B) =					20 (0.21 4	.99											
0	Pasture	e - Fai	r (Soil	B) =	-					69	.23 4	.88											
<u>م</u>	Reside	ntial 1	/4 Aci	re l ot	s (Soil	= (61 (.34 4	.07											
. (S llows		うさせた							- 09	35 3	07											
ЭQ			or du			ł					0 00 0 0 00 0	 88											
∠ د		stiol F																					
n ⊦	Reside		12 AC	re (v			1				0 1 1 1 0 1 1 1 0 1 1 1 1 0												
-	Fasture		en sp	ace -	rair					48	7 70.0							-		-	Ň	Vainhtad	
Basin	Area	∢	ш	ပ		ш	Ц	ს	I		ر	 	Σ	z	0	۵.	σ	2	თ	 }		Average	CN
	acres	acre	acre	acre	acre	acre	acre	acre	acre	acre	icre a	cre aci	re acr	e acre	acre	acre	acre	acre	icre â	cre	%	Acre*CN	CN
Basin2H4	82.23			5				34				31			12.2						35%	6715	81.7
Basin2H5	166.4			12				26.4				<u>38</u> 3(0								0%	13593	81.7
Basin2H6	30.49											12			18.5						5%	2248	73.7
Basin2H7	54 59							54.6													0%	4640	85.0
Basin2H8	88.81							70										18.8			%0%	7022	79.1
Basin2H9	56.11							5		15								10		6.1	%0	3519	62.7
Basin211	54.75				7										ω	30				.75 4		3504	64.0
Basin212	64.12						28				8	.12		28						<u>, 1</u>	55%	5054	78.8
Basin213	90.68							15				35		40.7						<u></u>	0%	6958	76.7
Basin214	31.78							28		3.78										7	15%	2694	84.8
Basin215	12.37													12.4							0%	866	70.0
Basin216	51.47													35	16.5					<u>v</u>	%0	3586	69.7
Basin217	88.64							88.6													50%	7534	85.0
Basin218	161.3				-			71		1				84	6.3					<u> </u>	15%	12350	76.5
Basin219	14.57			-				14.6													55%	1238	85.0
Basin2110	59		6					50													50%	5105	86.5
Basin2111	123.1		10	 	-			35				71 7.	-						_	7	12% -	10216	83.0
Basin2J1	37.17			35.2								-			2						00%	3444	92.7
Basin2J2	79.2			25	and the second s						50				4.2				_		%¢i	1 ng/a	1.00

- F - F - F

atan atan ak

, **R** 1

· · · · · · · · · · · ·

San	S >-	ewe	ir Ba	ısin	CN	Valu	es															
CN Values	- Exist	ing C	onditi	ons						S	Cond	Ury										
۷	Imperv	'ious ∕	Areas ((Soil /	A, B, C,	= (O				98	00.0	.84										
В	Comm	ercial	and B	usine:	ss (Sc	ii D) =				95 (0.01	.54										
U	Comm	ercial	and B	usine:	ss (Sc	il C) =				94 (0.01	,43										
D	Comm	ercial	and B	usine:	ss (Sc	ii B) =				92 (0.02 7	.23										
Ш	Comm	ercial	and B	usine.	ss (Sc	i A) =				89	0.03	3.92										
Ľ	Reside	intial 1	1/4 Act	re Lot	s (Soil	= (O				87 (0.04	3.72										
U	Reside	intial E	state	(Soil	D) =					85 (0.06	6.52										
I	Small (Grain	Conto	ured (Good	(Soil D	= (84 (0.06	6.41										
	Herbac	seious	Open	Spac	ce / Pa	Isture -	- Fair (Soil D	11	83 (0.07 (3.31										
J	Reside	intial 1	1/4 Aci	re Lot:	s (Soil	= C) =				83 (0.07 (3.31										
X	Reside	intial E	state	(Soil	н О					81	0.09	0.11										
l	Pasture	e - Fai	ir (Soi	= () 						76 (D.14	5.6										
Σ	Reside	ntial (Soil B	 						75 (0.15	5.5										
z	Reside	intial E	Estate	(Soil	B) ≓					02	0.21 4	1.99										
0	Pasture	e - Fai	ir (Soil	B) =						69	0.23 4	t.88										
L	Reside	intial 1	1/4 Acı	re Lot	s (Soil	= (A				61	0.34 4	t.07										
Ø	Small (Grain	St Go	od (S	oil A) :	11				60	0.35 (3.97			,							
Ľ	Reside	intial E	Estate	(Soil .	A) = (A					57 (0.39	3.66										
S	Reside	intial 1	1/2 Aci	re (So	il A) =					54 (0.44	3.35										
⊢	Pasture	e - Op	ven Sp	ace -	Fair (;	Soil A)	11			49 (0.52 2	2.84										
Basin	Area	۷	В	ပ	٥	ш	ц	U	Т	_	٦	×	ے 	Z	0	٩	σ	R	د		Weighted	Comp
												-	-						_	10	Average	
	acres	acre	acre	acre	acre	acre	acre	acre	acre	acre	acre	icre a	cre ac	re acr	e acre	acre	acre	acre a	cre ac	re %	ACre ⁻ UN	CN
Basin2J3	195.6		15	61							115	4	.63							602	6 17056	87.2
Basin2J4	63.78		4				57								2.78					650	6 5531	86.7
Basin2J5	44.99		15				28								1.99					62)	6 3998	88.9
Basin2J6	37.15		18				10			9.15										50%	6 3339	89.9
Basin2K1	79.62	ო	35					40		31.8										30%	6 <u>9655</u>	121.3
Basin2K2	50.15		17					28.2	2											50%	6 4428	88.3
Basin2K3	36.2	-						34	1.2											40%	6 3089	85.3
Basin2K4	57.59							37										20.6		45%	6 4319	75.0
Basin2K5	69.66							19.7										50		50%	6 4521	64.9
Basin2K6	159.2			-				9.2										150		450	6 9332	58.6
Basin2K7	48.17							15.2										33		45%	6 <u>3170</u>	65.8
Basin2K8	82.65							50		32.7										25	6960	84.2
Basin2K9	229.2					49.2				15								60	-	762 6(6 14189	61.9

- **4**

CONDUCTIVITY AND % IMPERVIOUS

Santiary Sewer Basins Calculations

	1		1		1		
Basin	Area	Width	Slope	CN	Conductivity	Dry	% Imp
1A1	131.06	100	1	74.5	0.15818751	5.4454	10
1A2	128.75	400	0.3	90.1	0.02462142	7.0366	85
1A3	94.48	80	5	74.5	0.15818751	5.4454	75
1B1	38	690	1.2	69.8	0.21522456	4.966	40
1B2	51.57	720	2.7	85.3	0.05490537	6.547	65
1B3	134.29	745	0.79	83.4	0.06978605	6.3532	65
1B4	66.24	620	0.37	84.8	0.05867004	6.496	65
1C1	83.53	1020	2.8	85.3	0.05490537	6.547	60
1C1A	66.82	602	0.51	88.2	0.03530096	6.8428	60
1C1B	69.72	901	0.95	86.4	0.04701463	6.6592	55
1C1C	89.15	888	0.91	86.1	0.04911261	6.6286	50
1C1D	76.49	692	0.51	85.9	0.0505339	6.6082	35
1C2	59.5	938	0.625	86.4	0.04701463	6.6592	65
1C3	67	820	1.8	87.2	0.04162169	6.7408	60
1C4	62.19	750	1.02	86.5	0.04632441	6.6694	60
1D1	56.18	760	1.09	79.3	0.10693013	5.935	35
1D2	50.46	843	0.86	77.6	0.12418926	5.7616	55
1D3	108.15	827	1.2	88.2	0.03530096	6.8428	60
1D4	95.17	850	0.66	86.5	0.04632441	6.6694	50
1E1	44.37	720	5.5	74.6	0.15704283	5.4556	10
1E2	55.58	860	1.1	69.1	0.22421817	4.8946	55
1F1	193.54	1260	0.75	77.1	0.12945819	5.7106	40
1F2	52.03	980	2.58	79	0.1099006	5.9044	20
1F3	90.99	942	1.05	80.5	0.09538176	6.0574	50
1F4	71.78	1280	0.45	79.3	0.10693013	5.935	60
1F5	71.35	945	1.37	90	0.025139	7.0264	85
1G1	46.72	420	0.381	87.4	0.04031984	6.7612	80
1G2	179.88	1050	0.625	78	0.1200362	5.8024	60
1G3	93.49	1524	1.1	86.4	0.04701463	6.6592	60
1G4	143.49	1250	0.34	87	0.0429422	6.7204	65
1G5	173.22	840	0.32	89.7	0.02672179	6.9958	55
1G6	73.99	1100	0.28	87.3	0.04096843	6.751	55
1G7	97.06	1400	0.36	87.3	0.04096843	6.751	50
1G8	77.69	456	0.21	89.2	0.02945916	6.9448	35
<u>1H1</u>	165.29	766	0.603	90.5	0.02260151	7.0774	70
111	137.86	684	0.4	90.1	0.02462142	7.0366	70
1J1	145.34	845	0.5	85.3	0.05490537	6.547	75
1J2	42.03	621	0.81	83.2	0.0714418	6.3328	65
1K1	70.39	677	0.47	71.5	0.19389554	5.1394	60
1K2	70.33	420	0.85	69.7	0.21650205	4.9558	40
1K3	170.81	920	0.72	82.5	0.07736731	6.2614	50
1K4	84.05	1089	0.4	72.5	0.18170756	5.2414	60
1M1	59.94	981	1.8	86.2	0.04840874	6.6388	30
1M2	58.49	1026	0.9	89.2	0.02945916	6.9448	35
1M3	89.58	774	0.54	88.8	0.0317376	6.904	55
1M4	85.1	1148		87.5	0.03967594	6.//14	55
1M5	1/2.56	10/3	0.35	87.4	0.04031984	6.7612	30
1M6	61.75	936	0.885	91.1	0.01972427	7.1386	/0

Santiary Sewer Basins Calculations

	1						
Basin	Area	Width	Slope	CN	Conductivity	Dry	% Imp
1N1	88.52	966	0.595	88.4	0.03409389	6.8632	50
1N2	72.03	1200	0.45	89.4	0.02834937	6.9652	60
1N3	55.41	1146	0.52	88.6	0.03290607	6.8836	35
1N4	155.89	1168	0.32	81.3	0.08798703	6.139	20
1N5	25.71	644	0.28	87.5	0.03967594	6.7714	50
1N6	184.98	1412	0.41	84.9	0.05790833	6.5062	55
1N7	219.38	1628	0.52	87.7	0.03840225	6.7918	20
1N8	26.64	528	0.4	87.5	0.03967594	6.7714	60
101	249.68	1975	0.28	86.5	0.04632441	6.6694	55
102	79.92	925	0.6	99.3	0.00015147	7.975	20
103	111.7	1524	0.84	60.8	0.33856351	4.048	60
104	174.04	994	0.71	64.1	0.3780946	3.7726	35
105	75.94	920	0.21	90.1	0.02462142	7.0366	55
1P1	291.6	3120	0.96	87.7	0.03840225	6.7918	20
1P2	76.39	1129	0.6	84.8	0.05867004	6.496	25
1P3	180.59	1324	0.89	81.8	0.0834923	6.19	20
2A1	55.28	882	0.85	70.2	0.21013943	5.0068	7
2A2	160.41	496	0.74	72,1	0.18654973	5.2006	2
2B1	63.53	700	2.7	87	0.0429422	6.7204	55
2B2	65.39	760	2.4	87	0.0429422	6.7204	60
2B3	119.54	980	1.2	87	0.0429422	6.7204	60
2C1	72.7	1572	2.73	74.4	0.15933525	5.4352	45
2C2	32.43	657	4.33	72.7	0.1793033	5.2618	35
2C3	114.7	1609	0.55	76.3	0.13806414	5.629	55
2D1	34.78	960	0.636	76	0.141346	5.5984	1
2D2	315.07	2542	0.8	74.8	0.15476272	5.476	60
2D3	257.89	1271	1.69	76.4	0.20509464	5.0476	2
2D4	75.74	1465	0.78	87.2	0.04162169	6.7408	65
2D5	152.22	1363	0.65	84.1	0.06412336	6.4246	35
2E1	12.18	124	0.87	72.8	0.17810541	5.272	10
2E2	105.01	1765	0.22	77.3	0.12734036	5.731	65
2F1	42.9	765	0.52	79	0.92845216	-0.4706	40
2F2	121.92	1406	0.4	84.1	0.06412336	6.4246	65
2F3	60.13	984	0.6	81.3	0.82781749	0.5596	40
2F4	21.09	571	0.65	88.8	0.0317376	6.904	35
2F5	81	859	0.54	81	0.78267654	0.937	45
2G1	63.27	1421	0.8	88.2	0.42135635	3.4768	70
2G2	267.45	2108	0.71	88.2	0.212677	4.9864	70
2G3	87.8	1512	0.476	94.4	0.00728941	7.4752	90
2G4	158.63	2019	0.67	83	0.0731142	6.3124	65
2G5	83.08	1633	0.817	86.2	0.04840874	6.6388	60
2G6	191.8	1938	0.754	77.7	0.62333262	2.11	35
2H1	36.16	734	1.07	86.2	0.04840874	6.6388	50
2H2	52.66	1074	0.652	84.6	0.06020651	6.4756	30
2H3	136.95	1518	1.25	85.5	0.05343039	6.5674	40
2H4	141.76	1331	1.46	81.7	0.44698319	3.3034	35
2H5	30.19	1904	1.6	81.7	0.6827399	1.6918	50
2H6	30.49	645	0.45	73.7	0.58618104	2.365	25

Santiary Sewer Basins Calculations

Basin	Area	Width	Slope	CN	Conductivity	Dry	% Imp
2H7	54.59	1264	0.856	85	0.057151	6.5164	50
2H8	88.81	1519	0.64	79.1	0.1089068	5.9146	50
2H9	56.11	624	0.72	62.7	0.31131483	4.2418	10
211	54.75	1223	1.31	64	0.2929936	4.3744	40
212	64.12	1345	0.578	78.8	0.22034921	4.9252	55
213	90.68	1434	1.65	76.7	0.53191855	2.7322	50
214	31.78	998	0.74	84.8	0.05867004	6.496	45
215	12.37	520	1.07	70	0.212677	4.9864	50
216	51.47	1219	1.02	69.7	0.21650205	4.9558	40
217	88.64	1518	1.2	85	0.057151	6.5164	50
218	161.34	2820	0.85	76.5	0.13589266	5.6494	45
219	14.57	498	. 0.95	85	0.057151	6.5164	55
2110	59	1140	1.14	86.5	0.04632441	6.6694	50
2111	123.07	2708	0.87	83	0.65113645	1.9162	45
2J1	37.17	1245	0.4	92.7	0.01296624	7.3018	90
2J2	79.2	1159	0.665	85.7	0.0519732	6.5878	65
2J3	195.63	2624	0.08	87.2	0.04162169	6.7408	70
2J4	63.78	739	1.3	86.7	0.04495771	6.6898	65
2J5	44.99	835	1.74	88.9	0.03116066	6.9142	65
2J6	37.15	920	0.87	89.9	0.0256616	7.0162	50
2K1	79.62	1672	0.31	121.3	0.17245211	10.219	30
2K2	50.15	740	1.4	88.3	0.03469502	6.853	50
2K3	36.2	704	1.4	85.3	0.05490537	6.547	40
2K4	57.59	845	1.2	75	0.152495	5.4964	45
2K5	69.66	1017	1.1	64.9	0.28048027	4.4662	50
2K6	159.22	1602	1.2	58.6	0.37071183	3.8236	45
2K7	48.17	1289	0.87	65.8	0.26811707	4.558	45
2K8	82.62	1780	1.2	84.2	0.0633314	6.4348	25
2K9	229.15	3100	1.1	61.9	0.32272359	4.1602	25

End

PIPE LENGTH PIPE DIAMETER

F

ł

Pipe Length/Diameter Calculations

Feet in a mile	=	5280	ft/mile							
Infiltration		200	gal/mile/d	ia/day						
	In	8	10	12	18	21	24	30	36	Length
	Ft	0.66667	0.83333	1	1.5	1.75	2	2.5	3	mile*dia
Basin1A1	(1A)007	3400						4800		2.70202
Basin1A2	(1A)014	2200	600					2000		1.319444
Basin1A3	(1A)027	8000						4300		3.046086
Basin1B1	(1B)009	3400					2000			1.186869
Basin1B2	(1B)005	4000								0.505051
Basin1B3	(1B)014	12000					1300			2.007576
Basin1B4	(1B)014	8800								1.11 1 111
Basin1C1	(1C)001A	6300	1300	1200			2800			2.28851
Basin1C1A	(1C)015D	9800	1800				400			1.67298
Basin1C1B	(1C)021B	9800								1.237374
Basin1C1C	(1C)021	8500	3200				1200			2.032828
Basin1C1D	(1C)028	8800								1.111111
Basin1C2	(1C)179	12000		1300						1.761364
Basin1C3	(1C)178	10000								1.262626
Basin1C4	(1C)182	9200			· · · · ·					1.161616
Basin1D1	(1D)005	2700	2800							0.782828
Basin1D2	(1D)014	5500	1300							0.899621
Basin1D3	(1D)018	12000	2000							1 830808
Basin1D4	(1D)023	13000	500							1 720328
Basin1E1	(15)023	400	500	3200						0.656566
Basin1E2	(1E)003A	6800		5200						0.858586
Basin1E1	(1E)009	17000			280	2200			2200	4 205177
Basin1E2	(1F)004	3200			200	2200			1000	1 20860
Dasin1F2		8200				900			1000	1 969697
Dasin1F3	(1)011	0200							1000	0 = 60107
Basin1F4	(1F)017A	4500	2200		1200					1 1 26 904
Basinirs	(1F)021	2000	3200	200	1300				2000	1.120094
Basin IGI	(TG)002	4200	83	300					2000	1.730505
Basin1G2	(1G)003	18000	7000						0.400	2.301700
Basin1G3	(1G)009B	7000	7000				-		2400	3.352273
Basin1G4	(1G)053	15500	1800							2.241102
Basin1G5	(1G)046	14000	1000							1.925505
Basin1G6	(1G)071	5700	3800							1.319444
Basin1G7	(1G)020	15000								1.893939
Basin1G8	(1G)020	5300								0.669192
Basin1H1	(1H)045	12000	2400							1.893939
Basin111	(1H)011	14800	1400							2.089646
Basin1J1	(1J)053	10000		1000	1800					1.963384
Basin1J2	(1K)001	3200		200	1200					0.782828
Basin1K1	(1K)004	9800								1.237374
Basin1K2	(1K)008	9600		2200						1.628788
Basin1K3	(1K)014	20000	800	2900						3.200758
Basin1K4	(2E)014	12000		_						1.515152
Basin1M1	(1M)003	4700					900		1200	1.616162
Basin1M2	(1M)281B	4200	1000	1600			700			1.256313
Basin1M3	(1M)094	10200	2400	1700] 1.988636
Basin1M4	(1M)122	7800	4800] 1.742424
Basin1M5	(1M)165	7200								0.909091
Basin1M6	(1M)162	6300								0.795455

Pipe Length/Diameter Calculations

Feet in a mile	=	5280	ft/mile							
Infiltration		200	gal/mile/d	ia/day						
	In	8	10	12	18	21	24	30	36	Length
	Ft	0.66667	0.83333	1	1.5	1.75	2	2.5	3	mile*dia
Basin1N1	(1M)286A	9800	850				5000			3.265467
Basin1N2	(1N)013	8000	2200							1.357323
Basin1N3	(1N)022	5700	2300							1.082702
Basin1N4	(1N)025	15000								1.893939
Basin1N5	(1N)047	2800								0.353535
Basin1N6	(1N)047	15000								1.893939
Basin1N7	(1N)047	6100	1450							0.999053
Basin1N8	(1N)022	5000								0.631313
Basin101	(10)305	29500	1180	530			3200			5.223485
Basin102	(10)308	5100								0.643939
Basin103	(10)309	1400								0.176768
Basin104	(10)157	11500								1.45202
Basin105	(10)157	4900								0.618687
Basin1P1	(1P)009	5000	5600	10500						3.503788
Basin1P2	(1P)043	300	4100							0.684975
Basin1P3	(1P)043	3900	1300							0.697601
Basin2A1	(2A)014	800							4900	2.885101
Basin2A2	(2A)048	0					İ	10000	19000	15.5303
Basin2B1	(2A)017	4600	900							0.722854
Basin2B2	(2A)020	5400	400							0.744949
Basin2B3	(2A)020	7200								0.909091
Basin2C1	(2C)003	7100		1680				1680		2.010101
Basin2C2	(2C)009	500	2600	640				640		0.897727
Basin2C3	(2E)003	9980								1.260101
Basin2D1	(2D)003	0	450	3500	3800					1.813447
Basin2D2	(2D)011	45000	990							5.838068
Basin2D3	(2D)251	20000		5500	7900					5.811237
Basin2D4	(2D)045A	3300	3200							0.921717
Basin2D5	(2D)046A	6700	1800							1.130051
Basin2E1	(2A)064	0						2200		1.041667
Basin2E2	(2E)003	11500		·				6490		4.524937
Basin2F1	(2F)004	3200					800	1500		1.417298
Basin2F2	(2F)010	16500			3400					3.049242
Basin2F3	(2F)023	5500			1890					1.231376
Basin2F4	(2F)011	2200								0.277778
Basin2F5	(2F)025	2200		8900						1.963384
Basin2G1	(2G)002	4500		2000						0.94697
Basin2G2	(2G)040	9700		6100						2.380051
Basin2G3	(2G)009	7000	1500	400						1.196338
Basin2G4	(2G)019	15600	2800							2.411616
Basin2G5	(2G)026	9500	1200							1.388889
Basin2G6	(2G)359	20500	3800							3.188131
Basin2H10	(2H)058	1900	3000							0.713384
Basin2H2	(2H)007	3125				1750				0.97459
Basin2H3	(2H)012	3700	1900							0.767045
Basin2H4	(2H)012	12000	1320							1.723485
Basin2H5	(2H)013	3900			2300	335	<u> </u>			1.256866
Basin2H6	(2H)033	8500		3700						1.77399
	11- 11		L		k	L	÷	لي		

Ē

× ...

Feet in a mile	=	5280	ft/mile						
Infiltration		200	gal/mile/d	ia/day					
	In	8	10	12	18	21	24	30	36 Length
	Ft	0.66667	0.83333	1	1.5	1.75	2	2.5	<u>3</u> mile*dia
Basin2H7	(2H)049	2400		4580					1.170455
Basin2H8	(2H)286	5000	3000						1.104798
Basin2H9	(2H)290	10000	1150						1.444129
Basin2l1	(21)003	4200							0.530303
Basin2l2	(21)001	8800							1.111111
Basin213	(21)008	8620		1300	1400				1.732323
Basin2l4	(21)014	5000							0.631313
Basin215	(21)020	1100		930					0.315025
Basin2l6	(2I)025A	2400		1860					0.655303
Basin217	(2I)021B	14200							1.792929
Basin2l8	(21)029	24750	1100						3.298611
Basin2l9	(21)049	2100		800					0.416667
Basin2I10	(21)054	6980		1600					1.184343
Basin2l11	(21)059	5800	2100	400					1.13952
Basin2J1	(2J)008	2400					1000	1800	1.534091
Basin2J2	(2J)047	9700							1.224747
Basin2J3	(2J)056	20000	150						2.548927
Basin2J4	(2J)026	400	1000				1600		0.814394
Basin2J5	(2J)029	4000							0.505051
Basin2J6	(2J)032	2400		680	800				0.659091
Basin2K1	(2K)317	7000			700				1.082702
Basin2K2	(2K)013	3500	1200	4000	700				1.587753
Basin2K3	(2K)019	3700		2400					0.921717
Basin2K4	(2K)014	8000							1.010101
Basin2K5	(2K)025	7500							0.94697
Basin2K6	(2K)029	16000		1700					2.342172
Basin2K7	(2K)033	4200		2600					1.022727
Basin2K8	(2K)042	2600	1700	5000					1.543561
Basin2K9	(2K)052	10100	4000						1.906566

Pipe Length/Diameter Calculations

÷

TM 2-4

STORM EVENTS

ŗ

City Wide RainFall Events

	<u> </u>										_																								
	0	0	0	0	0.28	1.64	0.68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0:00	0:30	1:00	1:30	2:00	2:30	3:00	3:30	4:00	4:30	5:00	5:30	6:00	6:30	7:00	7:30	8:00	8:30	9:00	9:30	10:00	10:30	11:00	11:30	12:00	12:30	13:00	13:30	14:00	14:30	15:00	15:30	16:00	16:30	17:00
Event 6	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.17	0.19	0.25	0.89	0.68	0.21	0.17	0.08	0	0	0	0	0	0	0	0
	0:00	0:30	1:00	1:30	2:00	2:30	3:00	3:30	4:00	4:30	5:00	5:30	6:00	6:30	7:00	7:30	8:00	8:30	9:00	9:30	10:00	10:30	11:00	11:30	12:00	12:30	13:00	13:30	14:00	14:30	15:00	15:30	16:00	16:30	17:00
Event 5	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.08	0.21	0.66	0.38	0.27	0.35	0.17	0.12	0.09	0.14	0.08	0.08	0.09	0.08	0.28	0.21	0	0	0.03	0.04	0.1
	0:00	0:30	1:00	1:30	2:00	2:30	3:00	3:30	4:00	4:30	5:00	5:30	6:00	6:30	7:00	7:30	8:00	8:30	9:00	9:30	10:00	10:30	11:00	11:30	12:00	12:30	13:00	13:30	14:00	14:30	15:00	15:30	16:00	16:30	17:00
Event 4	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.22	0.36	0.78	0.45
	0:00	0:30	1:00	1:30	2:00	2:30	3:00	3:30	4:00	4:30	5:00	5:30	6:00	6:30	7:00	7:30	8:00	8:30	0:00	9:30	10:00	10:30	11:00	11:30	12:00	12:30	13:00	13:30	14:00	14:30	15:00	15:30	16:00	16:30	17:00
Event 3	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07
	0.02	0.02	0.6	0.05	0.05	0.04	0.01	0.01	0	0	0	0	0.05	0.03	0.08	0.21	0.07	0.16	0.01	0.01	0.09	0.03	0.03	0.33	0.16	0.04	0.04	0.03	0.03	0.03	0.02	0.02	0.02	0	0.74
	0:00	0:30	1:00	1:30	2:00	2:30	3:00	3:30	4:00	4:30	5.00	5:30	6:00	6:30	7:00	7:30	8:00	8:30	00:6	9:30	10:00	10:30	11:00	11:30	12:00	12:30	13:00	13:30	14:00	14:30	15:00	15:30	16:00	16:30	17.00
Event 2	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07
	0	0	0	0	0	0	0	0	0.12	0.17	0.52	0.5	0.48	0.12	0.05	.0	0	0	: 0	0	0	0		0	0	0	0	0	0	0	0	, 0	0		
	0:00	0:30	1:00	1:30	2:00	2:30	3:00	3:30	4:00	4:30	5:00	5:30	6:00	6:30	7:00	7:30	8:00	8:30	00.6	9:30	10:00	10:30	11:00	11:30	12.00	12:30	13:00	13:30	14:00	14:30	15:00	15:30	16:00	16.30	17:00
Event 1	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07

the second se

ŗ

(1,2) . A second method was a set of (1,2) and (1,2) and (1,2) . A second method was assumed to be a set of (1,2) and (1,2) a

City Wide RainFall Events

, ' ; `___'

	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.3
	17:30	18:00	18:30	19:00	19:30	20:00	20:30	21:00	21:30	22:00	22:30	23:00	23:30	0:00	
Event 6	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/20/06	8/21/06	
	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	1.32
	17:30	18:00	18:30	19:00	19:30	20:00	20:30	21:00	21:30	22:00	22:30	23:00	23:30	0:00	
Event 5	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/23/06	6/24/06	
	0.18	0.28	0.14	0.12	0.1	0.08	0.09	0.27	0	0	0	0	0	0	2.36
	17:30	18:00	18:30	19:00	19:30	20:00	20:30	21:00	21:30	22:00	22:30	23:00	23:30	0:00	
Event 4	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/28/06	4/29/06	
	0.18	0.09	0.04	0	0	0	0	0	0	0	0.08	0	0	0	1.1
	17:30	18:00	18:30	19:00	19:30	20:00	20:30	21:00	21:30	22:00	22:30	23:00	23:30	0:00	
Event 3	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/30/07	3/31/07	
	0.08	0.03	0.02	0.02	0.02	0.02	0	0	0	0.12	0.1	0.02	0	0	1.73
	17:30	18:00	18:30	19:00	19:30	20:00	20:30	21:00	21:30	22:00	22:30	23:00	23:30	0:00	
Event 2	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/13/07	4/14/07	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.98
	17:30	18:00	18:30	19:00	19:30	20:00	20:30	21:00	21:30	22:00	22:30	23:00	23:30	0:00	Fall
Event 1	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/24/07	5/25/07	Total Rain

1

and the second

. . .

TM 2-5

I/I CALCULATIONS

 $\left(\begin{array}{c} \\ \end{array} \right)$

I/I HYDROGRAPH DEVELOPMENT

÷.

Santiary Sewer Basin Calculations (Infiltration)

Santiary Sewer Basin Calculations (Infiltration)

dia	Area	acres	0.36	0.93	1.10	0.82	0.36	0.35	0.46	1.19	0.64	1.04	0.85	0.95	0.81	0.53	0.44	1.85	0.69	0.53	0.71	0.22	1.07	0.61	0.30	2.56	0.41	0.05	0.44	0.35	1.70	0.38	0.25	0.81	4.37
al/mi/day/	llowed	gpm	134	379	418	393	157	247	326	640	303	323	251	398	348	182	159	653	271	217	379	71	379	200	126	1045	129	35	290	124	701	137	140	577	3106
200 g	n of Pip /	ni/dia	0.66919	1.89394	2.08965	1.96338	0.78283	1.23737	1.62879	3.20076	1.51515	1.61616	1.25631	1.98864	1.74242	60606.0	0.79545	3.26547	1.35732	1.0827	1.89394	0.35354	1.89394	0.99905	0.63131	5.22348	0.64394	0.17677	1.45202	0.61869	3.50379	0.68497	0.6976	2.8851	15.5303
d=	e.	K3 In	2 (5	2	N	2	5	5	5	2	5	0	N	2	2 (5	2	2	2	5	5	5	5	5	2	5	5	5	5	N	5	7	5	5
lax Allowe	ĽT	T3	15	15	15	10.3099	11.5229	2.44056	3.03527	3.74734	6.8366	15	15	15	15	15	15	15	10.1833	15	7.29951	15	15	15	15	15	15	2.31052	2.20897	15	15	15	2.90874	1.71655	2.50476
2		R3	0.4	0.41	0.41	0.37	0.36	0.28 2	0.27	0.35 6	0.28	0.38	0.4	0.4	0.39	0.39	0.41	0.4	0.41	0.4	0.34 7	0.39	0.37	0.4	0.39	0.38	0.48	0.22	0.24	0.41	0.4	0.37	0.35	0.27	0.28
		K2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	7	7	2	2	2	7
	MT	T2	8	8	8	4.81131	5.37734	1.13893	1.41646	3.14876	3.19041	8	8	8	7.61027	8	8	8	4.75221	8	3.40644	8	8	8	7.87631	7.58305	8	1.07824	1.03085	8	8	7.93515	1.35741	0.80106	1.16889
		R2	0.14	0.14	0.14	0.15	0.15	0.18	0.18	0.16	0.18	0.15	0.14	0.14	0.15	0.15	0.14	0.14	0.14	0.14	0.16	0.15	0.15	0.14	0.15	0.15	0.12	0.2	0.19	0.14	0.14	0.15	0.16	0.18 (0.18
-		К	2	2	7	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	7	2	2	2	2
	ST	Τ1	4	4	4	1.80424	2.0165	0.4271	0.53117	1.18079	1.1964	4	4	3.44623	2.85385	4	4	4	1.78208	3.56127	1.27741	4	3.09397	4	2.95362	2.84365	4	0.40434	0.38657	4	3.1655	2.97568	0.50903	0.3004	0.43833
		R1	0.46	0.45	0.45	0.48	0.49	0.54	0.55 (0.49	0.54	0.47	0.46	0.46	0.46	0.46	0.45	0.46	0.45	0.46	0.5	0.46	0.48	0.46	0.46	0.47	0.4	0.58	0.57 (0.45	0.46	0.48	0.49 (0.55	0.54 (
		Depth	13.08	9.5	12	9.51	13.83	7.95	11.04	8.77	20.87	19.45	18.35	10.5	10.87	15.81	12.5	28,15	4.85	11.25	10.79	17.5	17.2	16.9	11.25	12.6461	13.9625	13.1419	14.0314	13.7865	11.67	16.76	4.08	6.06	7 85
•		Inlet	(1G)018	(1H)045	(1H)011	(11)053	(1K)001	(1K)004	(1K)008	(1K)014	(2E)014	(1M)003	(1M)281E	(1M)094	(1M)122	(1M)165	(1M)162	(1M)286/	(1N)013	(1N)022	(1N)025	(1N)047	(1N)048	(1N)049	(1N)022	(10)305	(10)308	(10)309	(10)157	(10)308/	(1P)009	(1P)065	(1P)044	(2A)014	(2A)048
		Basin	Basin1G8	Basin1H1	Basin111	Basin1J1	Basin1J2	Basin1K1	Basin1K2	Basin1K3	Basin1K4	Basin1M1	Basin1M2	Basin1M3	Basin1M4	Basin1M5	Basin1M6	Basin1N1	Basin1N2	Basin1N3	Basin1N4	Basin1N5	Basin1N6	Basin1N7	Basin1N8	Basin101	Basin102	Basin103	Basin104	Basin105	Basin1P1	Basin1P2	Basin1P3	Basin2A1	Rasin2A2

i.

.

÷

· F ..

y/dia	Area	acres	0.33	0.38	0.40	0.61	0.25	0.42	0.55	2.61	2.31	0.58	0.03	0.31	1.89	0.70	1.71	0.67	0.17	1.08	0.58	1.43	0.61	0.92	0.59	1.00	0.41	0.48	0.40	0.87	0.45	0.56	0.68	0.57	0.45
gal/mi/da	Allowed	gpm	145	149	182	402	180	252	363	1168	1162	184	226	208	905	283	610	246	56	393	189	476	239	482	278	638	143	195	153	345	251	355	234	221	289
200		mı/dia	0.72285	0.74495	0.90909	2.0101	0.89773	1.2601	1.81345	5.83807	5.81124	0.92172	1.13005	1.04167	4.52494	1.4173	3.04924	1.23138	0.27778	1.96338	0.94697	2.38005	1.19634	2.41162	1.38889	3.18813	0.71338	0.97459	0.76705	1.72348	1.25687	1 77399	1.17045	1.1048	1,44413
=pe		K3	2	2	2	2	2	2	2	2	2	7	2	2	2	2	2	2	2	2	2	2	2	2	7	2	2	2	7	7	2	2	2	2	2
/lax Allowe		13	15	15	10.4376	4.08692	3.26329	5.10029	3.44056	7.64611	4.29885	15	15	3.66623	7.20323	1.21939	15	1.59412	15	1.51635	2.34221	4.47806	15	7.44921	6.9104	0.63694	15	13.6732	15	2.25187	0.66696	1.2358	15	11.434	2.91391
		КЗ	0.38	0.38	0.38	0.3	0.29	0.31	0.31	0.3	0.31	0.38	0.37	0.3	0.32	0.33	0.37	0.34	0.4	0.34	0.4	0.4	0.44	0.36	0.38	0.33	0.38	0.37	0.38	0.35	0.35	0.3	0.37	0.33	0.24
		Х.Х.	2	2	2	2	2	2	2	2	2	2	2	2	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
+ 1 4	- MI	- 7	7.07023	8	4.87089	1.90723	1.52287	2.38013	1.6056	3.56819	2.00613	8	8	1.71091	3.36151	0.56905	7.61553	0.74392	8	0.70763	1.09303	2.08976	8	3.4763	3.22485	0.29724	8	6.38082	7.52797	1.05087	0.31125	0.57671	8	5.33586	1.35982
		22	0.15	0.15	0.15	0.17	0.17	0.17	0.17	0.17	0.17	0.15	0.15	0.17	0.17	0.16	0.15	0.16	0.14	0.16	0.14	0.14	0.13	0.15	0.15	0.16	0.15	0.15	0.15	0.16	0.16	0.17	0.15	0.16	0.19
		K1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	7	7	2	2	2
ł		-1	2.65134	3.15589	1.82658	0.71521	0.57108	0.89255	0.6021	1.33807	0.7523	4	4	0.64159	1.26057	0.21339	2.85582	0.27897	4	0.26536	0.40989	0.78366	4	1.30361	1.20932	0.11146	3.59999	2.39281	2.82299	0.39408	0.11672	0.21627	3.23522	2.00095	0.50993
		K1	0.47	0.47	0.47	0.53	0.54	0.52	0.52	0.53	0.52	0.47	0.48	0.53	0.51	0.51	0.48	0.5	0.46	0.5	0.46	0.46	0.43	0.49	0.47	0.51	0.47	0.48	0,47	0.49	0.49	0.53	0.48	0.51	0.57
		Depth	10.93	13.01	7.53	10.94	9.83	11.83	8.17	19.88	14.8121	18	1305	10.97	15.41	19.02	17.58	22.17	16.28	19.9385	16.58	16	10.12	9.15	5.62	6.67	16.73	13.83	14.48	16.91	7.65	12.17	17.75	20.92	15.24
i		Inlet	(2A)017	(2A)020	(2A)021	(2C)003	(2C)009	(2E)004	(2D)003	(2D)011	(2D)267	(2D)045/	(2D)046A	(2A)064	(2E)003	(2F)004	(2F)010	(2F)023	(2F)011	(2F)025	(2G)002	(2G)040	(2G)009	(2G)019	(2G)026	(2G)359	(2H)007	(2H)012	(2H)011	(2H)013	(2H)033	(2H)049	(2H)286	(2H)290	(2H)058
		Basın	Basin2B1	Basin2B2	Basin2B3	Basin2C1	Basin2C2	Basin2C3	Basin2D1	Basin2D2	Basin2D3	Basin2D4	Basin2D5	Basin2E1	Basin2E2	Basin2F1	Basin2F2	Basin2F3	Basin2F4	Basin2F5	Basin2G1	Basin2G2	Basin2G3	Basin2G4	Basin2G5	Basin2G6	Basin2H1	Basin2H2	Basin2H3	Basin2H4	Basin2H5	Basin2H6	Basin2H7	Basin2H8	Basin2H9

14 m .

. **н**

Santiary Sewer Basin Calculations (Infiltration)

.

(Infiltration)
Calculations
Sewer Basin
Santiary :

																												
/dia	Area	acres	0.14	0.36	0.59	0.26	0.11	0.18	0.92	1.12	0.23	0.56	0.44	1.08	0.54	1.14	0.48	0.33	0.37	0.69	0.74	0.38	0.30	0.25	0.60	0.31	0.68	0.50
al/mi/day	Allowed	gpm	106	222	346	126	63	131	359	660	83	237	228	307	245	510	163	101	132	217	318	184	202	189	468	205	309	381
200 g	n of Pip /	ii/dia	0.5303	.1111	.73232	.63131	.31503	0.6553	.79293	3.29861	.41667	.18434	.13952	.53409	.22475	2.54893	.81439	.50505	.65909	1.0827	.58775	.92172	1.0101	.94697	2.34217	.02273	.54356	.90657
11	e	K3 m	2	2	2	20	2 0	2	2	2	20	2	2	2	2	2	2 C	2 0	2 C	2	2	2	5	2	2	2	2	2
ved						+ - -					1																	
Max Allo	LT	Т3	1.78778	2.623	1.34285	8.73529	4.6236	2.57888	15	5.30005	15	15	0.93646	15	12.6439	7.62251	15	15	15	5.06352	15	7.37199	3.73939	1.94819	1.60566	3.04149	11.4493	1.90876
~		R3	0.24	0.33	0.31	0.37	0.27	0.27	0.37	0.31	0.37	0.38	0.36	0.43	0.38	0.38	0.38	0.4	0.41	0.58	0.4	0.37	0.3	0.24	0.21	0.25	0.37	0.22
		K2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	ЛΤ	Γ2	8343	2407	2666	7647	5768	0348	6705	7336	5444	9729	3701	8	0048	5717	8	8	8	6297	8	4026	4505	0915	4931	1936	4302	9076
	4	ľ	Ö	<u>–</u>	0.6	4.0	2.1	<u>د</u>	7.0	2.4	7.8	7.0	0.4		5.9	3.5				2.3	i	3.4	1.7	0.0	0.7	4.	5.3	0.8
		R2	0.19	0.16	0.17	0.15	0.18	0.18	0.15	0.17	0.15	0.15	0.15	0.13	0.15	0.15	0.15	0.14	0.14	0.08	0.14	0.15	0.17	0.19	0.2	0.19	0.15	0.2
		K1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	7	2
	ST	T1	.31286	.45903	0.235	.52868	.80913	0.4513	.65014	.92751	.94541	.66148	.16388	4	21268	.33394	.89023	4	4	.88612	.08942	1.2901	65439	34093	28099	53226	.00363	.33403
		R1	0.57 0	0.51 0	0.52	0.48 1	0.55 0	0.55	0.48 2	0.52 0	0.48 2	0.47 2	0.49 0	0.44	0.47 2	0.47 1	0.47 3	0.46	0.45	0.34 0	0.46 3	0.48	0.53 0	0.57 0	0.59 0	0.56 0	0.48 2	0.58 0
		Depth	8.8	9.71	12	8.61	16.52	9.38	14.54	12.1	16.16	11.836	10.244	22.37	11.04	5.33	16.79	17.83	13.22	14.67	10.29	6.8	9.58	9.18	10	13.7	12.1817	10.3488
		Inlet	(21)003	(21)001	(21)008	(21)014	(21)020	(2I)025A	(2I)021B	(21)029	(21)049	(21)054	(21)059	(2J)008	(2J)047	(2J)056	(2J)026	(2J)029	(21)032	(2K)317	(2K)013	(2K)019	(2K)014	(2K)025	(2K)029	(2K)033	(2K)042	(2K)052
		Basin	Basin211	Basin212	Basin213	Basin214	Basin215	Basin2l6	Basin217	Basin218	Basin2l9	Basin2110	Basin2111	Basin2J1	Basin2J2	Basin2J3	Basin2J4	Basin2J5	Basin2J6	Basin2K1	Basin2K2	Basin2K3	Basin2K4	Basin2K5	Basin2K6	Basin2K7	Basin2K8	Basin2K9

·

. .

)

I/I FLOW DEVELOPMENT

-

t.

/ ____) ____)

)

. Are

•

.

· · · · · ·

÷

10 ft

_ | _ `

-

ir .

÷

and a second second second second

í E L

r

- Income

i.

È

÷

* - - ----

Acres*GPM to CN Value Response

S

TM 2-6

SWMM MODEL AND OUTPUT

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.011)

BASIN 1A SANITARY SEWER HYDRAULIC ANALYSIS: 1YR PRECIP. XYS=BAS1A.XYS

Routing Time Step 30.00 sec

i

Raingage Summary

Name		Data Sourc	e I)ata 'ype	Interval hours
CurrentR	ainEvent	Event1	I	INTENSITY	1.00
******* Subcatchi	*********** ment Summar	с * су			
Name Gage	Outle	Area	Width	%Imperv	%Slope

-

.

ł

Rain

BasinlAl 131.06 100.00 10.00 1.0000 CurrentRainEvent (1A)007

	(111)007				
Basin1A2	128.75	400.00	85.00	0.3000	
CurrentRainEvent	(1A)014				
Basin1A3	94.48	80.00	75.00	5.0000	
CurrentRainEvent	(1A)027				
Basin1B1	38.00	690.00	40.00	1.2000	
CurrentRainEvent	(1B)009				
Basin1B2	51.57	720.00	65.00	2.7000	
CurrentRainEvent	(1B)005				
Basin1B3	134.29	745.00	65.00	0.7900	

CurrentRainEvent	(1B)014			
Basin1B4	66.24	620.00	65.00	0.3700
CurrentRainEvent	(1B)014			
Basin1C1	83.53	1020.00	60.00	2.8000
CurrentRainEvent	(1C)001A			
BasinlClA	66.82	602.00	60.00	0.5100
CurrentRainEvent	(1C)015D			
Basin1C1B	69.72	901.00	55.00	0.9500
CurrentRainEvent	(1C)021B			
BasinlClC	89.15	888.00	50.00	0.9100
CurrentRainEvent	(1C)021			
BasinICID	/6.49	692.00	35.00	0.5100
CurrentKainEvent	(IC)U28	0.2.0 0.0		0 0000
DaSINICZ CurrentPainEwent	59.50 (10)179	938.00	65.00	0.6250
Bagin1C3	(10)1/9	820 00	60 00	1 8000
CurrentRainEvent	(10)178	020.00	00.00	1.0000
Basin1C4	62.19	750 00	60 00	1 0200
CurrentRainEvent	(1C) 182	130.00	00.00	1.0200
Basin1D1	56.18	760.00	35,00	1.0900
CurrentRainEvent	(1D)005	-		
Basin1D2	50.46	843.00	55.00	0.8600
CurrentRainEvent	(1D)014			
Basin1D3	108.15	827.00	60.00	1.2000
CurrentRainEvent	(1D)018			:
Basin1D4	95.17	850.00	50.00	0.6600
CurrentRainEvent	(1D) 023	700 00	10.00	-
Basiniei CurrentPainEvent	44.3/ /1E\0037	720.00	10.00	5.5000
Basin1E2	(IE)003A 55 58	860 00	55 00	1 1000
CurrentRainEvent	(1E)009	000.00	55.00	1.1000
BasinlF1	193.54	1260.00	40.00	0.7500
CurrentRainEvent	(1F)004			
Basin1F2	52.03	980.00	20.00	2.5800
CurrentRainEvent	(1F)010			
BasinlF3	90.99	942.00	50.00	1.0500
CurrentRainEvent	(IJ)UII 71 70	1000 00	60.00	0 4500
Basinir4 CurrentRainEvent	/⊥./ð /1도\0177	1280.00	60.00	0.4500
	(IC)UI/A 71 35	945 00	85 00	1 3700
CurrentRainEvent	(1F)021	940.00	05.00	1.5700
Basin1G1	46.72	420.00	80.00	0.3810
CurrentRainEvent	(1G)002			
Basin1G2	179.88	1050.00	60.00	0.6250
CurrentRainEvent	(1G)003			
Basin1G3	93.49	1524.00	60.00	1.1000
CurrentRainEvent	(IG)009B	1050 00		0 0400
BasiniG4	143.49 (10)052	1250.00	65.00	0.3400
Basin165	173 22	840 00	55 00	0 3200
CurrentRainEvent	(1G) 046	040.00	55.00	0.3200
Basin1G6	73.99	1100.00	55,00	0.2800
CurrentRainEvent	(1G)071			
Basin1G8	97.06	1400.00	50.00	0.3600
CurrentRainEvent	(1G)020			
Basin1G9	77.69	456.00	35.00	0.2100
CurrentRainEvent	(1G)020		70.00	0 6000
BasiniHi CurrentPainEvent	165.29	/66.00	/0.00	0.6030
Basin1T1	(II)043 137 QA	684 00	70 00	0 4000
CurrentRainEvent	(1H)011	001.00	10.00	0.4000
	, ,			

. . .

Basin1J1	145.34	845.00	75.00	0.5000
CurrentRainEvent	(1J)053			
Basin1J2	42.03	621.00	65.00	0.8100
Basin1K1	(IK)UUI 70 39	677 00	60 00	0 4700
CurrentRainEvent	(1K)004	0//.00	00.00	0.4700
Basin1K2	70.33	420.00	40.00	0.8500
CurrentRainEvent	(1K)008			
Basin1K3	170.81	920.00	50.00	0.7200
CurrentRainEvent	(1K)014	1000 00	60.00	
Basinik4 CurrentRainEvent	84.05 (25)014	1089.00	60.00	0.4000
Basin1M1	59.94	981.00	30.00	1,8000
CurrentRainEvent	(1M)003			
Basin1M2	58.49	1026.00	35.00	0.9000
CurrentRainEvent	(1M)281B		55 00	0 5 4 0 0
BasinIM3 CurrentBainEwent	(114) 004	//4.00	55.00	0.5400
Basin1M4	(10)094 85 10	1148 00	55 00	1 0000
CurrentRainEvent	(1M)122	1110.00	30.00	1.0000
Basin1M5	172.56	1073.00	30.00	0.3500
CurrentRainEvent	(1M)165			0 0 0 5 5 0
BasiniMb CurrentPainEvent	61./5 (1M)162	936.00	70.00	0.8850
Basin1N1	88.52	966.00	50.00	0.5950
CurrentRainEvent	(1M)286A			
Basin1N2	72.03	1200.00	60.00	0.4500
CurrentRainEvent	(IN)013 55 41	1146 00	25 00	0 5200
CurrentRainEvent	(1N)022	1146.00	35.00	0.5200
BasinlN4	155.89	1168.00	20.00	0.3200
CurrentRainEvent	(1N)025			
BasinlN5	25.71	644.00	50.00	0.2800
Basin1N6	(IN)047 184.98	1412.00	55.00	0.4100
CurrentRainEvent	(1N)047	1110.00	00.00	
BasinlN7	219.38	1628.00	20.00	0.5200
CurrentRainEvent	(1N)047		60.00	0 4000
Basining CurrentRainEvent	26.64 (1N)022	528.00	60.00	0.4000
Basin101	249.68	1975.00	55.00	0.2800
CurrentRainEvent	(10)305			
Basin102	79.92	925.00	20.00	0.6000
Basin103	(IO)308 111 70	1524 00	60 00	0 8400
CurrentRainEvent	(10) 309	1524.00	00.00	0.0400
BasinlO4	174.04	994.00	35.00	0.7100
CurrentRainEvent	(10)157			
Basin105 CurrentBainEwent	/5.94	920.00	55.00	0.2100
Basin1P1	291.60	3120 00	20 00	0 9600
CurrentRainEvent	(1P)009	3120100	20.00	0.9000
Basin1P2	76.39	1129.00	25.00	0.6000
CurrentRainEvent	(1P)043	1224 00	20.00	0 0000
Basinips CurrentRainEvent	180.59 (1P)043	1324.00	20.00	0.8900
Basin2A1	55.28	882.00	7.00	0.8500
CurrentRainEvent	(2A)014			
Basin2A2	160.41	496.00	2.00	0.7400
CurrentKainEvent Basin2B1	(ZA)U48 63 53	700 00	55 00	2 7000
	U U • U U			 ,000

. . .

a da sera a constante da da sera constante da sera da s

the state of the s

CurrentRainEvent	(2A)017			
Basin2B2	65.39	760.00	60.00	2.4000
CurrentRainEvent	(2A)020			
Basin2B3	119.54	980.00	60.00	1.2000
CurrentRainEvent	(2A)020			
Basin2Cl	72.70	1572.00	45.00	2.7300
CurrentRainEvent	(2C)003			
Basin2C2	32.43	657.00	35.00	4.3300
CurrentRainEvent	(2C)009	1 6 9 9 9 9		
Basin2C3	114./0	1609.00	55.00	0.5500
	(ZE) UU3		1 00	0 6360
CurrentPainEvent	(20)003	960.00	1.00	0.6360
Bagin2D2	315 07	2542 00	60 00	0 0000
CurrentRainEvent	(20)011	2342.00	00.00	0.0000
Basin2D3	257.89	1271 00	2 00	1 6900
CurrentRainEvent	(2D) 251	12/1.00	2.00	1.0500
Basin2D4	75.74	1465.00	65.00	0.7800
CurrentRainEvent	(2D)045A			
Basin2D5	152.22	1363.00	35.00	0.6500
CurrentRainEvent	(2D)046A			
Basin2E1	12.18	124.00	100.00	0.8700
CurrentRaínEvent	(2A)064			
Basin2E2	12.18	124.00	10.00	0.8700
CurrentRainEvent	(2E)003			
Basin2Fl	42.90	765.00	40.00	0.5200
CurrentKainEvent	(2E)004	1400 00		0 4000
Basinzez	121.92 (2E)010	1406.00	65.00	0.4000
Basin2F3	(2£)010 60 13	984 00	40.00	0 6000
CurrentBainEvent	(28)023	904.00	40.00	0.0000
Basin2F4	21.09	571.00	35.00	0.6500
CurrentRainEvent	(2F)011	0,11,000	55.00	0.0000
Basin2F5	81.00	859.00	45.00	0.5400
CurrentRainEvent	(2E)025			
Basin2G1	63.27	1421.00	70.00	0.8000
CurrentRainEvent	(2G)002			
Basin2G2	267.45	2108.00	70.00	0.7100
CurrentRainEvent	(2G)040			
Basin2G3	87.80	1512.00	90.00	0.4760
Resin2C4	(26)009	2010 00	65 00	0 (700
CurrentRainEvent	(20)019	2019.00	65.00	0.6700
Basin265	83 08	1633 00	60 00	0 8170
CurrentRainEvent	(2G) 026	1033.00	00.00	0.01/0
Basin2G6	191.80	1938.00	35.00	0.7540
CurrentRainEvent	(2G)359			
Basin2H10	36.16	734.00	50.00	1.0700
CurrentRainEvent	(2H)058			
Basin2H2	52.66	1074.00	30.00	0.6520
CurrentRainEvent	(2H)007			
Basin2H3	136.95	1518.00	40.00	1.2500
CurrentRainEvent	(2H)012	1221 00	25 00	1 1 6 9 9
BasillZH4 CurrentRainEvent	141./b (24)012	1331.00	35.00	1.4600
Basin285	(ZE)UIZ 30 10	1904 00	50 00	1 6000
CurrentRainEvent	(28)013	T 204 00	50.00	1.0000
Basin2H6	30.49	645.00	25.00	0.4500
CurrentRainEvent	(2H) 033		20.00	0.1000
Basin2H7	54.59	1264.00	50.00	0.8560
CurrentRainEvent	(2H)049			

: . .

- 4 - - --

the state of the s

. .

Basin2H8	88.81	1519.00	50.00	0.6400
CurrentRainEvent	(2H)286			
Basin2H9	56.11	624.00	10.00	0.7200
CurrentRainEvent	(2H)290			
Basin211	54.75	1223.00	40.00	1.3100
	(21)003	1245 00		0 5700
CurrentPainEwent	04.1Z	1345.00	55.00	0.5780
Basin2I11	(ZI)054 90 68	1434 00	50 00	1 6500
CurrentRainEvent	(2T)059	1404.00	50.00	1.0500
Basin2I2	31.78	998.00	45.00	0.7400
CurrentRainEvent	(21)001			
Basin2I3	12.37	520.00	50.00	1.0700
CurrentRainEvent	(21)008			
Basin2I4	51.47	1219.00	40.00	1.0200
CurrentRainEvent	(2I)014			
Basin215	88.64	1518.00	50.00	1.2000
CurrentRainEvent	(21)020		45 00	
CurrentRainEvent	101.34 (2T\025N	2820.00	45.00	0.8500
Basin217	14.57	498 00	55 00	0 9500
CurrentRainEvent	(2I)021B	190.00	33.00	0.9000
Basin218	59.00	1140.00	50.00	1.1400
CurrentRainEvent	(21)029			
Basin2I9	123.07	2708.00	45.00	0.8700
CurrentRainEvent	(21)049	1015 00	00.00	
Basinzol CurrentRainEvont	3/.1/ (2 T) 009	1245.00	90.00	0.4000
Basin2J2	79 20	1159 00	65 00	0 6650
CurrentRainEvent	(2J)047	1100.00	00.00	0.0000
Basin2J3	195.63	2624.00	70.00	0.0800
CurrentRainEvent	(2J)056			
Basin2J4	63.78	739.00	65.00	1.3000
CurrentRainEvent	(2J)026	0.75 0.0	65 00	1 7400
Basin200 CurrentPainEwont	44.99 (2 T) 0 2 9	835.00	65.00	1.7400
Basip2.16	37 15	920 00	50 00	0 8700
CurrentRainEvent	(2J)032	520.00	50.00	0.0700
Basin2K1	79.62	1672.00	30.00	0.3100
CurrentRainEvent	(2K)317			
Basin2K2	50.15	740.00	50.00	1.4000
CurrentRainEvent	(2K)013	704 00	40.00	1 4000
Basin2K3	35.20	/04.00	40.00	1.4000
Basin2K4	(ZK)UI9 57 59	845 00	45 00	1 2000
CurrentRainEvent	(2K)014	045.00	45.00	1.2000
Basin2K5	69.66	1017.00	50.00	1.1000
CurrentRainEvent	(2K)025			
Basin2K6	159.22	1602.00	45.00	1.2000
CurrentRainEvent	(2K)029			
Basin2K7	48.17	1289.00	45.00	0.8700
CurrentKainEvent	(ZK)UJJ 22 62	1700 00	25 00	1 2000
CurrentRainEvent	02.02 (2K)042	1/00.00	23.00	1.2000
Basin2K9	229.15	3100.00	25.00	1.1000
CurrentRainEvent	(2K)052			

1.1

: .

. .

-- 4

		Invert	Max.	Ponded
Name	Type	Elev.	Depth	Area
Inflow			-	
(1A)000	JUNCTION	1147.49	10.15	0.0
(1A)000A	JUNCTION	1148.49	10.47	0.0
(1A)000B	JUNCTION	1149.40	7.55	0.0
(1A)001	JUNCTION	1149.55	6.74	0.0
Yes (1A)002	JUNCTION	1149.66	6.55	0.0
(1A)003	JUNCTION	1150.86	7.10	0.0
(1A)004	JUNCTION	1151.49	7.41	0.0
Yes				
(1A)005	JUNCTION	1152.36	9.12	0.0
(1A)006	JUNCTION	1154.35	9.41	0.0
(1A)007	JUNCTION	1156.40	7.83	0.0
105 (1A)008	TUNCTION	1158 45	9 50	0 0
(12)000	TUNCTION	1159 30	9 00	0.0
(1A)010	JUNCTION	1161 15	5.00 6.85	0.0
$(1\Lambda)010$	JUNCTION	1161 40	7 50	0.0
(1A)012	JUNCTION	1161 75	3 95	0.0
(1A)013	JUNCTION	1162.72	10.33	0.0
(1A)014	JUNCTION	1163.35	3.58	0.0
Yes				
(1A)015	JUNCTION	1164.20	12.42	0.0
(1A)016	JUNCTION	1165.05	21.79	0.0
(1A)017	JUNCTION	1165.63	13.58	0.0
(1A)018	JUNCTION	1166.65	13.04	0.0
(1A)019	JUNCTION	1166.75	11.75	0.0
(1A)020	JUNCTION	1168.08	12.95	0.0
(1A)021	JUNCTION	1169.85	10.15	0.0
(1A)022	JUNCTION	1171.98	8.15	0.0
(1A)023	JUNCTION	1173.48	6.27	0.0
(1A) 024	JUNCTION	1175.63	6.41	0.0
(1A)024A	JUNCTION	1176.10	8.06	0.0
(1A)025	JUNCTION	1177.78	6.43	0.0
(1A)026	JUNCTION	1179.98	13.58	0.0
Yes (1A) 027	THNCTION	1181.71	18.54	0.0
Yes	00001100	1101.71	10.04	0.0
(1A)028	JUNCTION	1182.25	8.75	0.0
(1A)029	JUNCTION	1182.97	11.21	0.0
(1A)030	JUNCTION	1183.48	17.42	0.0
(1A)031	JUNCTION	1184.51	11.73	0.0
(1A)032	JUNCTION	1185.30	21.91	0.0
(1A)033	JUNCTION	1186.13	19.58	0.0
(1A)034	JUNCTION	1186.60	9.66	0.0
(IA)U35 (IA)0357	JUNCTION	1187.51	11.75	0.0
(IA)U35A (IA)026	JUNCTION	1100 41	6.54	0.0
(1A)U30 (1A)027	JUNCTION	1100.91	4.8U	0.0
(1A)039		1109.24 1100 #9	11.11 11.16	
(1A)030 (1A)030	TUNCTION	1100.40	10 20	
(1A)040	JUNCTION	1191 09	10.29	0.0
(1A)041	JUNCTION	1191.43	14.50	0.0
() (+	0.01.011.011	1 1 J 1 1 1 J	11.00	0.0

.

the second second second

· · · · · · · · ·

(1A)042	JUNCTION	1192.10	13.90	0.0
res (1B)001	JUNCTION	1177.46	5.91	0.0
(1B)002	JUNCTION	1178.32	13.24	0.0
(1B)003	JUNCTION	1179.43	10.07	0.0
(1B)004	JUNCTION	1179.50	11.00	0.0
(1B)005	JUNCTION	1181.13	9.87	0.0
Yes				
(1B)006	JUNCTION	1182.17	13.68	0.0
(1B)009	JUNCTION	1182.83	18.33	0.0
Yes				
(1B)010	JUNCTION	1185.43	22.63	0.0
Yes				
(1B)011	JUNCTION	1186.63	10.00	0.0
(1B)013	JUNCTION	1187.94	14.57	0.0
(1B)014	JUNCTION	1189.14	15.35	0.0
Yes		1100 67		0.0
(10)001	JUNCTION	1189.67	1/.11	0.0
1es (1c)0017	TINCETON	1100 62	13 27	0 0
(10)001A	TUNCTION	1190.03	13.37	0.0
(1C)001C	TUNCTION	1197.00	15 70	0.0
(1C)001E	JUNCTION	1200 96	8 31	0.0
(1C)001E	JUNCTION	1203.50	8 86	0.0
(1C)001G	JUNCTION	1192.50	12.10	0.0
(1C)002	JUNCTION	1197.77	10.08	0.0
Yes				
(1C)003	JUNCTION	1198.02	4.87	0.0
Yes				
(1C)004	JUNCTION	1199.20	8.06	0.0
Yes		1100.01	C 00	0.0
(10)005	JUNCTION	1199.21	6.29	0.0
(10)000	JUNCTION	1200.19	0.30	0.0
	TUNCTION	1201 52	941	0 0
(1C)007	JUNCTION	1201.52	9.71	0.0
Yes		1201.72	J.11	0.0
(1C)009	JUNCTION	1204.48	7.66	0.0
(1C)010	JUNCTION	1206.53	12.73	0.0
(1C)011	JUNCTION	1207.35	12.45	0.0
(1C)012	JUNCTION	1213.57	11.50	0.0
(1C)015A	JUNCTION	1207.53	12.27	0.0
Yes				
(1C)015B	JUNCTION	1210.11	13.16	0.0
(1C)015C	JUNCTION	1211.45	6.82	0.0
(1C)015D	JUNCTION	1213.01	12.75	0.0
Yes		1014 45	10 65	0 0
(10)016	JUNCTION	1214.45	13.65	0.0
165	TINCTION	1215 24	17 31	0 0
(IC) UIGA Vac	JUNCITON	1213.24	17.51	0.0
(1C)016B	JUNCTION	1216.58	12.15	0.0
(1C)016C	JUNCTION	1217.91	16.94	0.0
(1C)017	JUNCTION	1217.62	9.75	0.0
(1C)018	JUNCTION	1219.18	13.83	0.0
(1C)019	JUNCTION	1220.23	14.75	0.0
Yes				
(1C)020	JUNCTION	1221.53	10.00	0.0
Yes				
(1C)021	JUNCTION	1220.22	10.58	0.0
(IC) 021A	JUNCTION	1220.98	15.62	0.0

:

the state of the state of the statement with a subscript of the state
(1C)021B	JUNCTION	1221.82	17.83	0.0
(10)0210	JUNCTION	1222 98	16 12	0 - 0
(1C) 021D	TUNCTION	1223 96	14 88	0 0
(1C) 021D	TUNCTION	1222.00	11 50	0.0
(IC)UZZ Vos	JUNCIION	1222.95	11.30	0.0
(10)023		1224 25	11 08	0 0
(1C) 023	TUNCTION	1225.16	11.00	0.0
(10)024	UDINCTION	1223.10	11.90	0.0
	TINCUTON	1005 50	10 67	0 0
(10)025	JUNCTION	1225.50	12.07	0.0
(IC)027	JUNCITON	1227.94	11.02	0.0
Yes		1000 01	10 71	0.0
(10)028	JUNCTION	1229.01	10./1	0.0
Yes		1000 00	0.00	0 0
(IC) 04 I	JUNCTION	1203.83	8.89	0.0
Yes		1000 00	10.00	0 0
(IC) 176	JUNCTION	1200.93	12.83	0.0
Yes		1000 00		0 0
(1C)1//	JUNCTION	1203.93	12.58	0.0
Yes		1007 10	14.05	0 0
(10)1/8	JUNCTION	1207.12	14.25	0.0
Yes			17.05	0 0
(1C)1/9	JUNCTION	1210.13	17.25	0.0
Yes		1010 00		0.0
(1C)179A	JUNCTION	1210.23	1/.55	0.0
(1C)180	JUNCTION	1213.24	14.92	0.0
Yes		1016 00	17.00	0 0
(1C)180A	JUNCTION	1216.23	17.29	0.0
Yes			10.00	0 0
(1C) 181	JUNCTION	1219.17	13.22	0.0
Ies (10) 100		1000 70	10.00	0 0
(10) 182	JUNCTION	1220.72	12.00	0.0
IES (1D) 001		1170 00	0 00	0 0
(1D)001	JUNCTION	1172.98	8.92	0.0
IES	TINGETON	1174 70	11 70	0 0
(1D)002	JUNCTION	1176.24	11.32	0.0
(1D)003	JUNCTION	11/6.34	12.82	0.0
(1D)004	JUNCTION	1102.10	8,92	0.0
(1D)005	JUNCTION	1183.10	8.08	0.0
ies (1D) 00C	TUNCETON	1105 15	7 (7	0 0
(1D)006	JUNCTION	1100.00	1.01	0.0
(1D)007	JUNCTION	1100.98	0,20	0.0
(1D)008	JUNCTION	1192.99	12.83	0.0
(1D)009	JUNCTION	1194.68	12.20	0.0
(1D)010	JUNCTION	1195.50	13.04	0.0
(1D)011	JUNCTION	1196.22	7.04	0.0
(10)012	JUNCTION	1197.04	11.51	0.0
Yes (1D) 010		1004 10	15 00	0.0
(1D) 013	JUNCTION	1204.18	15.08	0.0
(1D)014	JUNCTION	1205.83	6.30	0.0
Yes	TINGETON	1007 05	0.46	0.0
(1D)015	JUNCTION	1207.25	9.46	0.0
Yes		1000 00	10.00	0 0
(ID)016	JUNCTION	1208.23	10.29	0.0
Yes		1000.01	0 75	0.0
(1D)01/	JUNCTION	1209.21	9.75	0.0
Yes	TONTOM TOT	1010 10	12.02	0.0
(TD)0T8	JUNCTION	1210.19	13.83	0.0
IES	TINIORITON	1011 10	1 4 4 5	0 0
	JUNCTION	1211.19	14.40	0.0
(10)020	JUNCTION	1212.14	10.40	0.0

.

2

Yes				
(1D)021	JUNCTION	1213.10	17.21	0.0
(1D) 022	JUNCTION	1214.12	16.91	0.0
(1D)023	JUNCTION	1215.10	14.72	0.0
(1E)001	JUNCTION	1191.96	9.12	0.0
(1E)002	JUNCTION	1193.20	7.50	0.0
(1E)003	JUNCTION	1194.72	6.75	0.0
(1E)003A	JUNCTION	1196.00	5.91	0.0
(1E)005	JUNCTION	1197.60	10.95	0.0
Yes				
(1E)006	JUNCTION	1199.00	26.26	0.0
(1E)007	JUNCTION	1200 04	27 04	0 0
(1E)008	JUNCTION	1201 70	10 00	
(15)009	JUNCTION	1201.70	7 91	0.0
Vos	00001100	1202.33	/.01	0.0
(1 E) 001	TUNCTION	1105 22	17 20	0 0
(IE/OOI	JONCIION	1195.25	17.39	0.0
105	TINGUTON	1100 00	20 61	0 0
(IE)003	JUNCTION	1199.20	28.61	0.0
ies				
(1E)004	JUNCTION	1199./8	9.94	0.0
Yes				
(1F)005	JUNCTION	1199.88	6.43	0.0
(1F)006	JUNCTION	1200.11	6.80	0.0
Yes				
(1F)008	JUNCTION	1200.42	7.39	0.0
Yes				
(1F)008A	JUNCTION	1200.54	7.27	0.0
(1F)009	JUNCTION	1200.64	8.38	0.0
Yes				
(1F)010	JUNCTION	1200.81	7,96	0.0
Yes		1000101		•••
(1F)011	JUNCTION	1201.45	7.27	0.0
Yes	000001100	1201.10	• • 2 ·	0.0
(1F)012A	JUNCTION	1202 47	10 15	0 0
(1E) 013	JUNCTION	1202.47	12 34	0.0
Voc	000011004	1203.00	12.04	0.0
(15)014	THNCTTON	1202 00	12 02	0 0
(1E)014	TUNCTION	1203.90	11 00	0.0
(1F)015	JUNCTION	1204.98	11.22	0.0
(12)016	JUNCIION	1205.75	12.60	0.0
ies		1000 04		~ ~
	JUNCTION	1200.94	14.56	0.0
(1E)01/A	JUNCTION	1201.33	17.37	0.0
Yes				
(1F)017B	JUNCTION	1201.48	18.52	0.0
(1F)017C	JUNCTION	1201.83	12.17	0.0
Yes				
(1F)017D	JUNCTION	1201.95	14.25	0.0
(1F)017E	JUNCTION	1202.33	10.67	0.0
(1F)017F	JUNCTION	1203.20	9.20	0.0
(1F)017G	JUNCTION	1206.11	5.41	0.0
Yes				
(1F)018	JUNCTION	1207.14	7.34	0.0
Yes				
(1E)019	JUNCTION	1207 88	8.75	0.0
(1E)020	JUNCTION	1210 44	9 83	0.0
(1E) 021	JUNCTION	1010 00	8 00	0.0
Yaq	O OLAC L LOIN	1212.27	0.00	0.0
151000	TINCTION	1010 00	0 00	0 0
(IE) UZZ	O O DO LEON	IZI3.8U	9.00	U.U

e e de la comunicación de la com

a set by the set of the

(1F)023	JUNCTION	1214.89	10.58	0.0
(1F)024	JUNCTION	1221.63	12.10	0.0
(IE)025 Yas	JUNCTION	1227.07	11.13	0.0
(1F)026	JUNCTION	1233.06	11.31	0.0
(1F)026A	JUNCTION	1233.63	10.37	0.0
Yes				
(1F)027	JUNCTION	1234.23	10.77	0.0
(1F)028	JUNCTION	1234 74	10 26	0 0
Yes	00001100	1234.14	10.20	0.0
(1F)029	JUNCTION	1235.33	11.17	0.0
(1F)029A	JUNCTION	1235.93	10.07	0.0
(1F)U3U Xog	JUNCTION	1236.67	9.83	0.0
(1G)001	JUNCTION	1203.21	14.39	0.0
Yes		200702	11000	0.0
(1G)001A	JUNCTION	1203.60	14.91	0.0
(1G)002	JUNCTION	1204.07	15.43	0.0
(16)003	TUNCTION	1204 34	17 96	0 0
Yes	0011011	1204.54	11.90	0.0
(1G)004	JUNCTION	1204.67	17.93	0.0
(1G)005	JUNCTION	1205.17	16.83	0.0
1C)006	TINCTION	1205 27	10 22	0.0
(1G)0007	JUNCTION	1205.65	18.95	0.0
(1G)008A	JUNCTION	1206.37	17.13	0.0
Yes				
(IG)008B (IC)008C	JUNCTION	1207.27	16.46	0.0
Yes	00MCI10M	1207.05	10.05	0.0
(1G)009A	JUNCTION	1208.02	18.48	0.0
Yes				
(1G)009B	JUNCTION	1208.47	18.23	0.0
Yes	JUNCIION	1208.92	23.78	0.0
(1G)009D	JUNCTION	1208.98	23.62	0.0
(1G)009E	JUNCTION	1209.23	22.47	0.0
(1G)010	JUNCTION	1209.71	21.79	0.0
(1G) 011	JUNCTION	1210 07	19 53	0 0
(1G)012	JUNCTION	1210.60	18.40	0.0
Yes				
(1G)013	JUNCTION	1211.10	19.90	0.0
(16)014 Yes	JUNCTION	1219.94	8.46	0.0
(1G)014A	JUNCTION	1220.58	12.00	0.0
(1G)015	JUNCTION	1221.70	12.00	0.0
(1G)016	JUNCTION	1222.48	10.37	0.0
Yes (10)017	TINCTION	1000 00	11 51	0 0
(1G)017 (1G)018	JUNCTION	1223.20	13.08	0.0
Yes		100.00	20.00	0.0
(1G)018A	JUNCTION	1224.19	14.08	0.0
(1G)020 Voc	JUNCTION	1225.79	12.75	0.0
(1G)045	JUNCTION	1227 75	12 50	ΛΛ
Yes	000.01101	1221.13	12.30	0.0
(1G)046	JUNCTION	1228.74	12.54	0.0
(1G)047	JUNCTION	1229.09	10.39	0.0

1. . . .

a second and a second
Voc				
(1G)048	JUNCTION	1230 30	9 50	0 0
(1G)049	JUNCTION	1230.30	8 76	0.0
(1G)050	JUNCTION	1230.00	8 50	0.0
(1G)051	JUNCTION	1231.23	8 62	0.0
(1G)052	JUNCTION	1232.08	8 50	0.0
(1G)052	JUNCTION	1232.00	8 50	0.0
(1G)054	JUNCTION	1232.51	8 50	0.0
(16) 055	TUNCTION	1234 52	8 50	0.0
(16)056	JUNCTION	1235.32	9.00	0.0
(16)057	JUNCTION	1237.14	9.00	0.0
(1G) 058	JUNCTION	1238 97	9 00	0.0
(1G) 059	TUNCTION	1240 68	9.00	0.0
(16)060	JUNCTION	1240.82	10 00	0.0
(16)061	JUNCTION	1240.02 1242 52	10.00	0.0
(1G)062	JUNCTION	1244 52	10.00	0.0
(1G)063	JUNCTION	1244 88	10.00	0.0
(1G)064	JUNCTION	1247 02	10 15	0.0
(1G) 065	JUNCTION	1248 49	10 15	0.0
(16)066	JUNCTION	1249 44	10.15	0.0
(1G)067	JUNCTION	1251.15	10.15	0.0
(1G)068	JUNCTION	1253.26	10 15	0.0
(1G)069	JUNCTION	1255.78	10.15	0.0
(1G)070	JUNCTION	1257.94	10.15	0.0
(1G)071	JUNCTION	1259.60	10.15	0.0
(1G)146	JUNCTION	1204.48	16.00	0.0
(1G)146A	JUNCTION	1204.74	17.00	0.0
(1G)162	JUNCTION	1217.52	15.00	0.0
Yes				
(1G)162A	JUNCTION	1218.46	15.00	0.0
(1G)162B	JUNCTION	1219.16	14.50	0.0
(1G)162C	JUNCTION	1219.99	14.00	0.0
(1G)162D	JUNCTION	1215.93	14.32	0.0
(1G)243	JUNCTION	1229.12	12.50	0.0
(1H)001	JUNCTION	1215.96	10.00	0.0
Yes				
(1H)004	JUNCTION	1218.26	9.00	0.0
(1H)005	JUNCTION	1218.28	9.73	0.0
(1H)006	JUNCTION	1219.78	9.23	0.0
(1H)007	JUNCTION	1220.69	11.27	0.0
(1H)008	JUNCTION	1221.86	15.97	0.0
(IH)009 Vac	JUNCTION	1222.00	10.60	0.0
1es (14\010	TUNCETON	1000 00	10 07	0 0
(14)011	TUNCTION	1222.39	12.27	0.0
Vos	DONCTION	1223.00	12.00	0.0
(18)038	TINCTION	1218 81	7 92	0 0
Yes	USHCIION	1210.01	1.92	0.0
(1H) 039	JUNCTION	1224 03	13 60	0 0
(1H)040	JUNCTION	1228.46	9.17	0.0
(1H)041	JUNCTION	1229.00	9.00	0.0
(1H)042	JUNCTION	1230.85	10.53	0.0
(1H)043	JUNCTION	1231.34	10.11	0.0
Yes				
(1H)O44	JUNCTION	1232.62	9.40	0.0
Yes				
(1H)O45	JUNCTION	1233.56	9.50	0.0
Yes				
(1J)001	JUNCTION	1192.96	25.54	0.0
(1J)002	JUNCTION	1194.02	28.98	0.0
(1J)003	JUNCTION	1194.78	17.52	0.0

. .

and the second
a a serie de la companya de la comp

Voc				
(1,T) 004	TUNCTION	1195 54	17 26	0 0
(1J)005	JUNCTION	1196.30	16.90	0.0
(1J)006	JUNCTION	1197.02	8.18	0.0
Yes				
(1J)007	JUNCTION	1197.52	6.68	0.0
(1J)008	JUNCTION	1197.85	9.55	0.0
(1J)009	JUNCTION	1198.23	10.77	0.0
(1J)010	JUNCTION	1198.82	13.18	0.0
(1J)011 Vaa	JUNCTION	1199.05	12.30	0.0
(1 T) 01 2	THNOTTON	1100 56	12 24	0 0
(10)012	TUNCTION	1200 07	10.50	0.0
(1.T) 014	JUNCTION	1200.07	13.33	0.0
(1J)041	JUNCTION	1200.42	20 10	0.0
(1J)042	JUNCTION	1200.00	10 41	0.0
(1J)042A	JUNCTION	1206.48	8.17	0.0
(1J)042B	JUNCTION	1210.10	13.40	0.0
(1J)043	JUNCTION	1213.06	20.17	0.0
(1J)044	JUNCTION	1213.85	29.00	0.0
Yes				
(1J)045	JUNCTION	1214.48	20.66	0.0
(1J)046	JUNCTION	1214.69	10.05	0.0
Yes	TINOTTON	1014 70	0 70	0 0
(1J) 047	JUNCTION	1214.79	9.79	0.0
(10)040	TUNCTION	1215.34	LU.83	0.0
(10/030 Yes	0000011000	1210.09	TT.00	0.0
(1J)050A	JUNCTION	1216.98	11.37	0.0
(1J)051	JUNCTION	1218.77	12.17	0.0
(1J)052	JUNCTION	1218.82	10.80	0.0
(1J)053	JUNCTION	1218.97	9.51	0.0
Yes				
(1J)054	JUNCTION	1220.30	16.33	0.0
(1J)054A	JUNCTION	1220.61	13.91	0.0
(1J)055 (1J)056	JUNCTION	1220.70	23.66	0.0
(1J)056 (1T)057	JUNCTION	1221.52	17.41	0.0
(10)007 (1 T)059	JUNCTION	1222.08	23.75	0.0
(10)050	JUNCTION	1222.75	11 50	0.0
(1J)060	JUNCTION	1223.04	10 58	0.0
(1K)001	JUNCTION	1229.15	13.83	0.0
Yes			10100	
(1K)002	JUNCTION	1229.68	8.33	0.0
(1K)002A	JUNCTION	1230.13	7.62	0.0
Yes				
(1K)003	JUNCTION	1230.51	9.13	0.0
(IK)004 Voc	JUNCTION	1231.11	7.95	0.0
105 (1K)005	TUNCTION	1221 07	7 66	0.0
Yes	OCHCIICH	1201.07	1.00	0.0
(1K)006	JUNCTION	1231.98	7.45	0.0
Yes		1001.00		0.0
(1K)007	JUNCTION	1232.87	6.91	0.0
Yes				
(1K)008	JUNCTION	1233.66	11.04	0.0
Yes		1004 10		
(IK) UUBA	JUNCTION	1234.10	15.90	0.0
(1K)000	TINCTION	1234 46	10 20	0 0
Yes	O O LACITOR	T774.40	(C.UI	0.0

.

and the second state of the

- Long and the second
•

(1K)010	JUNCTION	1235.24	12.91	0.0
Yes				
(1K)011	JUNCTION	1235.70	12.12	0.0
Yes (1K) 012	TINCETON	1000 50	10.00	0 0
(1K)013	JUNCTION	1230.38	10.80	0.0
(1K)013	JUNCTION	1237.18	23.41	0.0
(1M)000	TINCTION	1211 52	0.//	0.0
(IM)000	JUNCTION	1211.52	18.28	0.0
	JUNCTION	1214.55	19.45	0.0
	JUNCTION	1213.08	17.00	0.0
(1M) 001B	JUNCTION	1212.04	17.00	0.0
(1M)002	JUNCTION	1215.45	18.05	0.0
(1M)003	JUNCIION	1216.05	19.45	0.0
(1M) 010	THNCTION	1220 34	16 17	0 0
(1M)011	TUNCTION	1220.34	12 54	0.0
(1M) 0 1 3	UNCTION	1221.50	15.J4 16 ce	0.0
(1M) 014	TUNCTION	1222.30	15.05	0.0
(1M) 015	TUNCTION	1223.01	14 12	0.0
(1M) 016	TINCTION	1224.00	19.12	0.0
(1M) 017	TINCTION	1225.04	19.00	0.0
(1M) 018	JUNCTION	1225.57	21 83	0.0
(1M) 019	JUNCTION	1220,40	18 75	0.0
(1M) 021	JUNCTION	1229.11	14 25	0.0
(1M)022	JUNCTION	1229.11	13 12	0.0
Yes	0011011011	1229.15	10.12	0.0
(1M)023	JUNCTION	1230.40	14.08	0.0
(1M)024	JUNCTION	1231.80	13.08	0.0
(1M)025	JUNCTION	1232.70	11.58	0.0
(1M)026	JUNCTION	1233.51	11.58	0.0
(1M)027	JUNCTION	1234.86	11.50	0.0
(1M)028	JUNCTION	1235.85	11.50	0.0
(1M)035	JUNCTION	1219.42	10.00	0.0
Yes				
(1M)036	JUNCTION	1219.87	8.00	0.0
(1M)037	JUNCTION	1220.45	8.81	0.0
Yes				
(IM)038	JUNCTION	1221.00	8.75	0.0
(IM)039	JUNCTION	1222.37	8.58	0.0
	TUNCETON	1000 00	0 00	0.0
(1M)040	JUNCTION	1223.02	9.00	0.0
(IM)04I Voc	JUNCTION	1224.04	9.25	0.0
(1M) 092	JUNCTION	1225 07	8 65	0 0
Yes	00001100	1223.07	0.05	0.0
(1M)093	JUNCTION	1225.23	8.83	0.0
Yes		1220,20	0.00	0.0
(1M)094	JUNCTION	1226.75	10.50	0.0
Yes				
(1M)116	JUNCTION	1226.94	10.54	0.0
(1M)117	JUNCTION	1227.17	10.12	0.0
(1M)118	JUNCTION	1227.76	10.46	0.0
(1M)119	JUNCTION	1228.92	7.08	0.0
Yes				
(1M)120	JUNCTION	1229.10	7.08	0.0
(1M)121	JUNCTION	1230.22	5.80	0.0
(1M) 1 22	JUNCTION	1230.83	10.87	0.0
(1M)123	JUNCTION	1231.73	6.15	0.0
Yes				
(1M)124	JUNCTION	1232.93	8.67	0.0
(1M)125	JUNCTION	1233.60	4.13	0.0

. .

and a second de a second de la second second second second de la second de la second de la second de la second

(1M)126	JUNCTION	1234.19	5.08	0.0
(1M)127	JUNCTION	1235.51	4.29	0.0
(1M)128	JUNCTION	1236.19	4.38	0.0
Yes (1M) 120	TUNCETON	1007 10	42.00	0 0
(IM)IZ9 Vag	JUNCIION	1231.12	43.00	0.0
(1M)130	JUNCTION	1237 35	43 00	0 0
(1M)131	JUNCTION	1237.88	4.50	0.0
Yes				
(1M)132	JUNCTION	1238.94	6.04	0.0
Yes				
(1M)133	JUNCTION	1239.94	5.39	0.0
Yes			10.05	
(1M) 161 (1M) 162	JUNCTION	1236.00	18.25	0.0
(1M) 162	JUNCTION	123/.//	12.50	0.0
(IM) 165 (IM) 164	TINCTION	1239.00	17.79	0.0
(1M) 165	JUNCTION	1241.30	15 81	0.0
(1M) 278	JUNCTION	1217 03	21 77	0.0
Yes		1217.00	01.77	0.0
(1M)279	JUNCTION	1217.50	17.50	0.0
(1M)279B	JUNCTION	1217.94	16.66	0.0
(1M)281	JUNCTION	1218.99	18.51	0.0
(1M)281B	JUNCTION	1219.65	18.35	0.0
Yes				
(1M) 282	JUNCTION	1220.15	18.35	0.0
(IM)283	JUNCTION	1220.70	16.80	0.0
(1M) 28/		1000 17	24 03	0 0
(1M) 285	JUNCTION	1229.45	24.05	0.0
(1M) 285A	JUNCTION	1229.86	28.04	0.0
(1M) 286	JUNCTION	1230.38	27.12	0.0
(1M) 286A	JUNCTION	1231.05	28.15	0.0
Yes				
(1M)287	JUNCTION	1231.72	26.98	0.0
(1M)288	JUNCTION	1232.47	26.23	0.0
(1M) 288A	JUNCTION	1233.02	24.98	0.0
(IM) 288B	JUNCTION	1233.66	25.34	0.0
(IM) 288C	JUNCTION	1234.21	25.79	0.0
(IN)004 Voq	JUNCIION	1221.21	17.39	0.0
(1N)005	TUNCTION	1222 11	13 00	0 0
Yes	001011011	1222.11	10.00	0.0
(1N)006	JUNCTION	1223.16	22.14	0.0
Yes				
(1N)007	JUNCTION	1224.19	17.91	0.0
Yes				
(IN)007D	JUNCTION	1224.47	17.50	0.0
(IN) 007E	JUNCTION	1224.72	17.20	0.0
(IN)UUO Voz	JUNCIION	1225.77	5.42	0.0
(1N)009	TUNCTION	1226 30	8 10	0 0
Yes	0011011014	1220.00	0.10	0.0
(1N)011	JUNCTION	1227.43	3.44	0.0
Yes			_	
(1N)013	JUNCTION	1228.60	4.85	0.0
Yes	_			
(1N)014	JUNCTION	1229.77	6.75	0.0
IES (INDOTE		1000 00	7 65	0.0
CIU(MI) Voz	JUNCTION	1230.32	1.65	0.0
103				

t.

1 1 1

a and the second s

the short we we were and short the state of the state of the state of the submemory of

(1N)016 (1N)017	JUNCTION JUNCTION	1231.22 1232.30	6.54 8.00	0.0
(1N)018 Yes	JUNCTION	1232.88	9.13	0.0
(1N)019	JUNCTION	1233.44	8.92	0.0
(IN)UZU Yes	JUNCTION	1234.51	9.60	0.0
(1N)021 Yes	JUNCTION	1235.58	10.21	0.0
(1N)022	JUNCTION	1236.64	11.25	0.0
Yes (1N)023	JUNCTION	1237.73	12.50	0.0
(1N)024	JUNCTION	1238.78	11.83	0.0
Yes	ODIACTION	1240.10	10.79	0.0
(1N)045	JUNCTION	1227.96	16.25	0.0
(1N)048 (1N)047	JUNCTION	1229.55	17.50	0.0
Yes				
(1N)109A (1N)110	JUNCTION	1225.06	20.24	0.0
Yes	OUNCIION	1225.72	22.30	0.0
(1N)111A	JUNCTION	1226.78	22.42	0.0
(1N)112A (1N)112B	JUNCTION	1227.62	22.18	0.0
(10)001	JUNCTION	1236.24	11.10	0.0
Yes (10)001A	JUNCTION	1237 05	12 57	0 0
(10)002	JUNCTION	1237.20	12.36	0.0
Yes		1007 04	11 05	0.0
(10)002A	JUNCTION	1237.34	11.95	0.0
(10)004	JUNCTION	1238.55	12.00	0.0
Yes (10)0054	TUNCTION	1239 29	16 70	0 0
Yes	0000011000	1205.25	10.70	0.0
(10)005B	JUNCTION	1239.48	16.22	0.0
(10)005D	JUNCTION	1239.80	15.92	0.0
(10)005E	JUNCTION	1239.83	13.25	0.0
(10)010	JUNCTION	1251.71	12.79	0.0
(10)011	JUNCTION	1251.77	12.81	0.0
(10)012 (10)013	JUNCTION	1252.51	12.91	0.0
(10)014	JUNCTION	1253.87	13.43	0.0
(10)015	JUNCTION	1255.16	21.64	0.0
(10)016	JUNCTION	1256.10	21.40	0.0
(10)017	JUNCTION	1257.34	20.86	0.0
(10)018	JUNCTION	1258.62	18.78	0.0
(10)019	JUNCTION	1261 74	14 53	0.0
(10)021	JUNCTION	1262.57	15.24	0.0
(10)072	JUNCTION	1238.16	19.54	0.0
Yes (10)157	JUNCTION	1251 77	14.03	0.0
Yes	101.011011			
(10)300	JUNCTION	1234.84	27.06	0.0
(10) 301	JUNCTION	1235.62	27.38	0.0
(10) 302	JUNCTION	1236.45	23.55	0.0
Yes				

÷

-

. е

(10) 303	JUNCTION	1237.31	21.59	0.0
(10)3040	TUNCTION	1240 60	12 00	0 0
(10) 304P	TUNCTION	1249.09	20.00	0.0
(10) 304B	JUNCTION	1240.00	20.00	0.0
(10) 305	JUNCTION	1248.55	12.65	0.0
Yes				
(10)305A	JUNCTION	1248.50	10.80	0.0
Yes				
(10)306	JUNCTION	1249.39	12.61	0.0
Yes				
(10)306A	JUNCTION	1250.23	13.57	0.0
Yes				
(10)307	JUNCTION	1250.66	13.34	0.0
(10) 308	JUNCTION	1251.17	13.96	0.0
(10) 308A	JUNCTION	1251.31	13.79	0.0
(10) 309	JUNCTION	1251.58	13.14	0.0
Yes	0011011011	1201.00	10.11	0.0
(1P) 002	TINCTTON	1130 00	12 35	0 0
(12)002	TUNCTION	1120 42	12.00	0.0
(1P) 003	TUNCTION	1121 00	12.23	0.0
(10)004	JUNCTION	1124 50	12.50	0.0
(12)005	JUNCTION	1134.50	11.80	0.0
(1P)006	JUNCTION	1136.62	12.78	0.0
(1P)007	JUNCTION	1140.56	13.39	0.0
(1P)008	JUNCTION	1143.00	14.00	0.0
Yes				
(1P)008A	JUNCTION	1143.50	14.00	0.0
(1P)009	JUNCTION	1146.76	11.67	0.0
(1P)010	JUNCTION	1147.05	11.17	0.0
(1P)011	JUNCTION	1149.42	11.58	0.0
Yes				
(1P)012	JUNCTION	1151.82	12.08	0.0
(1P)013	JUNCTION	1154.18	12.85	0.0
(1P)014	JUNCTION	1156.54	12,79	0.0
(1P)015	JUNCTION	1158.90	13.85	0.0
(1P)016	JUNCTION	1160.71	14.88	0.0
(1P)016A	JUNCTION	1161.55	15,58	0.0
(1P)017	JUNCTION	1161 88	16 25	0.0
Yes		1101.00	10120	
(1P)018	JUNCTION	1163 77	14 63	0.0
Yes	0011011011	1100.77	11.05	0.0
(1P)024	TINCTION	1161 09	11 56	0 0
Voc	00001100	1104.09	11.00	0.0
(10)042	TINCTION	1122 20	0 02	0 0
(1D)042	TUNCTION	1124 72	3.32 10.07	0.0
(1P)042A	JUNCTION	1134.72	12.37	0.0
(12)043	JUNCTION	1136.16	13.92	0.0
res	TUYOTTON	1106 50	4	0 0
(1P)044	JUNCTION	1136.52	4.08	0.0
(1P)065	JUNCTION	1137.24	16.76	0.0
Yes				
(1P)073	JUNCTION	1164.26	13.87	0.0
Yes				
(1P)079	JUNCTION	1162.58	15.90	0.0
Yes				
(2A)001	JUNCTION	1146.85	12.25	0.0
(2A)002	JUNCTION	1148.65	11.82	0.0
(2A)003	JUNCTION	1149.77	11.98	0.0
(2A)004	JUNCTION	1150.99	10.51	0.0
(2A)005	JUNCTION	1152 28	14.52	0 0
(2A)006	JUNCTION	1152 81	15 99	0.0
(2A)007	TINCTION	1153 44	13 91	0.0
(22)008	TINCTION	1153 03	10 47	0.0
125/000	O OTAC T TOTA	110.70	LV.4 (0.0

a server a data of a state of the
1

(2A)009 (2A)010 (2A)011 (2A)012 (2A)013 (2A)013 (2A)015	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	1154.63 1155.34 1156.05 1156.66 1157.26 1157.94 1158.17	7.97 9.46 10.55 6.64 7.69 6.06 10.03	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$
(2A)016 (2A)017 (2A)018 (2A)019 (2A)020 Yes	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	1158.49 1159.12 1159.49 1159.85 1160.69	10.51 10.93 8.51 8.20 13.01	0.0 0.0 0.0 0.0 0.0
(2A) 021 (2A) 022 (2A) 023 (2A) 024 (2A) 025 (2A) 026 (2A) 027 (2A) 028 (2A) 029 (2A) 029 (2A) 030 (2A) 031 (2A) 032 (2A) 033 (2A) 034 Yes	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	1162.47 1164.35 1165.27 1165.74 1166.00 1166.39 1167.45 1167.45 1167.80 1168.20 1169.51 1169.69 1170.06 1170.29	7.53 8.20 5.98 12.71 12.95 9.86 10.96 10.75 7.47 10.00 7.79 11.81 12.99 11.06	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$
(2A) 035 (2A) 036 (2A) 037 (2A) 038 (2A) 039 (2A) 040 (2A) 041 (2A) 042 (2A) 042 (2A) 043 (2A) 044 (2A) 045 (2A) 045 (2A) 046 (2A) 047 (2A) 049 (2A) 050 (2A) 051 (2A) 052 (2A) 053 (2A) 053 (2A) 054 (2A) 055 (2A) 055 (2A) 055 (2A) 055 (2A) 055 (2A) 056 (2A) 057 (2A) 058 (2A) 059 (2A) 060 (2A) 061 (2A) 062 (2A) 063 (2A) 064 (2A) 065 (2A) 065 (2A) 066 (2A) 067	JUNCTION JUNCTION	1172.03 1173.77 1175.50 1177.24 1178.79 1180.22 1181.95 1183.55 1185.38 1186.70 1187.90 1189.40 1190.00 1191.47 1192.29 1193.69 1195.09 1196.14 1199.19 1199.85 1200.67 1202.00 1203.10 1204.22 1205.74 1209.26 1212.01 1213.93 1215.87 1225.01 1225.79	11.17 10.83 7.00 13.84 15.51 19.20 14.05 23.75 19.02 7.95 9.50 6.00 9.00 8.03 10.01 16.01 12.01 14.46 11.99 10.50 9.73 7.52 14.00 7.78 7.96 7.54 6.75 7.36 10.97 24.03 20.64 20.01	

. . . .

and the second
(2A) 068 (2A) 069 (2C) 001 (2C) 002 (2C) 003 (2C) 004 (2C) 005 (2C) 006 (2C) 007 (2C) 008 (2D) 001 (2D) 001A (2D) 002 (2D) 003 (2D) 004 (2D) 005	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	1227.02 1205.82 1206.10 1206.40 1207.06 1207.78 1208.49 1209.02 1209.02 1209.50 1209.91 1211.09 1211.45 1213.00 1214.70 1216.27 1217.86	20.68 20.33 13.90 13.60 10.94 12.22 7.51 5.79 5.21 3.33 3.41 5.83 7.00 8.17 8.37 9.75	
(2D)006 Yes	JUNCTION	1219.49	12.21	0.0
(2D)007 (2D)008 (2D)009	JUNCTION JUNCTION JUNCTION	1221.35 1222.34 1225.04	6.75 16.66 19.96	0.0 0.0 0.0
(2D)010 (2D)011	JUNCTION JUNCTION	1225.44 1226.12	20.56 19.88	0.0
Yes (2D)012	JUNCTION	1227.96	24.04	0.0
Yes (2D)013	JUNCTION	1229.15	24.85	0.0
Yes				
(2D) 015 (2D) 016 (2D) 017 (2D) 018 (2D) 019 (2D) 020 (2D) 021 (2D) 022 (2D) 023 (2D) 023 (2D) 024 (2D) 025	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	1240.96 1243.40 1245.11 1245.82 1246.10 1246.74 1248.58 1249.58 1249.81 1251.25 1251.56	10.04 12.60 13.89 14.18 13.90 14.26 13.42 12.42 12.19 11.75 10.44	
(2D)039 (2D)040	JUNCTION	1216.06 1217.64	5./5 21.42	0.0
(2D) 041 (2D) 042 (2D) 043 (2D) 044 (2D) 045	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	1219.24 1220.74 1222.54 1224.34 1226.14	10.76 24.71 23.08 6.66 21.81	0.0 0.0 0.0 0.0 0.0
Yes (2D)045A	JUNCTION	1226.86	18.00	0.0
(2D)046	JUNCTION	1227.76	15.08	0.0
(2D)046A Yes	JUNCTION	1228.58	1305.00	0.0
(2D)241 (2D)242 (2D)243 (2D)245 (2D)246 (2D)247 (2D)248	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	1213.87 1214.91 1215.83 1217.50 1218.27 1219.05 1219.87	16.13 18.09 19.17 19.50 11.73 11.95 11.13	0.0 0.0 0.0 0.0 0.0 0.0 0.0

. .

7

and the second state of the second
(2D)249 (2D)250	JUNCTION JUNCTION	1220.73 1221.22	13.27 4.78	0.0
(2D)251 (2D)252	JUNCTION	1221.92	12.94 13.99	0.0
(2D) 253	JUNCTION	1223.49	10.51	0.0
(2D)254	JUNCTION	1224.43	20.57	0.0
(2D) 255 (2D) 256	JUNCTION	1225.31	14.69	0.0
(2D) 250	JUNCTION	1226.09	13.91	0.0
(2D)258	JUNCTION	1227.40	10.60	0.0
(2D)259	JUNCTION	1228.12	14.88	0.0
(2D)260	JUNCTION	1228.76	11.24	0.0
(2D) 261 (2D) 262	JUNCTION	1229.46	10.54	0.0
(2D) 263	JUNCTION	1231.64	5.35	0.0
Yes		1201.01	0.00	0.0
(2D)264	JUNCTION	1232.56	12.44	0.0
(2D)265	JUNCTION	1233.31	9.69	0.0
(2D)266 (2D)267	JUNCTION	1234.21	9.79	0.0
Yes	JUNCIION	1235.19	14.81	0.0
(2E)001	JUNCTION	1227.46	19.08	0.0
(2E)002	JUNCTION	1228.25	22.41	0.0
(2E)003	JUNCTION	1229.22	15.41	0.0
Yes	TINCUTON	1000 50	11 00	0 0
(2E)004 (2E)005	JUNCTION	1229.58	18 33	0.0
(2E)006	JUNCTION	1229.96	18.50	0.0
(2E)007	JUNCTION	1230.66	18.54	0.0
(2E)008	JUNCTION	1231.37	20.25	0.0
(2E)009	JUNCTION	1232.08	19.12	0.0
(ZE)UIU (ZE)011	JUNCTION	1232.79	20.32	0.0
(2E)011 (2E)012	JUNCTION	1233.33	22.75	0.0
(2E)013	JUNCTION	1234.62	20.25	0.0
(2E)014	JUNCTION	1235.12	20.87	0.0
(2E)043	JUNCTION	1247.51	6.39	0.0
Yes (2E)001	TINCTION	1025 77	22.25	0 0
(2F)001	JUNCTION	1235.77	22.25	0.0
(2F)003	JUNCTION	1237.07	18.53	0.0
(2F)004	JUNCTION	1237.38	19.02	0.0
Yes				
(2E) 005	JUNCTION	1237.73	18.47	0.0
(2F)006	JUNCTION	1237.87	15.13	0.0
(2F)007	JUNCTION	1238.31	14.39	0.0
(2F)008	JUNCTION	1238.48	15.02	0.0
(2F)009	JUNCTION	1238.55	17.45	0.0
(2F)010 (2F)011	JUNCTION	1239.42	17.58	0.0
(2F)011 (2F)012	JUNCTION	1239.72	16.28	0.0
(2F)013	JUNCTION	1241.75	17.55	0.0
(2F)014	JUNCTION	1242.68	16.52	0.0
(2F)015	JUNCTION	1243.61	20.19	0.0
(2F)016	JUNCTION	1244.54	20.46	0.0
(2ť)U1/ Yes	JUNCTION	1245.47	21.33	0.0
(2F)018	JUNCTION	1246.40	21.37	0.0
(2F)019	JUNCTION	1247.33	19.17	0.0
(2F)020	JUNCTION	1248.26	18.54	0.0

1

•

and the second
elle ser en la seconda substance de la contra de la companya de la companya de la companya de la companya de la

(2F)021	JUNCTION	1249.19	15.62	0.0
(2F)022 (2F)023	JUNCTION	1250.52	22.00	0.0
Yes	CONCILON	1200.07	22.1/	0.0
(2F)024	JUNCTION	1251.93	22.07	0.0
(2F) 025 (2F) 026	JUNCTION	1252.06	19.94	0.0
(2F)020	JUNCTION	1252.32	21.68	0.0
(2F)028	JUNCTION	1252.47	20.53	0.0
(2F)029	JUNCTION	1252.59	21.41	0.0
(2F)030	JUNCTION	1252.71	21.29	0.0
(2F)031	JUNCTION	1252.85	21.15	0.0
(2F) 032 (2F) 032	JUNCTION	1252.98	21.32	0.0
Yes	UDINCTION	1255.07	25.95	0.0
(2G)001	JUNCTION	1252.28	15.90	0.0
(2G)002	JUNCTION	1253.00	16.58	0.0
Yes		1050 40	1 7 0 1	
(2G)002A (2C)003	JUNCTION	1253.49	17.21	0.0
(2G)003	TUNCTION	1255.01	13.50	0.0
Yes	obnorron	1200.11	10.00	0.0
(2G)005	JUNCTION	1257.05	12.17	0.0
(2G)006	JUNCTION	1259.57	12.23	0.0
1es (2G)007	TINCTION	1260 37	11 59	0 0
Yes	UDINCI TOM	1200.37	11.00	0.0
(2G)008	JUNCTION	1260.48	10.46	0.0
(2G)009	JUNCTION	1261.35	10.12	0.0
Yes		10(1 00	0 67	0 0
(2G) 010	JUNCTION	1261.89	8.6/	0.0
Yes	00001100	1203.02	10.00	0.0
(2G)012	JUNCTION	1263.82	10.43	0.0
(2G)012A	JUNCTION	1264.27	10.42	0.0
(2G)013	JUNCTION	1265.10	10.22	0.0
(ZG)UISA Yes	JUNCTION	1265.63	11.1/	0.0
(2G)014	JUNCTION	1267.95	9.37	0.0
(2G)015	JUNCTION	1268.00	9.29	0.0
Yes		10.00 00	10 50	
(2G)016	JUNCTION	1268.62	12.58	0.0
(2G)016A	JUNCTION	1268.77	13.25	0.0
(2G)018	JUNCTION	1269.22	12.46	0.0
Yes				
(2G)019	JUNCTION	1269.72	9.15	0.0
1es (2G)020	TINCTION	1270 55	9 12	0 0
Yes	00HC110H	1270.55	5.42	0.0
(2G)021	JUNCTION	1271.18	10.46	0.0
Yes				
(2G)022	JUNCTION	1271.88	8.83	0.0
(2G) 023	JUNCTION	1272 48	8 17	0 0
Yes	001.01101	12,2.10	0.11	0.0
(2G)024	JUNCTION	1272.87	6.87	0.0
(2G) 025	JUNCTION	1273.43	7.08	0.0
(2G)026	JUNCTION	1276.53	5.62	0.0
(2G)040	JUNCTION	1255 99	16.00	0 - 0
· · ·				· · ·

and a state of the
(2G)041	JUNCTION	1256.24	15.76	0.0
(2G)042	JUNCTION	1256.51	15.49	0.0
(2G)043	JUNCTION	1256.74	15.26	0.0
(2G)043A	JUNCTION	1256.89	15.11	0.0
(2G)044	JUNCTION	1257.03	14.97	0.0
(2G)045	JUNCTION	1257.19	14.81	0.0
Yes	0011012011	100/ 129	11.01	0.0
(26) 359	TUNCTION	1274 22	6 67	0 0
(20)339 Voc	SONCI ION	12/4.22	0.07	0.0
(24)001	TINCETON	1240 00	22 10	0 0
(2H) 001	JUNCTION	1240.90	22.10	0.0
(2H)002	JUNCTION	1249.59	22.41	0.0
res				
(2H) 003	JUNCTION	1250.32	21.68	0.0
(2H)005	JUNCTION	1251.05	21.95	0.0
(2H)006	JUNCTION	1251.66	18.34	0.0
(2H)007	JUNCTION	1252.27	16.73	0.0
Yes				
(2H)008	JUNCTION	1253.49	16.51	0.0
(2H)009	JUNCTION	1253.59	16.41	0.0
(2H)010	JUNCTION	1253.70	16.30	0.0
(2H)011	JUNCTION	1255.52	14.48	0.0
(2H)012	JUNCTION	1256.17	13.83	0.0
Yes	0 01:01 2011	1200.11	10.00	0.0
(2H) 013	JUNCTION	1257 09	16 91	0 0
Vag	001101	1237.09	10.91	0.0
(20)01/	TUNCTION	1057 70	14 07	0 0
(2n)014 Voc	JUNCIION	1237.13	14.2/	0.0
ies		1050 46	11 04	0 0
(2H) 015	JUNCTION	1258.46	11.04	0.0
(2H) UI 6	JUNCTION	1259.00	10.00	0.0
Yes				
(2H)017	JUNCTION	1259.56	8.94	0.0
(2H)017A	JUNCTION	1260.40	9.60	0.0
Yes				
(2H)018	JUNCTION	1260.70	10.30	0.0
(2H)019	JUNCTION	1261.30	11.75	0.0
Yes				
(2H)020	JUNCTION	1261.40	14.40	0.0
Yes				
(2H)021	JUNCTION	1262.54	11.46	0.0
Yes				
(2H) 022	JUNCTION	1265.22	13.78	0.0
(2H) 023	JUNCTION	1265 49	14 51	0 0
(2H) 024	JUNCTION	1268 18	10 82	
(2H) 025	JUNCTION	1268 74	9.26	0.0
(211) 025	JUNCTION	1264 94	9.20 8.50	0.0
(211)020 Yog	00NC110N	1204.94	0.00	0.0
103		1966 19	10 00	0 0
(2H) 027	JUNCTION	1260.12	12.33	0.0
(2H) 028	JUNCTION	1267.29	14.00	0.0
(2H) 029	JUNCTION	1268.48	14.00	0.0
(2H)030	JUNCTION	1269.40	9.00	0.0
Yes				
(2H)031	JUNCTION	1269.64	7.20	0.0
(2H)032	JUNCTION	1269.73	7.73	0.0
Yes				
(2H)033	JUNCTION	1270.81	7.65	0.0
(2H)034	JUNCTION	1271.83	6.97	0.0
(2H)036	JUNCTION	1272.81	12.67	0.0
Yes				
(2H)037	JUNCTION	1274.02	9.38	0.0
(2H) 038	JUNCTION	1275.22	11.78	0.0
(2H) 039	JUNCTION	1276 64	11 35	0.0
(211) 000	O OTHOT TOTA	T710:01		0.0

1. and .

(2H)040 (2H)041	JUNCTION	1277.55	7.37	0.0
(2H)041 (2H)042	JUNCTION	1279.87	9.13	0.0
(2H)043	JUNCTION	1280.82	9.58	0.0
(2H) 044	JUNCTION	1281.64	10.06	0.0
(2H)045	JUNCTION	1282.34	11.15	0.0
(2H)046	JUNCTION	1283.01	11.15	0.0
(2H)047	JUNCTION	1283.25	16.92	0.0
(2H)048	JUNCTION	1284.37	12.62	0.0
(2H)049	JUNCTION	1285.60	12.17	0.0
Yes	TINCUTON	100C EC	10 04	0 0
(2H) 050 (2H) 051	JUNCTION	1200.00	12.04	0.0
(2H)051A	JUNCTION	1288 06	10 45	0.0
(2H)051A	JUNCTION	1289.23	12 00	0.0
(2H) 052 (2H) 053	JUNCTION	1289.54	18.44	0.0
(2H)054	JUNCTION	1290.05	18.94	0.0
(2H) 054A	JUNCTION	1290.90	19.10	0.0
Yes				
(2H)055	JUNCTION	1291.92	19.08	0.0
(2H)055A	JUNCTION	1292.46	19.54	0.0
(2H)056	JUNCTION	1294.11	17.02	0.0
(2H)057	JUNCTION	1294.81	14.53	0.0
Yes		1005 00	15 04	0 0
(2H)058	JUNCTION	1295.28	15.24	0.0
1es (201)295	TINCTION	1000 00	14 40	0 0
(ZI)ZOJ Voc	JUNCTION	1209.90	14.49	0.0
(2H) 286	TUNCTION	1290 62	17 75	0 0
Yes	0011011	1200.02	11.10	0.0
(2H)287	JUNCTION	1291.69	22.13	0.0
(2H) 288	JUNCTION	1293.09	22.14	0.0
(2H)289	JUNCTION	1294.43	22.15	0.0
Yes				
(2H)290	JUNCTION	1295.06	20.92	0.0
(21)001	JUNCTION	1269.29	9.71	0.0
Yes	TUNCETON	1000 10	10.00	0 0
(21)001A (21)002	JUNCTION	1269.10	10.90	0.0
(ZI)UUZ	JUNCITON	12/1.86	8.14	0.0
(21)003		1273 20	8 80	0 0
Yes	00001100	12/3.20	0.00	0.0
(21)004	JUNCTION	1273.70	9.30	0.0
(21)005	JUNCTION	1275.54	9.46	0.0
(21)006	JUNCTION	1276.60	13.40	0.0
(21)008	JUNCTION	1278.00	12.00	0.0
Yes				
(21)009	JUNCTION	1279.64	9.36	0.0
Yes	THUGETON	1000 00	10.00	0 0
(21)010	JUNCTION	1280.00	10.00	0.0
(21)011	JUNCTION	1280.60	9.40	0.0
(21)012	TUNCTION	1281 28	972	0 0
(21)012 (21)013	JUNCTION	1282 76	11 24	0.0
(21)013	JUNCTION	1283 39	8 61	0.0
Yes	000000000	1200.00	0.01	0.0
(21)015	JUNCTION	1283.87	11.13	0.0
(21)016	JUNCTION	1284.40	12.60	0.0
(21)017	JUNCTION	1284.54	12.46	0.0
(2I)017A	JUNCTION	1284.60	12.40	0.0
Yes				

. . .

and the second sec

a setting a set and a set of a

(21)018	JUNCTION	1285.34	11.66	0.0
(21)019	JUNCTION	1286.15	10.85	0.0
(21)020	JUNCTION	1287.48	16.52	0.0
Yes	TUNCETON	1000 50	1 - 4 4	0.0
(21)021 (21)0217	JUNCTION	1288.56	15.44	0.0
(21)021A (21)021B	JUNCTION	1289 46	14 54	0.0
Yes	0011011	1209.40	T4.04	0.0
(2I)021C	JUNCTION	1289.55	14.45	0.0
(21)022	JUNCTION	1289.64	11.42	0.0
(21)023	JUNCTION	1290.72	9.27	0.0
(21)024	JUNCTION	1291.80	11.20	0.0
(21)025	JUNCTION	1292.88	10.12	0.0
(ZI) UZ5A	JUNCTION	1293.62	9.38	0.0
(21)026		1293 96	9 01	0 0
(21)020	JUNCTION	1294 94	12 06	0.0
(21)028	JUNCTION	1295.09	11.90	0.0
Yes				
(21)029	JUNCTION	1295.29	12.10	0.0
Yes				
(21)044	JUNCTION	1276.65	8.72	0.0
(21)045	JUNCTION	1277.38	10.43	0.0
(21)046	JUNCTION	1281.61 1205 50	13.50	0.0
(21)047	JUNCTION	1289.53	19.42	0.0
(2I)049	JUNCTION	1290.84	16.16	0.0
Yes		200001	10.10	0.0
(21)050	JUNCTION	1292.77	15.73	0.0
(2I)051	JUNCTION	1293.24	14.56	0.0
Yes		1000 60	14 00	
(21)052	JUNCTION	1293.62	14.38	0.0
(21)055	JUNCTION	1294.99	13.21 11 07	0.0
(21)054 (2T)055	JUNCTION	1290.10	10.74	0.0
Yes		120,100	1000	0.0
(21)056	JUNCTION	1298.45	9.55	0.0
(21)057	JUNCTION	1299.11	11.89	0.0
(21)058	JUNCTION	1300.43	11.57	0.0
(21)059	JUNCTION	1302.26	10.24	0.0
(2.T) 001	TUNCTION	1230 36	15 61	0 0
(2J)002	JUNCTION	1239.73	15.27	0.0
(2J)003	JUNCTION	1239.81	15.19	0.0
(2J)004	JUNCTION	1240.04	17.96	0.0
(2J)005	JUNCTION	1240.09	17.91	0.0
(2J)006	JUNCTION	1240.57	19.43	0.0
(2J)007	JUNCTION	1241.10	19.90	0.0
(2J)008	JUNCTION	1241.63	22.37	0.0
(20)009	JUNCTION	1241.85	22.15	0.0
(20,010)	JUNCTION	1242.09	20.91	0.0
Yes	0011011011	1212.00	21.91	0.0
(2J)012	JUNCTION	1243.17	21.83	0.0
(2J)013	JUNCTION	1244.14	21.86	0.0
(2J)014	JUNCTION	1244.99	22.01	0.0
(2J)015	JUNCTION	1245.91	24.09	0.0
(2J)016	JUNCTION	1246.81	24.19	0.0
(ZJ)UL/ (2T)019	JUNCTION	1247.72	22.28	0.0
(20)018 (2,T)019	JUNCTION	124/.88 1210 00	22.12	
(20/01)	OUNCIION	1240.70	22 · 10	0.0

- - - - -

al a state of the second se

(2J)020	JUNCTION	1242.31	21.69	0.0
Yes (2J)021	JUNCTION	1246.20	16.80	0.0
Yes			10000	0.0
(2J)022	JUNCTION	1246.37	17.63	0.0
(2J) 023	JUNCTION	1247.35	16.65	0.0
(ZJ)UZO Yes	JUNCTION	1249.21	16.79	0.0
(2J)027	JUNCTION	1250.42	17.58	0.0
(2J)028	JUNCTION	1251.06	18.94	0.0
(2J)029	JUNCTION	1252.17	17.83	0.0
(2J)030	JUNCTION	1253.86	16.14	0.0
(2J)031	JUNCTION	1255.43	15.57	0.0
(2J)032	JUNCTION	1256.78	13.22	0.0
(2J)033	JUNCTION	1258.11	11.89	0.0
(2J)040	JUNCTION	1248.95	17.05	0.0
1es (2.T) 041	TINCTION	12/0 27	17 62	0 0
(20)041 (2.1)042	TUNCTION	1249.37	12 26	0.0
(20)042 (2.T)043		1252 07	10 93	0.0
Yes	0011011	12.52.07	10.95	0.0
(2J)044	JUNCTION	1252.69	8.52	0.0
Yes				
(2J)045	JUNCTION	1253.12	9.93	0.0
1es (2.T) 0457		1253 53		0 0
(20)045A (2.T)046	JUNCTION	1253.55	0.47	0.0
Yes	CONCISION	1204.04	0,00	0.0
(2J)047	JUNCTION	1254.96	11.04	0.0
Yes				
(2J)048	JUNCTION	1255.88	12.12	0.0
Yes	TUNCUTON	1256 02	11 00	0 0
(20)049 (2.T)050	JUNCTION	1250.02	13 00	0.0
Yes	OUNCIION	1237.00	13.00	0.0
(2J)051	JUNCTION	1257,54	15.17	0.0
(2J)052	JUNCTION	1258.18	15.08	0.0
(2J)053	JUNCTION	1258.73	12.58	0.0
Yes				
(2J)054	JUNCTION	1260.19	10.09	0.0
1es (2.T) 055	TINCTION	1061 11	6 12	0 0
(20)055 (2.T)056	JUNCTION	1261.11	0.42 5.33	0.0
Yes	o on of ton	1201.14	5.55	0.0
(2J)057	JUNCTION	1262.30	4.70	0.0
(2J)060	JUNCTION	1263.42	4.58	0.0
Yes				
(2K)001	JUNCTION	1249.05	21.95	0.0
Yes				
(2K)002	JUNCTION	1254.77	16.23	0.0
105 (2K)003	TINCTION	1256 06	12 11	0 0
Yes	SUNCTION	1230.00	13.44	0.0
(2K)004	JUNCTION	1257.14	12.33	0.0
(2K)005	JUNCTION	1258.22	10.78	0.0
(2K)006	JUNCTION	1259.48	10.52	0.0
(2K)007	JUNCTION	1261.13	9.67	0.0
(2K)008	JUNCTION	1262.27	8.73	0.0
(2K)009	JUNCTION	1263.41	8.59	0.0
(2K)010	JUNCTION	1264.55	8.45	0.0
(2K)011	JUNCTION	1265.69	8.31	0.0

ŕ . F

Sec. 2	Voc				
· ·	(2K)012	JUNCTION	1266 83	8 17	0 0
	(2K)013	JUNCTION	1267.71	10.29	0.0
	Yes				
	(2K)014	JUNCTION	1268.42	9.58	0.0
	Yes				
	(2K)015	JUNCTION	1269.02	8.98	0.0
	(2K)016	JUNCTION	1270.08	7.92	0.0
	Ies		1070 00	7 (0	0.0
	(ZK)UI7	JUNCIION	1270.60	7.60	0.0
	(2K) 018		1271 60	9 00	0 0
	Yes	00NCI10N	1271.00	5.00	0.0
	(2K)018A	JUNCTION	1272.00	8.12	0.0
	(2K)019	JUNCTION	1272.70	6.80	0.0
	Yes				
	(2K)020	JUNCTION	1273.70	7.25	0.0
	(2K)021	JUNCTION	1273.80	7.17	0.0
	Yes				
	(2K)022	JUNCTION	1275.00	7.00	0.0
	Yes				
	(2K) 022A	JUNCTION	1275.40	8.00	0.0
	(2K) 023	JUNCTION	1276.20	8.10	0.0
	(2K) 024	JUNCTION	1277.00	7.25	0.0
	(ZK) UZ4A	JUNCTION	1277.10	9.00	0.0
	105 (2K) 025	TUNCETON	1070 50	0 10	0 0
	(ZK) UZJ	JUNCITON	1278.50	9.10	0.0
	(2K) 026		1279 82	8 92	0 0
×	(2K) 027	JUNCTION	1284 20	12 80	0.0
in a start	Yes	00001100	1201.20	12.00	0.0
	(2K) 028	JUNCTION	1285.03	15.97	0.0
	(2K) 029	JUNCTION	1286.00	10.00	0.0
	Yes				
	(2K)030	JUNCTION	1286.96	12.04	0.0
	(2K)031	JUNCTION	1288.10	12.90	0.0
	(2K)032	JUNCTION	1289.21	11.79	0.0
	Yes				
	(2K)033	JUNCTION	1290.30	13.70	0.0
	Yes	TUNORION	1000.00	11 00	0.0
	(2K) U33A	JUNCTION	1290.96	11.23	0.0
	1981	TUNCETON	1201 20	0.70	0 0
	(2K)034	TINCTION	1291.39	9.70	0.0
	(2K) 036	JUNCTION	1292.49	10 67	0.0
	(2K) 037	TUNCTION	1294 71	11 29	0.0
	Yes	0011011011	1291.11	11.29	0.0
	(2K) 038	JUNCTION	1295.09	12.41	0.0
	(2K)039	JUNCTION	1295.96	12.54	0.0
	(2K)040	JUNCTION	1296.66	13.34	0.0
	(2K)041	JUNCTION	1297.51	11.99	0.0
	(2K)042	JUNCTION	1298.02	12.18	0.0
	(2K)043	JUNCTION	1298.87	11.13	0.0
	(2K)044	JUNCTION	1299.72	12.28	0.0
	(2K)045	JUNCTION	1300.58	11.42	0.0
	(2K)046	JUNCTION	1301.43	9.57	0.0
	(2K) 047	JUNCTION	1302.28	11.72	0.0
	(2K) 048	JUNCTION	1303.14	14.36	0.0
s de la companya de	(2K) U4 9	JUNCTION	1303.99	11.21	0.0
" a marke"	(2K) U5U (2K) 051	JUNCTION	1304.68	10 54	0.0
	(ZK) U51	JUNCTION	1305.36	10.54	0.0

- h - e - e

a konstanti a santan santaka sa sa s

e este e a substance en la companya de la companya

(2K) 052	JUNCTION	1306.05	10.35	0.0
(2K) 314 (2K) 315 (2K) 316	JUNCTION JUNCTION	1250.64 1251.52 1252.40	18.26 17.08 16.30	0.0 0.0
(2K) 317	JUNCTION	1252.40	14.67	0.0
ForcedMain	JUNCTION	1148.50	10.00	0.0
(PLANT)	OUTFALL	1145.00	0.00	0.0
(1C)026	DIVIDER	1226.87	12.67	0.0
Yes				
(1F)012	DIVIDER	1202.30	7.93	0.0
(1G)019	DIVIDER	1225.09	13.00	0.0
(2A) 048	DIVIDER	1190.65	/.80	0.0
(20)244	DIVIDER	1210.00	9.03	0.0
(2D)244 (1M)012	DIVIDER	1217.17	14 25	0.0
(2,1) 025	DIVIDER	1248.28	17.72	0.0
(1C)001B	DIVIDER	1193.50	13.50	0.0
Yes				
(1M)020	DIVIDER	1228.05	14.73	0.0
Yes				
(1A) STOR	STORAGE	1100.00	58.00	0.0
(1A) DIV	STORAGE	1147.99	8.01	0.0
(ZA)UUU NonthEnidStorner	STORAGE	1130.00	29.00	0.0
(10) 304C	E STORAGE STORAGE	1239.03	21 17	0.0
LiftStation	STORAGE	1124 35	22.00	0.0
(10) 304	STORAGE	1238.81	19.95	0.0
(1C)Storage	STORAGE	1191.30	6.90	0.0
PlantStorage	STORAGE	1152.00	11.00	0.0
*********** Link Summary *********** Name %Slope Roughness	From Node	To Node	Туре	Length
(1A)000A	- (1A)000A	(1A)000	CONDUIT	98.7
(1A)000B	(1A)000B	(1A)000A	CONDUIT	406.7
(1A)001	(1A)001	(1A)000B	CONDUIT	521.0
(1A)002	(1A)002	(1A)001	CONDUIT	98.4
(1A)003	(1A)003	(1A)002	CONDUIT	391.7
0.3064 0.0160 (1A)004	(1A)004	(1A)003	CONDUIT	331.5
0.1900 0.0160 (1A)005	(1A)005	(1A)004	CONDUIT	353.4
0.2462 0.0160 (1A)006	(1A)006	(1A)005	CONDUIT	446.4
0.4458 0.0160 (1A)007	(1A)007	(1A)006	CONDUIT	506.3
0.4049 0.0160 (1A)008	(1A)008	(1A)007	CONDUIT	499.1
U.4IU/ U.UI6U				

- 14 - 44 - 4

A DE MARKET MARKET DE LA MARKATER A COMPANY DE LA COMPANY DE LA MARKATER DE
0 1 6 0 5	0 01 00				
(1A)010	0.0160	(1A)010	(1A)009	CONDUIT	502.8
0.3679 (1A)011	0.0160	(1A)011	(1A)010	CONDUIT	484.6
0.0516 (1A)012	0.0160	(1A)012	(1A)011	CONDUTT	555.5
0.0630	0.0160	(1))013	(17)012	CONDUIT	424 4
0.2285	0.0160	(IA) 013	(1A)012	CONDOLL	424.4
(1A)014 0.3424	0.0160	(1A)014	(1A)013	CONDUIT	184.0
(1A)015 0.4575	0.0160	(1A)015	(1A)014	CONDUIT	185.8
(1A)016 0 1716	0 0160	(1A)016	(1A)015	CONDUIT	495.5
(1A)017	0.0100	(1A)017	(1A)016	CONDUIT	524.9
(1A)018	0.0160	(1A)018	(1A)017	CONDUIT	271.3
0.3760 (1A)019	0.0160	(1A)019	(1A)018	CONDUIT	183.4
0.0545 (1A)020	0.0160	(1A)020	(1A)019	CONDUIT	298.7
0.4452 (1A)021	0.0160	(1A)021	(1 \(\D) \(\D	CONDITT	537 4
0.3294	0.0160	(17) 021	(17)020	CONDUIT	202 5
0.5568	0.0160	(IA)022	(IA) 021	CONDULT	382.5
(1A)023 0.3005	0.0160	(1A)023	(1A)022	CONDUIT	499.1
(1A)024 0.4488	0.0160	(1A)024	(1A)023	CONDUIT	479.1
(1A)0247	A 0 0160	(1A)024A	(1A)024	CONDUIT	468.2
(1A)025	0.0100	(1A)025	(1A)024A	CONDUIT	29.4
(1A)026	0.0160	(1A)026	(1A)025	CONDUIT	568.5
0.3870 (1A)027	0.0160	(1A)027	(1A)026	CONDUIT	345.5
0.5008 (1A)028	0.0160	(1A)028	(1A)027	CONDUIT	407.0
0.1327 (1A)029	0.0160	(1A) 029	(12)028	CONDUTT	234 5
0.3070	0.0160	(17) 020	(11) 020	CONDUIT	404 0
0.1200	0.0160	(12) 030	(1A) 029	CONDULT	424.0
(1A)031 0.2056	0.0160	(IA) U3I	(IA)030	CONDUIT	501.1
(1A)032 0.1747	0.0160	(1A)032	(1A)031	CONDUIT	452.1
(1A)033 0.1851	0.0160	(1A)033	(1A)032	CONDUIT	448.3
(1A)034	0.0160	(1A)034	(1A)033	CONDUIT	424.7
(1A)035	0.0100	(1A)035	(1A)034	CONDUIT	360.5
U.2524 (1A)035A	U.U160 A	(1A)035A	(1A)035	CONDUIT	382.1
0.1178 (1A)036	0.0160	(1A)036	(1A)035A	CONDUIT	128.5
0.3503 (1A)037	0.0160	(1A) 037	(12)036	CONDUTT	450 2
0.1844	0.0160	(111) (5 /	(TU)000	CONDULI	400.2

and a second of the second second measurements of the second second second second second second second second s

(1A)038	(1A)038	(1A)037	CONDUIT	337.0
(1A)039	(1A)039	(1A)038	CONDUIT	307.6
(1A)040	(1A)040	(1A)039	CONDUIT	374.6
(1A)041	(1A)041	(1A)040	CONDUIT	177.1
(1A)042 0 1979 0 0160	(1A)042	(1A)041	CONDUIT	338.6
(1B)001 2 5014 0 0160	(1B)001	(1A)024A	CONDUIT	54.4
(1B)002 0 3334 0 0160	(1B)002	(1B)001	CONDUIT	257.9
(1B)003 0 3065 0 0160	(1B)003	(1B)002	CONDUIT	362.2
(1B)004 0.0246 0.0160	(1B)004	(1B)003	CONDUIT	284.2
(1B)005 0.6902 0.0160	(1B)005	(1B)004	CONDUIT	236.2
(1B)006 0 3108 0 0160	(1B)006	(1B)005	CONDUIT	334.7
(1B)009 0 3264 0 0160	(1B)009	(1B)006	CONDUIT	202.2
(1B)010 0.6280 0.0160	(1B)010	(1B)009	CONDUIT	414.0
(1B)011 0.2889 0.0160	(1B)011	(1B)010	CONDUIT	415.3
(1B)013 0.4730 0.0160	(1B)013	(1B)011	CONDUIT	277.0
(1B)014 0.3258 0.0160	(1B)014	(1B)013	CONDUIT	368.3
(1C)001 0.3585 0.0160	(1C)001	(1B)014	CONDUIT	147.8
(1C)001A 0.3133 0.0160	(1C)001A	(1C)001	CONDUIT	306.4
(1C)001B	(1C)001B	(1C)001A	CONDUIT	143.9
(1C)001BO	(1C)001B	(1C)001G	CONDUIT	133.3
(1C)001C	(1C)001C	(1C)001B	CONDUIT	243.0
(1C)001D 0.2851 0.0160	(1C)001D	(1C)001C	CONDUIT	273.6
(1C)001E	(1C)001E	(1C)001D	CONDUIT	170.8
(1C)001F	(1C)001F	(1C)001E	CONDUIT	239.7
(1C)001G	(1C)001G	(1C)Storage	CONDUIT	94.0
(1C) 002 2 6584 0 0160	(1C)002	(1C)001	CONDUIT	304.7
(1C)003 0 1667 0 0160	(1C)003	(1C)002	CONDUIT	149.9
(1C)004 0.5874 0.0160	(1C)004	(1C)003	CONDUIT	200.9
(1C)005 0.0341 0.0160	(1C)005	(1C)004	CONDUIT	29.3
(1C)006 0.4513 0.0160	(1C)006	(1C)005	CONDUIT	217.1
(1C)006A	(1C)006A	(1C)006	CONDUIT	204.5

0 05 0 0 0 0 0 0 0 0				
0.6503 0.0160 (1C)007	(1C)007	(1C)006A	CONDUIT	39.4
0.5079 0.0160 (1C)009	(1C)009	(1C)001F	CONDUIT	141.3
0.6863 0.0160 (1C)010	(1C)010	(1C)009	CONDUIT	152.7
1.3422 0.0160 (1C)011	(1C)011	(1C)010	CONDUIT	84.8
0.9672 0.0160 (1C)012	(1C)012	(1C)015A	CONDUIT	178.0
3.3931 0.0160 (1C)015A	(1C)015A	(1C) 0 1 1	CONDITT	42 6
0.4223 0.0160 (1C)015B	(1C) 015R	(10)0157	CONDULT	3/1 3
0.7560 0.0160	(10)0155	(10)015A	CONDUIT	107.0
0.7135 0.0160	(10)0150	(1C)012B	CONDULT	187.8
(1C)016 0.4538 0.0160	(1C)016	(1C)015D	CONDUIT	317.3
(1C)016A 0.5583 0.0160	(1C)016A	(1C)016	CONDUIT	141.5
(1C)016B 0.4118 0.0160	(1C)016B	(1C)016A	CONDUIT	325.4
(1C)016C	(1C)016C	(1C)016B	CONDUIT	334.3
(1C)017	(1C)017	(1C)016	CONDUIT	26.7
(1C)018	(1C)018	(1C)017	CONDUIT	381.8
(1C)019	(1C)019	(1C)018	CONDUIT	274.9
0.3819 0.0160 (1C)01D	(1C)015D	(1C)015C	CONDUIT	308.0
0.5064 0.0160 (1C)020	(1C)020	(1C)019	CONDUIT	318.8
0.4078 0.0160 (1C)021	(1C)021	(1C)016C	CONDUIT	320.8
0.7202 0.0160 (1C)021A	(1C)021A	(1C)021	CONDUIT	423.9
0.1793 0.0160 (1C)021B	(1C)021B	(1C)021A	CONDUIT	229.1
0.3666 0.0160	(1C) 021C	(1C) 021B	CONDITT	347 5
0.3338 0.0160	(10) 0210	(10) 0210	CONDULT	320 8
0.3055 0.0160	(10)0210	(10)0210	CONDUIT	1.00 4
0.4426 0.0160	(1C) 022	(10)021	CONDULT	160.4
(1C)023 0.3261 0.0160	(1C)023	(1C)022	CONDUIT	404.8
(1C)024 0.3665 0.0160	(1C)024	(1C)023	CONDUIT	248.3
(1C)025 0.1518 0.0160	(1C)025	(1C)024	CONDUIT	263.5
(1C)026 0.3299 0.0160	(1C)026	(1C)025	CONDUIT	397.1
(1C)026A 1.7315 0.0160	(1C)026	(1C)021D	CONDUIT	168.1
(1C)027	(1C)027	(1C)026	CONDUIT	324.6
(1C) 028 0 3258 0 0160	(1C)028	(1C)027	CONDUIT	328.4
U.J.Z.JO U.U.LOU				

.

(1C)041	(1C)041	(1C)007	CONDUIT	325.0
(1C)176	(1C)176	(1C)002	CONDUIT	334.0
0.9461 0.0160 (1C)177	(1C)177	(1C)176	CONDUIT	319.4
0.9394 0.0160 (1C)178	(1C)178	(1C)177	CONDUIT	342.3
0.9320 0.0160 (1C)179	(1C)179	(1C)178	CONDUIT	319.3
0.9427 0.0160 (1C)179A	(1C)179A	(1C)179	CONDUIT	16.7
0.5992 0.0160	(1C) 180	(1C)1792	CONDUTT	321 4
0.9365 0.0160	(10) 1807	(10) 190	CONDUIT	310 /
0.9362 0.0160	(10) 180A	(10)100	CONDUIT	217 2
(1C) 181 0.9266 0.0160	(1C)181	(IC) 180A	CONDULT	317.3
(1C)182 0.9168 0.0160	(1C)182	(1C)181	CONDUIT	169.1
(1C)Storage 0.8386 0.0160	(1C)Storage	(1C)001	CONDUIT	194.4
(1D)001 2.5558 0.0160	(1D)001	(1A)017	CONDUIT	287.6
(1D)002 0.8880 0.0160	(1D)002	(1D)001	CONDUIT	203.8
(1D)003	(1D)003	(1D)002	CONDUIT	143.9
(1D)004	(1D)004	(1D)003	CONDUIT	264.9
(1D)005	(1D)005	(1D)004	CONDUIT	252.6
(1D)006 0.0160	(1D)006	(1D)005	CONDUIT	214.3
0.9567 0.0160 (1D)007	(1D)007	(1D)006	CONDUIT	412.1
0.9293 0.0160 (1D)008	(1D)008	(1D)007	CONDUIT	428.9
0.9349 0.0160 (1D)009	(1D)009	(1D)008	CONDUIT	404.2
0.4181 0.0160 (1D)010	(1D)010	(1D)009	CONDUIT	204.6
0.4008 0.0160	(10)011	(1D) 010	CONDUIT	54.9
1.3120 0.0160	(1D) 012	(1D) 0 1 1	CONDUTT	182.1
0.4502 0.0160	(1D) 012	(1D) 012	CONDUIT	352 9
(1D)013 2.0229 0.0160	(1D)013	(1D) 012	CONDUIT	207 5
(1D)014 0.5038 0.0160	(1D)014	(1D)013	CONDULT	327.5
(1D)015 0.4196 0.0160	(1D)015	(1D)014	CONDUIT	338.4
(1D)016 0.2983 0.0160	(1D)016	(1D)015	CONDUIT	328.5
(1D)017 0.2914 0.0160	(1D)017	(1D)016	CONDUIT	336.3
(1D)018 0.2980 0.0160	(1D)018	(1D)017	CONDUIT	328.9
(1D)019 0.3016 0.0160	(1D)019	(1D)018	CONDUIT	331.6
(1D)020	(1D)020	(1D)019	CONDUIT	318.2

- Bernard Barr

0.2986 0.0160 (1D)021	(1D)021	(1D)020	CONDUIT	317.9
0.3020 0.0160 (1D)022	(1D)022	(1D)021	CONDUIT	343.1
0.2973 0.0160 (1D)023	(1D)023	(1D)022	CONDUIT	329.3
0.2976 0.0160 (1E)001	(1E)001	(1A)041	CONDUIT	147.8
0.3585 0.0160 (1E)002	(1E)002	(1E)001	CONDUIT	378.7
0.3274 0.0160 (1E)003	(1E)003	(1E)002	CONDULT	482 1
0.3153 0.0160	(1E)0037	(1E)002	CONDUIT	201 1
0.3273 0.0160	(1E) 005A	(1E)003	CONDUIT	591.1
0.3185 0.0160	(1E)005	(1E)003A	CONDULT	502.3
(1E)006 0.3290 0.0160	(IE)006	(IE)005	CONDUIT	425.5
(1E)007 0.3290 0.0160	(1E)007	(1E)006	CONDUIT	316.1
(1E)008 0.3097 0.0160	(1E)008	(1E)007	CONDUIT	536.0
(1E)009 0.3544 0.0160	(1E)009	(1E)008	CONDUIT	234.2
(1F)001 0.4386 0.0160	(1F)001	(1J)002	CONDUIT	275.9
(1F)003	(1F)003	(1F)001	CONDUIT	340.6
(1F)004	(1F)004	(1F)003	CONDUIT	294.1
(1F)005	(1F)005	(1F)004	CONDUIT	174.0
(1F)006	(1F)006	(1F)005	CONDUIT	180.9
(1F)008	(1F)008	(1F)006	CONDUIT	333.2
0.0930 0.0160 (1F)008A	(1F)008A	(1F)008	CONDUIT	158.3
0.0758 0.0160 (1F)009	(1F)009	(1F)008A	CONDUIT	19.7
0.5066 0.0160 (1F)010	(1F)010	(1F)009	CONDUIT	159.3
0.1067 0.0160 (1F)011	(1F)011	(1F)010	CONDUIT	347.2
0.1843 0.0160 (1F)012	(1F)012	(1F)011	CONDUIT	389.9
0.2180 0.0160 (1F)012A	(1F)012A	(1F) 012	CONDUITT	78.9
0.2154 0.0160 (1F)0120	(1) 012	(1.7) 011	CONDUIT	130 3
2.4948 0.0160 (1E)013	(11)012	(15)0127	CONDUIT	101.5
0.2762 0.0160	(1F)013	(1F) 012A	CONDUIT	401.0
0.0549 0.0160	(10)014	(12)013	CONDULT	102.0
0.4269 0.0160	(11)015	(11)014	CONDULT	253.0
(1F)016 0.3759 0.0160	(1F)016	(1F)015	CONDUIT	204.8
(1F)017 0.2086 0.0160	(1F)017	(1J)014	CONDUIT	249.3

(1F)017A	(1F)017A	(1F)017	CONDUIT	188.8
(1F)017B	(1F)017B	(1F)017A	CONDUIT	69.7
0.2153 0.0160 (1F)017C	(1F)017C	(1F)017B	CONDUIT	148.4
0.2358 0.0160 (1F)017D	(1F)017D	(1F)017C	CONDUIT	94.5
0.1269 0.0160 (1F)017E	(1F)017E	(1F)017D	CONDUIT	183.7
0.2068 0.0160 (1F)017F	(1F)017F	(1F)017E	CONDUIT	26.5
3.2867 0.0160 (1F)017G-1	(1F)017G	(1F)017F	CONDUIT	98.6
2.9513 0.0160 (1F)018	(1F)018	(1F)017G	CONDUIT	165.3
0.6231 0.0160 (1F)019	(1F)019	(1F)018	CONDUIT	145.7
0.5080 0.0160 (1F)020	(1F)020	(1F)019	CONDUIT	510.5
0.5015 0.0160 (1F)021	(1F)021	(1F)020	CONDUIT	426.6
0.4336 0.0160 (1F)022	(1F)022	(1F)021	CONDUIT	325.8
0.4635 0.0160 (1F)023	(1F)023	(1F)022	CONDUIT	209.0
0.5215 0.0160 (1F)024	(1F) 024	(1F)023	CONDUIT	263.7
2.5557 0.0160 (1F)025	(1F) 025	(1F)024	CONDULT	209.0
2.6025 0.0160 (1F)026	(1) 026	(1) 025	CONDULT	222 4
2.6933 0.0160 (1F)026P	(15)026	(1E) 026	CONDUIT	213 9
0.2665 0.0160	(1F) 027	(1F) 0267	CONDUIT	210.7
0.2821 0.0160	(1F)027	(1F) 027	CONDUIT	196 6
0.2733 0.0160	(1F)028	(1F) 027	CONDUIT	100.0
0.2887 0.0160	(IF)029	(IF) 028	CONDULT	204.3
(1F)029A 0.2773 0.0160	(IF) 029A	(IF)029	CONDULT	216.3
(1F)030 0.2793 0.0160	(1F)030	(1F)029A	CONDUIT	264.9
(1G)001 0.1775 0.0160	(1G)001	(1F)017E	CONDUIT	495.7
(1G)001A 0.2090 0.0160	(1G)001A	(1G)001	CONDUIT	186.6
(1G)002 0.2124 0.0160	(1G)002	(1G)001A	CONDUIT	221.2
(1G)003 0.1056 0.0160	(1G)003	(1G)002	CONDUIT	255.8
(1G)004 0.1574 0.0160	(1G)004	(1G)003	CONDUIT	209.7
(1G)005 0.2510 0.0160	(1G)005	(1G)004	CONDUIT	199.2
(1G)006 0.0557 0.0160	(1G)006	(1G)005	CONDUIT	179.5
(1G)007 0 3032 0 0160	(1G)007	(1G)006	CONDUIT	125.3
(1G)008	(1G)008A	(1G)007	CONDUIT	420.1

and a second
(1G)008C	(1G)008B	CONDUIT	228.5
(1G)008B	(1G)008A	CONDUIT	205.5
(1G)009A	(1G)008C	CONDUIT	168.8
(1G)009B	(1G)009A	CONDUIT	204.4
(1G)009C	(1G)009B	CONDUIT	218.1
(1G)009D	(1G)009C	CONDUIT	31.4
(1G)009E	(1G)009D	CONDUIT	148.9
(1G)010	(1G)009F	CONDUTT	227.8
(1G)011	(1G) 010	CONDULT	168.8
(10)012	(10)010	CONDUIT	255 6
(1G) 012	(1G)011	CONDUIT	200.0
(IG)0I3	(IG)012	CONDULT	249.6
(1G)014	(1G)009B	CONDUIT	149.9
(1G)014A	(1G)014	CONDUIT	179.3
(1G)015	(1G)014A	CONDUIT	341.2
(1G)016	(1G)015	CONDUIT	230.4
(1G)017	(1G)016	CONDUIT	205.1
(1G)018	(1G)017	CONDUIT	238.3
(1G)018A	(1G)018	CONDUIT	20.3
(1G)019	(1G)162C	CONDUIT	232.2
(1G)019	(1G)018A	CONDUIT	275.0
(1G)020	(1G)019	CONDUIT	194.9
(1G)045	(1G)020	CONDUIT	194.9
(1G)046	(1G)045	CONDUIT	271.2
(1G)047	(1G)046	CONDUIT	108.3
(1G)048	(1G)047	CONDUIT	382.0
(1G)049	(1G)048	CONDUIT	190.0
(1G)050	(1G)049	CONDUIT	185.0
(1G)051	(1G)050	CONDUIT	193.0
(1G) 052	(1G) 051	CONDUTT	182.0
(10)052	(10) 050	CONDUIT	102.0
(IG)U53	(1G)052	CONDULT	380.0
	<pre>(1G) 008C (1G) 009A (1G) 009B (1G) 009C (1G) 009C (1G) 009E (1G) 010 (1G) 011 (1G) 011 (1G) 013 (1G) 014 (1G) 014A (1G) 014A (1G) 015 (1G) 016 (1G) 017 (1G) 018 (1G) 018 (1G) 018 (1G) 019 (1G) 019 (1G) 020 (1G) 020 (1G) 045 (1G) 045 (1G) 045 (1G) 045 (1G) 045</pre>	(1G) 008C(1G) 008B(1G) 009A(1G) 008C(1G) 009B(1G) 009A(1G) 009C(1G) 009B(1G) 009C(1G) 009C(1G) 009E(1G) 009C(1G) 010(1G) 009C(1G) 011(1G) 019C(1G) 012(1G) 011(1G) 013(1G) 012(1G) 014A(1G) 014A(1G) 015(1G) 015(1G) 016(1G) 015(1G) 018A(1G) 018(1G) 019(1G) 162C(1G) 019(1G) 018A(1G) 019(1G) 018A(1G) 045(1G) 020(1G) 045(1G) 045(1G) 045(1G) 045(1G) 045(1G) 045(1G) 045(1G) 048(1G) 051(1G) 050(1G) 053(1G) 051	(1G) 008C(1G) 008BCONDUIT(1G) 008B(1G) 008ACONDUIT(1G) 009A(1G) 009ACONDUIT(1G) 009C(1G) 009BCONDUIT(1G) 009D(1G) 009CCONDUIT(1G) 009D(1G) 009CCONDUIT(1G) 019E(1G) 009CCONDUIT(1G) 019(1G) 009CCONDUIT(1G) 010(1G) 009ECONDUIT(1G) 011(1G) 010CONDUIT(1G) 012(1G) 011CONDUIT(1G) 013(1G) 012CONDUIT(1G) 014(1G) 014CONDUIT(1G) 015(1G) 014ACONDUIT(1G) 016(1G) 015CONDUIT(1G) 017(1G) 016CONDUIT(1G) 018A(1G) 018CONDUIT(1G) 019(1G) 162CCONDUIT(1G) 019(1G) 018ACONDUIT(1G) 019(1G) 018ACONDUIT(1G) 045(1G) 019CONDUIT(1G) 046(1G) 045CONDUIT(1G) 048(1G) 045CONDUIT(1G) 049(1G) 046CONDUIT(1G) 041(1G) 047CONDUIT(1G) 045(1G) 047CONDUIT(1G) 048(1G) 047CONDUIT(1G) 050(1G) 048CONDUIT(1G) 051(1G) 050CONDUIT(1G) 052(1G) 051CONDUIT(1G) 053(1G) 052CONDUIT

.

- - Marine - State
| (1G)054 | (1G)054 | (1G)053 | CONDUIT | 365.0 |
|---------------------------|----------|----------|---------|-------|
| 0.2200 0.0160
(1G)055 | (1G)055 | (1G)054 | CONDUIT | 365.0 |
| 0.2200 0.0160
(1G)056 | (1G)056 | (1G)055 | CONDUIT | 363.0 |
| 0.2200 0.0160
(1G)057 | (1G)057 | (1G)056 | CONDUIT | 365.0 |
| 0.5000 0.0160
(1G)058 | (1G)058 | (1G)057 | CONDUIT | 365.0 |
| 0.5000 0.0160
(1G)059 | (1G)059 | (1G)058 | CONDUIT | 342.0 |
| 0.5000 0.0160
(1G)060 | (1G)060 | (1G)059 | CONDUIT | 29.0 |
| 0.5000 0.0160
(1G)061 | (1G)061 | (1G)060 | CONDUIT | 339.0 |
| 0.5000 0.0160 | (1G) 062 | (1G)061 | CONDULT | 334.0 |
| 0.6000 0.0160 | (1c) 063 | (10)062 | CONDULT | 60 0 |
| 0.6000 0.0160 | (10)064 | (10)062 | CONDULT | 356 0 |
| 0.6000 0.0160 | (1G) 064 | (1G) 065 | CONDUIT | 245.0 |
| 0.6000 0.0160 | (1G)065 | (1G)064 | CONDULT | 245.0 |
| (1G)066
0.6000 0.0160 | (IG)066 | (1G)065 | CONDULT | 159.0 |
| (1G)067
0.6000 0.0160 | (1G)067 | (1G)066 | CONDUIT | 285.0 |
| (1G)068
0.6000 0.0160 | (1G)068 | (1G)067 | CONDUIT | 351.0 |
| (1G)069
0.6000 0.0160 | (1G)069 | (1G)068 | CONDUIT | 421.0 |
| (1G)070
0.6000 0.0160 | (1G)070 | (1G)069 | CONDUIT | 360.0 |
| (1G)071
0.6000 0.0160 | (1G)071 | (1G)070 | CONDUIT | 277.0 |
| (1G)146
0 3951 0 0160 | (1G)146 | (1G)002 | CONDUIT | 103.8 |
| (1G)146A | (1G)146A | (1G)146 | CONDUIT | 49.8 |
| (1G) 162 | (1G)162 | (1G)162D | CONDUIT | 495.8 |
| (1G)162A | (1G)162A | (1G)162 | CONDUIT | 280.9 |
| (1G)162B | (1G)162B | (1G)162A | CONDUIT | 198.6 |
| (1G)162C | (1G)162C | (1G)162B | CONDUIT | 249.4 |
| (1G)162D | (1G)162D | (1G)009E | CONDUIT | 51.4 |
| 13.0401 0.0160
(1G)243 | (1G)243 | (1G)045 | CONDUIT | 432.8 |
| 0.3166 0.0160
(1H)001 | (1H)001 | (1F)023 | CONDUIT | 209.5 |
| 0.5108 0.0160
(1H)004 | (1H)004 | (1J)050 | CONDUIT | 60.0 |
| 2.2818 0.0160
(1H)005 | (1H)005 | (1H)004 | CONDUIT | 289.0 |
| 0.0069 0.0160
(1H)006 | (1H)006 | (1H)005 | CONDUIT | 350.8 |
| 0.4276 0.0160
(1H)007 | (1H)007 | (1H)006 | CONDUIT | 184.1 |

. . .

0.4942 (1H)008	0.0160	(1H)008	(1H)007	CONDUIT	259.0
0.4518 (1H)009	0.0160	(1H)009	(1H)008	CONDUIT	25.2
0.5564 (1H)010	0.0160	(1H)010	(1H)009	CONDUIT	139.4
0.2798 (1H)011	0.0160	(1H)011	(1H)010	CONDUIT	32.9
1.8530 (1H)038	0.0160	(1H)038	(1H)001	CONDUIT	201.7
1.4129 (1H)039	0.0160	(1H)039	(1H)038	CONDUIT	271.1
1.9258 (1H)040	0.0160	(1H)040	(1H)039	CONDUIT	38.6
11.4678 (1H)041	0.0160	(1H)041	(1H)040	CONDUIT	253.5
0.2130 (1H)042	0.0160	(1H)042	(1H)041	CONDUIT	156.1
1.1854 (1H)043	0.0160	(1H)043	(1H)042	CONDUIT	77.1
0.6357 (1H)044	0.0160	(1H)044	(1H)043	CONDUIT	246.0
0.5203 (1H)045	0.0160	(1H)045	(1H)044	CONDUIT	189.0
0.4974 (1J)001	0.0160	(1J)001	(1A)042	CONDUIT	243.9
0.3526 (1J)002	0.0160	(1J)002	(1J)001	CONDUIT	397.0
0.2670 (1J)003	0.0160	(1J) 003	(1J)002	CONDUTT	323.9
0.2346 (1J)004	0.0160	(1J)004	(1J)003	CONDUIT	415.8
0.1828 (1J)005	0.0160	(1J) 005	(1.7)004	CONDUIT	456.3
0.1665	0.0160	(1.T) 006	(1.T) 005	CONDUIT	380 4
0.1893 (1.T)007	0.0160	(1.7) 0.07	(1.7) 0.06	CONDUIT	226 3
0.2210 (1.T) 0.08	0.0160	(1.T) 008	(1.T) 007	CONDULT	98 0
0.3368	0.0160	(1.1) 009	(1.1) 0.08	CONDUIT	228 5
0.1663	0.0160	(1.7) 010	(1.7) 0.09	CONDUIT	260.2
0.2267	0.0160	(1.7) 011	(11)010	CONDUIT	195 /
0.1241	0.0160	(11)012	(11)011	CONDULT	274 3
0.1860	0.0160	(11)012	(11)012	CONDULT	2/4.5
0.2058	0.0160	(11)014	(11)012	CONDULT	125 0
0.2576	0.0160	(1.7) 0.4.1	(1 T) 014	CONDUIT	£1 7
0.7778	0.0160	(11)042	(10)014	CONDULT	220 2
1.4152 (1.1)042	0.0160	(1 1) 042	(1 T) 0 4 2	CONDULT	170 0
1.2905	0.0160	(11)042A	(10)042	CONDITI	1/J.O
1.7153	0.0160	(10)0420	(10)042A	CONDULI	211.0

. . .

a a shararan ake e a an a**ke** a a shararan a

(1J)043	(1J)043	(1J)042B	CONDUIT	301.4
(1J)044	(1J)044	(1J)043	CONDUIT	505.5
(1J)045	(1J)045	(1J)044	CONDUIT	400.3
(1J)046	(1J)046	(1J)045	CONDUIT	205.1
(1J)047	(1J)047	(1J)046	CONDUIT	63.8
(1J)048	(1J)048	(1J)047	CONDUIT	56.8
(1J) 050	(1J)050	(1J)048	CONDUIT	352.9
(1J) 050A	(1J)050A	(1J)050	CONDUIT	56.7
(1J)051	(1J)051	(1J)050A	CONDUIT	347.4
(1J) 052 0.0110	(1J)052	(1J)051	CONDUIT	236.6
(1J) 053	(1J)053	(1J)052	CONDUIT	84.6
(1J) 054	(1J)054	(1J)053	CONDUIT	290.7
(1J)054A	(1J)054A	(1J)054	CONDUIT	70.5
(1J)055 0.0304 0.0160	(1J)055	(1J)054A	CONDUIT	296.5
(1J)056 0.0160	(1J)056	(1J)055	CONDUIT	411.3
(1J)057 0.1624 0.0160	(1J)057	(1J)056	CONDUIT	344.8
(1J)058 0.2143 0.0160	(1J)058	(1J)057	CONDUIT	312.6
(1J)059 0.0862 0.0160	(1J)059	(1J)058	CONDUIT	336.4
(1J)060 0.0632 0.0160	(1J)060	(1J)059	CONDUIT	332.2
(1K)001 2 2169 0 0160	(1K)001	(1J)060	CONDUIT	266.1
(1K)002 1.8855 0.0160	(1K)002	(1K)001	CONDUIT	28.1
(1K)002A 1.8900 0.0160	(1K)002A	(1K)002	CONDUIT	23.8
(1K)003 0.3580 0.0160	(1K)003	(1K)002A	CONDUIT	106.2
(1K)004 0.1837 0.0160	(1K)004	(1K)003	CONDUIT	326.6
(1K)005 0.2366 0.0160	(1K)005	(1K)004	CONDUIT	363.5
(1K)006 0.0243 0.0160	(1K)006	(1K)005	CONDUIT	41.2
(1K)007 0.2359 0.0160	(1K)007	(1K)006	CONDUIT	377.3
(1K)008 0.2262 0.0160	(1K)008	(1K)007	CONDUIT	349.3
(1K)008A 0.4248 0.0160	(1K)008A	(1K)008	CONDUIT	103.6
(1K)009 0.1369 0.0160	(1K)009	(1K)008A	CONDUIT	263.0
(1K)010	(1K)010	(1K)009	CONDUIT	364.3

and a second
0.2141	0.0160				
(1K)011	0 0160	(1K)011	(1K)010	CONDUIT	181.1
(1K)012	0.0160	(1K)012	(1K)011	CONDUIT	419.6
(1K)013	0.0160	(1K)013	(1K)012	CONDUIT	510.8
0.1175 (1K)014	0.0160	(1K)014	(1K)013	CONDUIT	263.4
0.1822 (1M)000	0.0160	(1M)000	(1G)013	CONDUIT	165.1
0.2543 (1M)0002	0.0160 A	(1M)001B	(1M)000	CONDUIT	58.7
0.8856 (1M)0001	0.0160 B	(1M)001A	(1M)001B	CONDUIT	385.8
0.2696 (1M)001	0.0160	(1M)001	(1M)001A	CONDUIT	301.0
0.4884 (1M)002	0.0160	(1M)002	(1M)001	CONDUIT	337.5
0.2667 (1M)003	0.0160	(1M)003	(1M)002	CONDUIT	181.4
0.3307 (1M)010	0.0160	(1M)010	(1M) 282	CONDUIT	38.8
0.4898 (1M)011	0.0160	(1M)011	(1M) 010	CONDULT	396.6
0.2421	0.0160	(1M) 012	(1M) 011	CONDULT	20.7
0.6760	0.0160	(1M) 012	(1M) 020	CONDUIT	20.7
0.1482	0.0160	(IM)012	(IM) 038	CONDULT	297.0
(IM)013 0.2401	0.0160	(IM)0I3	(IM)012	CONDULT	4/4.8
(1M)014 0.2445	0.0160	(1M)014	(1M)013	CONDUIT	421.3
(1M)015 0.2436	0.0160	(1M)015	(1M)014	CONDUIT	431.0
(1M)016 0.2397	0.0160	(1M)016	(1M)015	CONDUIT	492.3
(1M)017 0.9142	0.0160	(1M)017	(1M)016	CONDUIT	14.2
(1M)018 0.2711	0.0160	(1M)018	(1M)017	CONDUIT	191.8
(1M)019 0.2516	0 0160	(1M)019	(1M)018	CONDUIT	322.0
(1M)020	0 0160	(1M)020	(1M)019	CONDUIT	299.5
(1M)0200	0.0160	(1M)020	(1M)123	CONDUIT	22.2
(1M)021	0.0160	(1M)021	(1M)020	CONDUIT	321.0
(1M) 022	0.0160	(1M)022	(1M)021	CONDUIT	178.5
(1M)023	0.0160	(1M)023	(1M)022	CONDUIT	178.6
(1M)024	0.0160	(1M)024	(1M)023	CONDUIT	435.4
(1M)0247	U.UI60 A	(1M)025	(1M)024	CONDUIT	266.5
0.3377 (1M)025	0.0160	(1M)026	(1M)025	CONDUIT	239.3
0.3384 (1M)027	0.0160	(1M)027	(1M)026	CONDUIT	414.2
0.3259	0.0160				

a sector a sector construction of the sector
(1M)028	(1M)028	(1M)027	CONDUIT	296.9
0.3334 0.0160 (1M)035	(1M)035	(1M)281	CONDUIT	147.0
(1M)036	(1M)036	(1M)035	CONDUIT	158.3
0.2842 0.0160 (1M)037	(1M)037	(1M)036	CONDUIT	163.4
(1M) 038	(1M)038	(1M)037	CONDUIT	153.3
(1M)039	(1M)039	(1M)012	CONDUIT	97.6
(1M)040	(1M)040	(1M)039	CONDUIT	166.0
(1M)041	(1M)041	(1M)040	CONDUIT	306.9
(1M) 092 0 3252 0 0160	(1M)092	(1M)041	CONDUIT	316.7
(1M) 093	(1M)093	(1M)092	CONDUIT	14.8
(1M)094 0.3159 0.0160	(1M)094	(1M)093	CONDUIT	481.1
(1M)116 0.6874 0.0160	(1M)116	(1M)094	CONDUIT	27.6
(1M)117 0.5376 0.0160	(1M)117	(1M)116	CONDUIT	42.8
(1M)118 0.3682 0.0160	(1M)118	(1M)117	CONDUIT	160.2
(1M)119 0.3414 0.0160	(1M)119	(1M)118	CONDUIT	339.8
(1M)120 0.7232 0.0160	(1M)120	(1M)119	CONDUIT	24.9
(1M)121 0.3281 0.0160	(1M)121	(1M)120	CONDUIT	341.4
(1M)122 0.3647 0.0160	(1M)122	(1M)121	CONDUIT	167.3
(1M)123 0.3328 0.0160	(1M)123	(1M)122	CONDUIT	270.4
(1M)124 0.3304 0.0160	(1M)124	(1M)123	CONDUIT	363.2
(1M)125 0.3423 0.0160	(1M)125	(1M)124	CONDUIT	195.8
(1M)126 0.3716 0.0160	(1M)126	(1M)125	CONDUIT	158.8
(1M)127 0.3237 0.0160	(1M)127	(1M)126	CONDUIT	407.8
(1M)128 0.3575 0.0160	(1M)128	(1M)127	CONDUIT	190.2
(1M)129 0.3315 0.0160	(1M)129	(1M)128	CONDUIT	280.5
(1M)130 0.5208 0.0160	(1M)130	(1M)129	CONDUIT	44.2
(1M)131 0.3773 0.0160	(1M)131	(1M)130	CONDUIT	140.5
(1M)132 0.3294 0.0160	(1M)132	(1M)131	CONDUIT	321.8
(1M)133 0.3309 0.0160	(1M)133	(1M)132	CONDUIT	302.2
(1M)161 1.8750 0.0160	(1M)161	(1M)020	CONDUIT	424.0
(1M)162	(1M)162	(1M)161	CONDUIT	354.0

and the second sec

· · · · · · · · · · · ·

	0.5000 0.0160	(1)() 1 ()	(1)() 1 (0)	0010117	
	(1M) 163 0.5000 0.0160	(1M)163	(IM) 162	CONDULT	358.0
	(1M)164 0.5000 0.0160	(1M)164	(1M)163	CONDUIT	360.0
	(1M)165	(1M)165	(1M)164	CONDUIT	366.0
	(1M) 278	(1M)278	(1M)003	CONDUIT	369.7
	0.2651 0.0160 (1M)279	(1M)279	(1M)278	CONDUIT	168.9
	0.2782 0.0160 (1M)279B	(1M)279B	(1M)279	CONDUIT	140.3
	0.3137 0.0160 (1M)281	(1M)281	(1M)279B	CONDUIT	255.6
	0.4108 0.0160 (1M)281B	(1M)281B	(1M)281	CONDUIT	148.2
	0.4454 0.0160 (1M) 282	(1M) 282	(1M) 2010	CONDULT	290.2
	0.1723 0.0160	(114)202	(1M)201B	CONDUIT	290.2
	(IM)283 0.2999 0.0160	(IM)283	(IM)282	CONDULT	183.4
	(1M)284 0.2235 0.0160	(1M)284	(1N)112B	CONDUIT	165.6
	(1M)285 0.2420 0.0160	(1M)285	(1M)284	CONDUIT	404.9
	(1M) 285A	(1M)285A	(1M)285	CONDUIT	171.8
	(1M) 286	(1M)286	(1M)285A	CONDUIT	237.4
-, <i>-</i>	(1M)287	(1M)287	(1M)286A	CONDUIT	241.6
	0.2774 0.0160 (1M)2876A	(1M)286A	(1M)286	CONDUIT	244.4
	0.2742 0.0160 (1M)288	(1M)288	(1M)287	CONDUIT	270.9
	0.2768 0.0160	(1M) 288A	(1M) 288	CONDUTT	189 9
	0.2896 0.0160	(11)200A	(11) 200	CONDUIT	100.0
	(IM)288B 0.2847 0.0160	(IM)288B	(IM) 288A	CONDULT	224.8
	(1M)288C 0.2431 0.0160	(1M)288C	(1M)288B	CONDUIT	226.2
	(1N)004 0.2637 0.0160	(1N)004	(1M)283	CONDUIT	193.4
	(1N)005 0.2675 0.0160	(1N)005	(1N)004	CONDUIT	336.5
	(1N)006	(1N)006	(1N)005	CONDUIT	371.4
	(1N)007	(1N)007	(1N)006	CONDUIT	358.0
	0.2877 0.0160 (1N)007D	(1N)007D	(1N)007	CONDUIT	59.2
	0.4727 0.0160 (1N)007E	(1N)007E	(1N)007	CONDUIT	98.0
	0.5408 0.0160 (1N)008	(1N) 008	(1N)007E	CONDULT	315 6
	0.3327 0.0160	(1N) 000	(1N) 000	CONDUTT	146 6
	0.3615 0.0160	(11) 013	(1N)008	CONDULT	140.0
	(1N)011 0.3276 0.0160	(1N)011	(1N)009	CONDUIT	344.9
a second	(1N)013 0.3312 0.0160	(1N)013	(1N)011	CONDUIT	353.3

·

a baran da ana ana bara

(1N)014	(1N)014	(1N)013	CONDUIT	358.9
0.3260 0.0160 (1N)015	(1N)015	(1N)014	CONDUIT	148.7
(1N)016	(1N)016	(1N)015	CONDUIT	269.8
(1N)017 0.3334 0.0160	(1N)017	(1N)016	CONDUIT	324.0
(1N)018 0.3612 0.0160	(1N)018	(1N)017	CONDUIT	160.6
(1N)019 0.2822 0.0160	(1N)019	(1N)018	CONDUIT	198.4
(1N) 020 0 3853 0 0160	(1N)020	(1N)019	CONDUIT	277.7
(1N)021 0.3317 0.0160	(1N)021	(1N)020	CONDUIT	322.6
(1N)022 0.3315 0.0160	(1N)022	(1N)021	CONDUIT	319.8
(1N) 023 0 3322 0 0160	(1N)023	(1N)022	CONDUIT	328.1
(1N) 024 0 3284 0 0160	(1N)024	(1N)023	CONDUIT	319.8
(1N)025 0.3245 0.0160	(1N)025	(1N)024	CONDUIT	431.5
(1N)045 0.9687 0.0160	(1N)045	(1N)007D	CONDUIT	360.3
(1N)046 0.3660 0.0160	(1N)046	(1N)045	CONDUIT	434.4
(1N)047 0.3381 0.0160	(1N)047	(1N)046	CONDUIT	334.2
(1N)109A 0 2225 0 0160	(1N)109A	(1N)007	CONDUIT	391.0
(1N) 110 0.3732 0.0160	(1N)110	(1N)109A	CONDUIT	230.4
(1N)111A 0.2298 0.0160	(1N)111A	(1N)110	CONDUIT	374.2
(1N)112A 0.2517 0.0160	(1N)112A	(1N)111A	CONDUIT	333.7
(1N) 112B 0.3182 0.0160	(1N)112B	(1N)112A	CONDUIT	150.8
(10)001 0.3782 0.0160	(10)001	(1M)028	CONDUIT	103.1
(10)001A 0.3532 0.0160	(10)001A	(10)001	CONDUIT	229.3
(10)002 0.7637 0.0160	(10)002	(10)001A	CONDUIT	19.6
(10)002A 0.7874 0.0160	(10)002A	(10)002	CONDUIT	17.8
(10)003 0.3607 0.0160	(10)003	(10)002A	CONDUIT	183.0
(10)004 0.3569 0.0160	(10)004	(10)003	CONDUIT	154.1
(10)005A 0.3540 0.0160	(10)005A	(10)004	CONDUIT	209.1
(10)005B 0.4379 0.0160	(10)005B	(10)005A	CONDUIT	43.4
(10)005C 0.5152 0.0160	(10)005C	(10)005B	CONDUIT	34.9
(10)005D 0.5225 0.0160	(10)005D	(10)005C	CONDUIT	30.6
(10)005E	(10)005E	(10)005C	CONDUIT	32.8

7.1

1

a construction of the cons

0.5183 0.016	0			
(10)010	(10)010	(10)309	CONDUIT	295.0
(10)011	(10)011	(10)010	CONDUIT	146.0
0.0440 0.0160 (10)012	0 (10)012	(10)011	CONDUIT	245.0
0.3000 0.0160	0 (10)013	(10)012	CONDUTT	330.0
0.3000 0.0160		(10)012	CONDUIT	104.0
(10)014 0.3000 0.016(·(IO)0I4 D	(10)013	CONDULT	124.0
(10)015 0.3000 0.016	(10)015	(10)014	CONDUIT	429.0
(10)016	(10)016	(10)015	CONDUIT	315.0
(10)017	(10)017	(10)016	CONDUIT	412.0
0.3000 0.0160 (10)018) (10)018	(10)017	CONDUIT	428.0
0.3000 0.0160) (10)019	(10)018	CONDUIT	406.0
0.4000 0.0160	(10)020	(10)019		372 0
0.4000 0.0160)	(10)019	CONDUIT	000 0
0.4000 0.0160) (10) 021	(10)020	CONDUIT	208.0
(10)072 0.2705 0.0160	(10)072	(10)303	CONDUIT	314.2
(10)157	(10)157	(10)308A	CONDUIT	169.9
(10) 300	(10)300	(1M)288C	CONDUIT	217.0
(10) 301	(10)301	(10)300	CONDUIT	266.7
0.2924 0.0160 (10)302) (10)302	(10)301	CONDUIT	304.4
0.2727 0.0160 (10)303) (10)303	(10)302	CONDUIT	312.7
0.2750 0.0160 (10)304) (10)304	(10)072	CONDUIT	261.1
0.2489 0.0160 (10)304A) (10)304A	(10)304B	CONDUIT	190.9
5.0765 0.0160 (10) 304B) (10)304B	(10) 3040	CONDITT	60.8
0.2796 0.0160)	(10) 0050	CONDUTE	22.0
0.0303 0.0160	(10) 3040	(10)003D	CONDOLL	55.0
(10)305 0.0176 0.0160	(10)305)	(10)305A	CONDUIT	305.8
(10)305A 23.8729 0.016	(10)305A 50	(10)304	CONDUIT	40.6
(10) 306	(10)306	(10)305	CONDUIT	301.6
(10) 306A	(10)306A	(10)306	CONDUIT	305.8
(10) 307	(10)307	(10)306A	CONDUIT	155.0
U.2/67 0.0160 (10)308) (10)308	(10)307	CONDUIT	185.3
0.2733 0.0160 (10)308A) (10)308A	(10)308	CONDUIT	52.4
0.2786 0.0160) (10) 309	(10) 308	CONDUTT	160 0
0.2566 0.0160)	(10) 300	COMPOLI	100.0

; ;; ;

and the second
a contract of the set from a contract of the set of the

(1P)003	(1P)003	(1P)002	CONDUIT	46.9
(1P)004	(1P)004	(1P)003	CONDUIT	378.6
(1P)005	(1P)005	(1P)004	CONDUIT	389.2
0.6732 0.0130 (1P)006	(1P)006	(1P)005	CONDUIT	472.2
0.4490 0.0130 (1P)007	(1P)007	(1P)006	CONDUIT	472.1
0.8345 0.0130 (1P)008	(1P)008	(1P) 007	CONDULT	186 5
0.5015 0.0130	(10)000	(10)007	CONDUIT	00.0
1.8525 0.0130	(1P)008A	(12)008	CONDULT	27.0
(1P)009 1.4032 0.0130	(1P)009	(1P)008A	CONDUIT	232.4
(1P)010 0.5414 0.0130	(1P)010	(1P)009	CONDUIT	52.7
(1P)011 0 6011 0 0130	(1P)011	(1P)010	CONDUIT	394.9
(1P)012	(1P)012	(1P)011	CONDUIT	403.4
(1P)013	(1P)013	(1P)012	CONDUIT	403.4
0.5869 0.0130 (1P)014	(1P)014	(1P)013	CONDUIT	401.1
0.5880 0.0130 (1P)015	(1P)015	(1P)014	CONDUIT	397.5
0.5940 0.0130 (1P)016	(1P)016	(1P)015	CONDUIT	403.0
0.4472 0.0130 (1P)016A	(1P) 0164	(1P)016	CONDULT	186 4
0.4521 0.0130	(12)017	(10)0167	CONDULT	74 1
0.4496 0.0130	(12)010	(1P) 016A	CONDUIT	/4.1
0.4464 0.0130	(12)018	(12)01/	CONDULT	422.2
(1P)024 0.4478 0.0130	(1P)024	(1P)017	CONDUIT	493.4
(1P)042 1.3760 0.0130	(1P)042	(1P)003	CONDUIT	208.1
(1P)042A 0 3019 0.0130	(1P)042A	(1P)042	CONDUIT	474.9
(1P)043	(1P)043	(1P)042A	CONDUIT	466.4
(1P)044	(1P)044	(1P)043	CONDUIT	115.7
(1P)065	(1P)065	(1P)043	CONDUIT	369.1
0.2915 0.0130 (1P)073	(1P)073	(1P)016A	CONDUIT	460.6
0.5892 0.0130 (1P)079	(1P)079	(1P)017	CONDUIT	120.2
0.5775 0.0130 (2A)001	(2A)001	(2A)000	CONDUIT	444.9
0.1349 0.0160 (2A)002	(2A)002	(2A)001	CONDUTT	46 6
3.8660 0.0160	(21) 002	(27) 000	CONDULT	10.0 260 2
0.4174 0.0160	(2A) 003	(2A) UUZ	CONDUTT	200.3
(2A)004 0.3556 0.0160	(2A)UU4	(2A)003	CONDUIT	343.0
(2A)005	(2A)005	(2A)004	CONDUIT	367.6

1 - H - H - H

. .

a the a consider which is a state of the sta

0.3509	0.0160				
(2A)006	0 0160	(2A)006	(2A)005	CONDUIT	378.7
(2A)007	0.0100	(2A)007	(2A)006	CONDUIT	354.1
(2A)008	0.0160	(2A)008	(2A)007	CONDUIT	313.9
0.1561 (2A)009	0.0160	(2A)009	(2A)008	CONDUIT	453.5
0.1544	0.0160	(22) 010		CONDUIT	4.62.6
0.1532	0.0160	(ZA)010	(ZA) 009	CONDULT	403.0
(2A)011 0.1454	0.0160	(2A)011	(2A)010	CONDUIT	488.3
(2A)012 0 1529	0 0160	(2A)012	(2A)011	CONDUIT	398.9
(2A)013	0.0100	(2A)013	(2A)012	CONDUIT	419.3
(2A)014	0.0160	(2A)014	(2A)013	CONDUIT	325.6
0.2089 (2A)015	0.0160	(2A)015	(2A)014	CONDUIT	111.5
0.2064 (2A)016	0.0160	(2A)016	(2A)015	CONDUTT	179.1
0.1787	0.0160	(22) 017	(27) 010	CONDUIT	200 5
0.2042	0.0160	(ZA) 017	(ZA)016	CONDULT	308.5
(2A)018 0.1817	0.0160	(2A)018	(2A)017	CONDUIT	203.6
(2A)019 0 2395	0 0160	(2A)019	(2A)018	CONDUIT	150.3
(2A)020	0.0100	(2A)020	(2A)019	CONDUIT	473.1
(2A)021	0.0160	(2A)021	(2A)020	CONDUIT	440.3
0.4042 (2A)022	0.0160	(2A)022	(2A)021	CONDUIT	431.7
0.4355 (2A)023	0.0160	(2A)023	(2A)022	CONDUIT	204.5
0.4499 (2A)024	0.0160	(2A) 024	(2A) 023	CONDULT	91.4
0.5144	0.0160	(27) 025	(21) 023	CONDUIT	41 5
0.6268	0.0160	(2A) 025	(ZA) 024	CONDULI	41.5
(2A)026 0.5379	0.0160	(2A)026	(2A)025	CONDUIT	72.5
(2A)027 0.1835	0.0160	(2A)027	(2A)026	CONDUIT	381.4
(2A)028	0.01.00	(2A)028	(2A)027	CONDUIT	265.2
(2A)029	0.0160	(2A)029	(2A)028	CONDUIT	215.2
0.1626 (2A)030	0.0160	(2A)030	(2A)029	CONDUIT	205.2
0.1949 (2A)031	0.0160	(2A)031	(22)030	CONDULT	537.1
0.2439	0.0160	(27) 022	(21) 030	CONDUIT	116 2
0.1547	0.0160	(2A) 032	(ZA) USI	CONDULI	TT0.2
(2A)033 0.2201	0.0160	(2A)033	(2A)032	CONDUIT	168.1
(2A)034 0.3440	0.0160	(2A)034	(2A)033	CONDUIT	66.9
(2A)035	0.01.00	(2A)035	(2A)034	CONDUIT	500.3
U.34/8	U.UI60				

-

1 a state of the second contract management

(2A)036	(2A)036	(2A)035	CONDUIT	497.5
0.3498 0.016 (2A)037	0 (2A)037	(2A)036	CONDUIT	573.9
(2A) 038 0 3598 0 016	0 (2A)038	(2A)037	CONDUIT	483.6
(2A)039 0 3486 0 016	(2A)039	(2A)038	CONDUIT	444.6
(2A)040 0.3416 0.016	(2A)040	(2A)039	CONDUIT	418.7
(2A)041 0.3494 0.016	(2A)041 0	(2A)040	CONDUIT	495.1
(2A)042 0.3493 0.016	(2A)042 0	(2A)041	CONDUIT	458.1
(2A)043 0.3975 0.016	(2A)043 0	(2A)042	CONDUIT	460.4
(2A)044 0.3360 0.016	(2A)044 0	(2A)043	CONDUIT	392.9
(2A)045 0.3162 0.016	(2A)045 0	(2A)044	CONDUIT	379.5
(2A)046 0.3013 0.016	(2A)046 0	(2A)045	CONDUIT	497.9
(2A) 04 / 0.1518 0.016	(2A)047 0 (2A)048	(2A)046	CONDULT	395.2
(2A)048 0.1487 0.016	(2A)048 0 (2A)048	(2A)047	CONDULT	437.2
6.5172 0.016 (2A)0480	(2A)040 0 (2A)049	(1A)038	CONDULT	517 1
(2A) 049 0.1586 0.0160 (2A) 050	(2A)049 0 (2A)050	(2A) 048	CONDULT	581 4
0.1410 0.0160 (2A) 051	0 (2A)051	(2A)050	CONDUIT	390.7
0.3583 0.016 (2A)052	0 (2A)052	(2A)051	CONDUIT	402.9
0.3475 0.0160 (2A)053	0 (2A)053	(2A)052	CONDUIT	290.0
0.3620 0.0160 (2A)054	0 (2A)054	(2A)053	CONDUIT	301.0
1.0134 0.0160 (2A)055	0 (2A)055	(2A)054	CONDUIT	433.7
(2A) 056	0 (2A)056	(2A)055	CONDUIT	543.8
(2A) 057	(2A)057	(2A)056	CONDUIT	550.0
(2A) 058	(2A)058	(2A)057	CONDUIT	519.6
(2A) 059 0.2263 0.016	(2A)059	(2A)058	CONDUIT	494.9
(2A)060 0.3862 0.0160	(2A)060 0	(2A)059	CONDUIT	393.6
(2A)061 0.3215 0.0160	(2A)061 0	(2A)060	CONDUIT	382.6
(2A)062 0.4676 0.0160	(2A)062 0	(2A)061	CONDUIT	489.8
(2A)063 1.3904 0.0160	(2A)063 0	(2A)062	CONDUIT	197.8
(2A)064 0.4234 0.0160	(2A)064 0	(2A)063	CONDUIT	453.5
(2A)065	(2A)065	(2A)064	CONDUIT	479.3

.

0.4047 0.0160 (2A)066	(2A)066	(2A)065	CONDUIT	475.3
1.9229 0.0160 (2A)067	(2A)067	(2A)066	CONDUIT	171.1
0.4559 0.0160 (2A)068	(2A)068	(2A)067	CONDUTT	291.9
0.4214 0.0160	(27) 060	(22) 057	CONDUIT	20 0
12.7802 0.0160	(2A) 003	(2A) 057	CONDUIT	29.9
0.1531 0.0160	(2C)001	(2A)069	CONDULT	182.9
(2C)002 0.1572 0.0160	(2C)002	(2C)001	CONDUIT	190.8
(2C)003 0.2210 0.0160	(2C)003	(2C)002	CONDUIT	298.7
(2C)004 0.2275 0.0160	(2C)004	(2C)003	CONDUIT	316.5
(2C)005 0.2372 0.0160	(2C)005	(2C)004	CONDUIT	299.3
(2C)006	(2C)006	(2C)005	CONDUIT	261.6
(2C)007	(2C)007	(2C)006	CONDUIT	211.9
(2C)008	(2C)008	(2C)007	CONDUIT	171.6
0.2390 0.0160 (2C)009	(2C)009	(2C)008	CONDUIT	334.1
0.2245 0.0160 (2C)0090	(2C)009	(2A)062	CONDUIT	29.4
1.3601 0.0160 (2D)001	(2D)001	(2C)009	CONDUIT	348.4
0.1234 0.0160 (2D)001A	(20)0014	(2D) 001	CONDUITT	326 0
0.1104 0.0160	(2D) 002	(2D) 001 7	CONDUIT	390 9
0.4070 0.0160	(2D) 002	(2D)001A	CONDUIT	105 1
0.4196 0.0160	(2D) 003	(2D)002	CONDULT	405.1
(2D)004 0.3712 0.0160	(2D)004	(2D)003	CONDUIT	422.9
(2D)005 0.4217 0.0160	(2D)005	(2D)004	CONDUIT	377.0
(2D)006 0.4623 0.0160	(2D)006	(2D)005	CONDUIT	352.6
(2D)007 0.3420 0.0160	(2D)007	(2D)006	CONDUIT	543.9
(2D)008 0.2853 0.0160	(2D)008	(2D)007	CONDUIT	347.0
(2D)009	(2D)009	(2D)008	CONDUIT	277.8
(2D)010	(2D)010	(2D)009	CONDUIT	116.5
(2D)011 0.0160	(2D)011	(2D)010	CONDUIT	161.5
0.4212 0.0160 (2D)012	(2D)012	(2D)011	CONDUIT	321.2
0.5729 0.0160 (2D)013	(2D)013	(2D)012	CONDUIT	214.4
0.5549 0.0160 (2D)014	(2D) 014	(20)013	CONDUTT	173.3
0.4673 0.0160	(20) 015	(20) 014	CONDULT	5/5 2
2.0176 0.0160	(20/01)	(20)014	COMPOTI	J4J.Z

all and a standard of the stan

(2D)016	(2D)016	(2D)015	CONDUIT	588.6
0.4146 0.0160 (2D)017	(2D)017	(2D)016	CONDUIT	331.7
(2D)018	(2D)018	(2D)017	CONDUIT	124.1
(2D)019 0.5741 0.0160	(2D)019	(2D)018	CONDUIT	48.8
(2D)020 0 4004 0.0160	(2D)020	(2D)019	CONDUIT	159.8
(2D)021 0.4120 0.0160	(2D)021	(2D)020	CONDUIT	446.6
(2D)022 0.4008 0.0160	(2D)022	(2D)021	CONDUIT	249.5
(2D)023 0.6155 0.0160	(2D)023	(2D)022	CONDUIT	37.4
(2D)024 0.4819 0.0160	(2D)024	(2D)023	CONDUIT	298.8
(2D)025 0.8293 0.0160	(2D)025	(2D)024	CONDUIT	37.4
(2D)039 0.8974 0.0160	(2D)039	(2D)003	CONDUIT	151.6
(2D)040 0.1511 0.0160	(2D)040	(2D)244	CONDUIT	311.1
(2D)041 0.4066 0.0160	(2D)041	(2D)040	CONDUIT	393.5
(2D)042 0.3900 0.0160	(2D)042	(2D)041	CONDUIT	384.6
(2D)043 0.4047 0.0160	(2D)043	(2D)042	CONDUIT	444.8
(2D)044 0.4056 0.0160	(2D) 044	(2D)043	CONDUIT	443.8
(2D) 045 0.4071 0.0160	(2D) 045	(2D)044	CONDULT	442.1
(2D)045A 0.3408 0.0160 (2D)046	(2D) 045A	(2D)045	CONDULT	211.3
(2D)040 0.4071 0.0160 (2D)046A	(2D)046	(2D)045A	CONDULT	221.1
0.3587 0.0160 (2D)241	(2D) 241	(22)063	CONDUIT	263.5
0.7058 0.0160 (2D)242	(2D)242	(2D) 241	CONDUIT	406.5
0.2558 0.0160 (2D)243	(2D)243	(2D)242	CONDUIT	361.3
0.2547 0.0160 (2D)244	(2D)244	(2D)243	CONDUIT	395.9
0.3385 0.0160 (2D)2440	(2D)244	(2D)039	CONDUIT	92.0
2.8360 0.0160 (2D)245	(2D)245	(2D)244	CONDUIT	236.7
0.1394 0.0160 (2D)246	(2D)246	(2D)245	CONDUIT	295.5
0.2606 0.0160 (2D)247	(2D)247	(2D)246	CONDUIT	302.6
(2D)248	(2D)248	(2D)247	CONDUIT	297.8
(2D)249	(2D)249	(2D)248	CONDUIT	338.0
(2D)250	(2D)250	(2D)249	CONDUIT	168.8

(x, y) = (x, y) is the set of (x, y) = (x, y) is the set of t

0.2902	0.0160				
(2D)251	0 0160	(2D)251	(2D)250	CONDUIT	262.0
(2D)252	0.0100	(2D)252	(2D)251	CONDUIT	408.0
0.2672	0.0160	· · ·			
(2D)253	0 0160	(2D)253	(2D)252	CONDUIT	181.0
(2D) 254	0.0160	(2D)254	(2D)253	CONDUIT	351.0
0.2672	0.0160	. ,			
(2D)255	0 0160	(2D)255	(2D)254	CONDUIT	330.0
(2D)256	0.0100	(2D)256	(2D)255	CONDUIT	289.0
0.2672	0.0160				
(2D)257	0 0160	(2D)257	(2D)256	CONDUIT	239.0
(2D) 258	0.0100	(2D)258	(2D)257	CONDUIT	253.0
0.2672	0.0160				
(2D)259	0 0160	(2D)259	(2D)258	CONDUIT	270.0
(2D)260	0.0100	(2D)260	(2D)259	CONDUIT	238.0
0.2672	0.0160				0.62 0
(2D)261 0.2672	0.0160	(2D)261	(2D)260	CONDULT	263.0
(2D)262	0.0100	(2D)262	(2D)261	CONDUIT	432.0
0.2672	0.0160			CONDUTE	202 0
0.2672	0.0160	(2D) 263	(ZD) 262	CONDULI	383.0
(2D)264		(2D)264	(2D)263	CONDUIT	347.0
0.2672	0.0160	(20) 265	(20) 264	CONDITT	280 0
0.2672	0.0160	(20)205	(20)204	CONDOLI	200.0
(2D)266	0.01.00	(2D)266	(2D)265	CONDUIT	336.0
(2D) 267	0.0160	(20)267	(2D) 266	CONDUIT	366.0
0.2672	0.0160	(20)201	(20) 200	00000011	00010
(2E)001	0 0160	(2E)001	(2A)068	CONDUIT	433.6
(2E)002	0.0100	(2E)002	(2E)001	CONDUIT	479.7
0.1647	0.0160				
(2E)003 0 4675	0 0160	(2E)003	(2E)002	CONDUIT	207.5
(2E)004	0.0100	(2E)004	(2E)003	CONDUIT	254.6
0.1414	0.0160	(20) 00E		CONDUTE	0 דדר
0.0504	0.0160	(2E)005	(ZE)004	COMDULI	211.0
(2E)006		(2E)006	(2E)005	CONDUIT	501.6
0.0478	0.0160	(25)007	(25)006		161 0
0.1509	0.0160	(26)007	(25)000	CONDOLL	101.0
(2E)008		(2E)008	(2E)007	CONDUIT	198.7
0.35/3 (2E)009	0.0160	(2E)009	(2E) 008	CONDUTT	354.3
0.2004	0.0160	(21)009	(21)000	CONDOIL	001.0
(2E)010	0 01 00	(2E)010	(2E)009	CONDUIT	495.4
(2E)011	U.U16U	(2E)011	(2E)010	CONDUIT	398.2
0.1406	0.0160	. ,	· _ /		
(2E)012 0 1426	0 0160	(2E)012	(2E)011	CONDUIT	385.6
(2E)013	0.0100	(2E)013	(2E)012	CONDUIT	536.1
0.1343	0.0160				

. . . .

· I · · · · · · · · · · · · · · · ·

(2E)014	(2E)014	(2E)013	CONDUIT	370.1
0.1351 0.0160 (2E)043	(2E)043	(2E)014	CONDUIT	104.6
(2F)001	(2F)001	(2E)014	CONDUIT	514.3
(2F)002	(2F)002	(2F)001	CONDUIT	501.6
(2F)003	(2F)003	(2F)002	CONDUIT	498.5
(2F)004	(2F)004	(2F)003	CONDUIT	244.5
(2F)005	(2F)005	(2F)004	CONDUIT	266.5
(2F)006	(2F)006	(2F)005	CONDUIT	106.4
(2F)007	(2F)007	(2F)006	CONDUIT	336.8
(2F)008	(2F)008	(2F)007	CONDUIT	146.6
(2F)009	(2F)009	(2F)008	CONDUIT	50.2
(2F)010 2 2354 0 0160	(2F)010	(2F)009	CONDUIT	38.9
(2F)011 0 2423 0 0160	(2F)011	(2F)010	CONDUIT	123.8
(2F)012 0 2298 0 0160	(2F)012	(2F)011	CONDUIT	478.6
(2F)013 0 1975 0 0160	(2F)013	(2F)012	CONDUIT	470.9
(2F)014 0.2044 0.0160	(2F)014	(2F)013	CONDUIT	455.0
(2F)015 0.2088 0.0160	(2F)015	(2F)014	CONDUIT	445.5
(2F)016 0.1975 0.0160	(2F)016	(2F)015	CONDUIT	470.9
(2F)017 0.1975 0.0160	(2F)017	(2F)016	CONDUIT	470.9
(2F)018 0.2015 0.0160	(2F)018	(2F)017	CONDUIT	461.5
(2F)019 0.2015 0.0160	(2F)019	(2F)018	CONDUIT	461.4
(2F)020 0.1935 0.0160	(2F)020	(2F)019	CONDUIT	480.5
(2F)021 0.1988 0.0160	(2F)021	(2F)020	CONDUIT	467.8
(2F)022 0.2924 0.0160	(2F)022	(2F)021	CONDUIT	454.8
(2F)023 0.2151 0.0160	(2F)023	(2F)022	CONDUIT	25.2
(2F)024 0.2264 0.0160	(2F)024	(2F)023	CONDUIT	597.0
(2F)025 0.0225 0.0160	(2F)025	(2F)024	CONDUIT	603.0
(2F)026 0.0225 0.0150	(2F)026	(2F)025	CONDUIT	647.0
(2F)027 0.0225 0.0150	(2F)027	(2F)026	CONDUIT	517.0
(2F)028 0.0225 0.0150	(2F)028	(2F)027	CONDUIT	637.0
(2F)029	(2F)029	(2F)028	CONDUIT	570.0

. .

0.0225 0.0150)			
(2F)030	(2F)030	(2F)029	CONDUIT	518.0
(2F)031	(2F)031	(2F)030	CONDUIT	609.0
0.0225 0.0150 (2F)032	(2F)032	(2F)031	CONDUIT	585.0
0.0225 0.0150 (2F)033	(2F)033	(2F)032	CONDUIT	387.0
0.0225 0.0150			CONDULT	E 0 1 0
0.3374 0.0160	(2G)001	(28) 022	CONDOLE	521.2
(2G)002 0.3202 0.0160	(2G)002	(2G)001	CONDUIT	224.6
(2G)002A 0.3305 0.0160	(2G)002A	(2G)002	CONDUIT	148.6
(2G)003	(2G)003	(2G)002A	CONDUIT	99.1
(2G)004	(2G)004	(2G)003	CONDUIT	485.5
0.3303 0.0160 (2G)005	(2G)005	(2G)004	CONDUIT	495.3
0.3295 0.0160 (2G)006	(2G)006	(2G)005	CONDUIT	498.7
0.5053 0.0160	(26)007	(20)006	CONDUTT	163 5
0.4920 0.0160	(20)007	(20)000	CONDUIT	100.0
0.3564 0.0160	(ZG)008	(ZG)007	CONDULT	30.4
(2G)009 0.5478 0.0160	(2G)009	(2G)008	CONDUIT	158.6
(2G)010 0.4735 0.0160	(2G)010	(2G)009	CONDUIT	115.0
(2G)011	(2G)011	(2G)010	CONDUIT	227.8
(2G)012	(2G)012	(2G)011	CONDUIT	369.8
(2G)012A	(2G)012A	(2G)012	CONDUIT	82.6
0.5550 0.0160 (2G)013	(2G)013	(2G)012A	CONDUIT	132.1
0.6273 0.0160 (2G)013A	(2G)013A	(2G) 013	CONDUTT	52 8
0.9994 0.0160	(20) 014	(20) 013	CONDULT	246.0
0.6691 0.0160	(20)014	(2G)013A	CONDOIL	540.0
(2G)015 0.1647 0.0160	(2G)015	(2G)014	CONDUIT	33.0
(2G)016 0.2037 0.0160	(2G)016	(2G)015	CONDUIT	303.8
(2G)016A 0 1803 0 0160	(2G)016A	(2G)016	CONDUIT	82.5
(2G)018	(2G)018	(2G)016A	CONDUIT	214.6
(2G)019	(2G)019	(2G)018	CONDUIT	254.2
0.1979 0.0160 (2G)020	(2G)020	(2G)019	CONDUIT	419.4
0.1978 0.0160 (2G)021	(2G)021	(2G)020	CONDUTT	313.7
0.2011 0.0160	(20) 022	(20) 021	CONDUTE	31C 7
0.2009 0.0160	(20) 022	(26)021	CONDULT	540./
(2G)023 0.2008 0.0160	(2G)023	(2G)022	CONDUIT	297.2

and the effective model is a communication of the structure encoder the structure of the structure encoder the

(2G)024		(2G)024	(2G)023	CONDUIT	198.1
0.1986 (2G)025	0.0160	(2G)025	(2G)024	CONDUIT	112.3
0.4951 (2G)026	0.0160	(2G)026	(2G)025	CONDUIT	307.1
1.0114 (2G)040	0.0160	(2G)040	(2G)002A	CONDUIT	505.2
0.4960 (2G)041	0.0160	(2G)041	(2G)040	CONDUIT	499.0
0.0500 (2G)042	0.0150	(2G)042	(2G)041	CONDUIT	524.0
0.0500 (2G)043	0.0150	(2G)043	(2G)042	CONDUIT	469.0
0.0500 (2G)043A	0.0150	(2G) 04 3A	(2G)043	CONDUITT	292.0
0.0500	0.0150	(2G) 044	(2G) 043A	CONDUITT	293.0
0.0500	0.0150	(20)045	(20)044	CONDULT	313 0
0.0500	0.0150	(20) 250	(2G) 025	CONDUIT	396 1
0.2061	0.0160	(2G) 359	(2G) 025	CONDUIT	420 1
(2H)001 0.2371	0.0160	(2H)001	(2J)018	CONDULT	430.1
(2H)002 0.1649	0.0160	(2H)002	(2H)001	CONDUIT	418.5
(2H)003 0.1570	0.0160	(2H)003	(2H)002	CONDUIT	465.1
(2H)005 0.1619	0.0160	(2H)005	(2H)003	CONDUIT	450.9
(2H)006 0.1602	0.0160	(2H)006	(2H)005	CONDUIT	380.8
(2H)007 0.1965	0.0160	(2H)007	(2H)006	CONDUIT	310.5
(2H)008 0.3854	0.0160	(2H)008	(2H)007	CONDUIT	316.5
(2H)009 0.3312	0.0160	(2H)009	(2H)008	CONDUIT	30.2
(2H)010 0.3134	0.0160	(2H)010	(2H)009	CONDUIT	35.1
(2H)011 0 3724	0 0160	(2H)011	(2H)010	CONDUIT	488.8
(2H)012	0.0160	(2H)012	(2H)011	CONDUIT	299.7
(2H)013	0.0160	(2H)013	(2H)012	CONDUIT	499.5
(2H)014	0.0100	(2H)014	(2H)013	CONDUIT	164.7
(2H)015	0.0160	(2H)015	(2H)014	CONDUIT	261.9
(2H)016	0.0160	(2H)016	(2H)015	CONDUIT	369.9
0.1460 (2H)017	0.0160	(2H)017	(2H)016	CONDUIT	59.5
0.9418 (2H)017A	U.U160	(2H)017A	(2H)017	CONDUIT	311.2
0.2699 (2H)018	0.0160	(2H)018	(2H)017A	CONDUIT	124.1
0.2417 (2H)019	0.0160	(2H)019	(2H)018	CONDUIT	235.0
0.2554 (2H)020	0.0160	(2H)020	(2H)019	CONDUIT	43.3

0.2311	0.0160				
(2H)021	0.0100	(2H)021	(2H)020	CONDUIT	391.5
0.2912	0.0160		4000 001	0011011TT	110 6
(2H)U22 0 5974	0 0160	(2H) U22	(2H)021	CONDUTT	448.6
(2H) 023	0.0100	(2H)023	(2H)022	CONDUIT	42.8
0.6311	0.0160				500 0
(2H)024 0 5153	0 0160	(2H)024	(2H)023	CONDUIT	522.0
(2H)025	0.0100	(2H)025	(2H)024	CONDUIT	357.9
0.1565	0.0160		(00) 001	CONDUCT	222 4
(2H)026 0.7202	0.0160	(ZH) UZ6	(ZH)UZI	CONDUIT	333.4
(2H)027		(2H)027	(2H)026	CONDUIT	339.0
0.3472	0.0160		(211)027	CONDUTT	226 7
0.3572	0.0160	(20)020	(21)027	CONDULI	520.7
(2H)029		(2H)029	(2H)028	CONDUIT	321.3
0.3707 (2H)030	0.0160	(28)030	(24)029	CONDUTT	332 1
0.2776	0.0160	(211) 030	(211) 029	COMPOTI	552.1
(2H)031	0.01.00	(2H)031	(2H)030	CONDUIT	259.3
(2H)032	0.0160	(2H)032	(2H)031	CONDUIT	62.8
0.1497	0.0160				
(2H)033 3 5773	0 0160	(2H)033	(2H)032	CONDUIT	30.2
(2H)034	0.0100	(2H)034	(2H)033	CONDUIT	299.9
0.3385	0.0160				076 1
(2H)036 0.3560	0.0160	(2H) U36	(2H)U34	CONDULT	2/6.1
(2H)037	0.0100	(2H)037	(2H)036	CONDUIT	276.1
0.4368	0.0160	(20) 029		CONDITE	335 O
0.3580	0.0160	(21)030	(21/05/	CONDULI	222.0
(2H)039	0 01 00	(2H)039	(2H)038	CONDUIT	334.9
(2H)040	0.0160	(2H)040	(2H) 039	CONDUTT	391.6
0.2308	0.0160	· · ·			
(2H)041 0 3577	0 0160	(2H)041	(2H)040	CONDUIT	253.5
(2H)042	0.0100	(2H)042	(2H)041	CONDUIT	253.5
0.5609	0.0160	(24)043	(24)042	CONDUTT	300 7
0.2444	0.0160	(21)043	(20)042	CONDULI	500.7
(2H)044	0 01 00	(2H)044	(2H)043	CONDUIT	268.3
U.3U34 (2H)045	0.0160	(2H)045	(2H)044	CONDUTT	226.9
0.3093	0.0160	(211) 0 10	(211) 011	00112011	22019
(2H)046	0 0160	(2H)046	(2H)045	CONDUIT	189.1
(2H)047	0.0100	(2H)047	(2H)046	CONDUIT	274.2
0.0883	0.0160	1000 010		001101175	07 0
(2H)048 1.1528	0.0160	(ZH)U48 ·	(ZH)047	CONDULT	97.2
(2H)049	J. J	(2H)049	(2H)048	CONDUIT	442.2
0.2775	0.0160	(20)050	(24)040	CONDITE	102 0
(2H)USU 0.1947	0.0160	(ZE) USU	(Zn)049	CONDULI	493.0
(2H)051		(2H)051	(2H)050	CONDUIT	380.2
0.1881	0.0160				

a decare to

- 4 - -

the second se

(2H)051A	(2H)051A	(2H)051	CONDUIT	294.7
0.2653 0.0160 (2H)052	(2H)052	(2H)051A	CONDUIT	310.3
(2H) 053 0 0658 0 0160	(2H)053	(2H)052	CONDUIT	471.0
(2H)054 0.4125 0.0160	(2H)054	(2H)053	CONDUIT	124.1
(2H)054A	(2H)054A	(2H)054	CONDUIT	205.0
(2H) 055 0 4140 0 0160	(2H)055	(2H)054A	CONDUIT	246.0
(2H)055A 0.4140 0.0160	(2H)055A	(2H)055	CONDUIT	130.0
(2H)056 0.4140 0.0160	(2H)056	(2H)055A	CONDUIT	399.0
(2H)057 0.4140 0.0160	(2H)057	(2H)056	CONDUIT	170.0
(2H)058 0.4140 0.0160	(2H)058	(2H)057	CONDUIT	113.0
(2H)285 0.3655 0.0160	(2H)285	(2H)053	CONDUIT	120.4
(2H)286 0.3316 0.0160	(2H)286	(2H)285	CONDUIT	193.0
(2H)287 0.3302 0.0160	(2H)287	(2H)286	CONDUIT	324.0
(2H)288 0.3302 0.0160	(2H)288	(2H)287	CONDUIT	424.0
(2H)289 0.3284 0.0160	(2H)289	(2H)288	CONDUIT	408.0
(2H)290 0.3333 0.0160	(2H)290	(2H)289	CONDUIT	189.0
(2I)001 0.3126 0.0160	(21)001	(2I)001A	CONDUIT	60.8
(2I)001A 0.1596 0.0160	(2I)001A	(2H)025	CONDUIT	225.6
(2I)002 1.0068 0.0160	(21)002	(21)001	CONDUIT	255.3
(21)003 0.4083 0.0160	(21)003	(21)002	CONDUIT	328.2
(21)004 0.3809 0.0160	(21)004	(21)003	CONDUIT	131.3
(21)005 0.4113 0.0160	(21)005	(21)004	CONDULT	447.3
0.4226 0.0160	(21)008	(21)005	CONDULT	200.0
0.4071 0.0160	(21)008	(21)008	CONDULT	A18 2
0.3921 0.0160	(21)009	(21)008	CONDULT	910.2 81 1
0.4266 0.0160	(21)010	(21)010	CONDULT	147 4
0.4070 0.0160 (21)012	(21)012	(21)011	CONDUIT	166.4
0.4087 0.0160 (2I)013	(21)013	(21)012	CONDUTT	374.3
0.3954 0.0160 (2I)014	(21)014	(21)013	CONDUIT	212.3
0.2968 0.0160 (2I)015	(21)015	(2I)014	CONDUIT	161.0

a series and the series also a series of the series of the series and the series of the ser

0.2981 0.0160				
(2I)016 0 2165 0 0160	(21)016	(21)015	CONDUIT	167.5
(2I)017	(2I)017	(2I)016	CONDUIT	36.5
0.3839 0.0160 (2I)018	(21)018	(2I)017A	CONDUIT	294.0
0.2517 0.0160	(21)019	(21)018	CONDITT	230.2
0.3518 0.0160		(21)010	CONDUTT	200.2
(2I)020 0.3771 0.0160	(21)020	(21)019	CONDUIT	352.6
(2I)021 0 3002 0 0160	(21)021	(2I)020	CONDUIT	359.8
(2I)021A	(2I)021A	(21)021	CONDUIT	102.1
(2I)021B	(2I)021B	(2I)021A	CONDUIT	206.6
0.2905 0.0160 (2I)021C	(2I)021C	(2I)021B	CONDUIT	105.5
0.0853 0.0160	(21)022	(21)0210	CONDUTT	32 4
0.2774 0.0160	(21)022	(21) 0210	CONDULI	52.1
(2I)023 0.2981 0.0160	(21)023	(21)022	CONDUIT	362.3
(2I)024 0.2961 0.0160	(21)024	(2I)023	CONDUIT	364.7
(2I)025	(2I)025	(21)024	CONDUIT	362.3
0.2981 0.0160 (21)025A	(2I)025A	(2I)025	CONDUIT	252.8
0.2927 0.0160 (2I)026	(21)026	(2I)025A	CONDUIT	104.6
0.3251 0.0160 (2I)027	(21)027	(21)026	CONDUIT	328.2
0.2986 0.0160	(21)029	(21)027	CONDUTE	56 0
0.2704 0.0160	(21)028	(21)027	CONDULT	50.0
(2I)029 0.3192 0.0160	(21)029	(21)028	CONDUIT	63.2
(2I)044 1.0000 0.0160	(21)044	(2I)005	CONDUIT	111.0
(2I)045	(21)045	(21)044	CONDUIT	73.0
(2I)046	(21)046	(21)045	CONDUIT	423.0
1.0000 0.0160 (2I)047	(2I)047	(2I)046	CONDUIT	397.0
1.0000 0.0160 (2I)048	(2I)048	(21)047	CONDUIT	395.0
1.0000 0.0160	(27)049	(27)049	CONDUTT	131 0
1.0000 0.0160	(21)049	(21)040	CONDULT	191.0
(21)050 0.4000 0.0160	(21)050	(21)049	CONDULT	482.0
(2I)051 0 4000 0 0160	(21)051	(2I)050	CONDUIT	118.0
(2I)052	(21)052	(2I)051	CONDUIT	96.0
(2I)053	(21)053	(21)052	CONDUIT	341.0
U.4UUU 0.0160 (2I)054	(21)054	(2I)053	CONDUIT	294.0
0.4000 0.0160 (2T)055	(2T)055	(21)054	CONDUTT	225.0
0.4000 0.0160	,,,			

. . . . **. .**

<u>____</u>

2 - 3 - 4

(2I)056		(21)056	(21)055	CONDUIT	346.0
0.4000 (21)057	0.0160	(21)057	(21)056	CONDUIT	166.0
0.4000 (2I)058	0.0160	(21)058	(21)057	CONDUIT	329.0
(2I)059	0.0160	(21)059	(21)058	CONDUIT	457.0
(2J)001	0.0160	(2J)001	(2F)009	CONDUIT	457.0
(2J)002 0 1179	0.0160	(2J)002	(2J)001	CONDUIT	313.8
(2J)003 0.1207	0.0160	(2J)003	(2J)002	CONDUIT	66.3
(2J)004 0.1157	0.0160	(2J)004	(2J)003	CONDUIT	198.9
(2J)005 0.1438	0.0160	(2J)005	(2J)004	CONDUIT	34.8
(2J)006 0.1213	0.0160	(2J)006	(2J)005	CONDUIT	395.6
(2 <i>j</i>)007 0.1189	0.0160	(2J)007	(2J)006	CONDUIT	445.7
(2J)008 0.1189	0.0160	(2J)008	(2J)007	CONDUIT	445.6
(2J)009 0.2072	0.0160	(2J)009	(2J)008	CONDUIT	106.2
(2J)010 0.2111	0.0160	(2J)010	(2J)009	CONDUIT	113.7
(2J)011 0.3741	0.0160	(2J)011	(2J)010	CONDUIT	152.3
(2J)012 0.2010	0.0160	(2J)012	(2J)011	CONDUIT	253.8
(2J)013 0.1946	0.0160	(2J) 013	(2J)012	CONDULT	498.4
(20)014 0.2067 (21)015	0.0160	(23)014	(23)013	CONDULT	411.5
0.1951	0.0160	(2.7) 016	(2.7) 015	CONDULT	4/1.0
0.2023 (2J)017	0.0160	(2.1) 017	(2.1) 016	CONDULT	389.1
0.2339 (2J)018	0.0160	(2J)018	(2J) 017	CONDUIT	79.1
0.2023 (2J)019	0.0160	(2J)019	(2J)018	CONDUIT	415.7
0.2453 (2J)020	0.0160	(2J)020	(2J)010	CONDUIT	61.4
0.0163 (2J)021	0.0160	(2J)021	(2J)020	CONDUIT	266.0
1.4622 (2J)022	0.0160	(2J)022	(2J)021	CONDUIT	56.2
0.3023 (2J)023	0.0160	(2J)023	(2J)022	CONDUIT	478.4
0.2049 (2J)024	0.0160	(2J)025	(2J)023	CONDUIT	99.6
0.9341 (2J)0250	0.0160	(2J)025	(2J)013	CONDUIT	31.4
26.4115 (2J)026	0.0160	(2J)026	(2J)025	CONDUIT	298.3
(2J)027	0.0100	(2J)027	(2J)026	CONDUIT	371.0

. . .

0 3261	0 0160				
(2J)028	0.0160	(2J)028	(2J)027	CONDUIT	207.9
(2J)029	0.0100	(2J)029	(2J)028	CONDUIT	339.7
(2J)030	0.0160	(2J)030	(2J)029	CONDUIT	357.6
0.4726 (2J)031	0.0160	(2J)031	(2J)030	CONDUIT	355.4
0.4418 (2J)032	0.0160	(2J)032	(2J)031	CONDUIT	333.1
0.4053 (2J)033	0.0160	(2J)033	(2J)032	CONDUIT	315.1
0.4220 (2J)040	0.0160	(2J)040	(2J)025	CONDUIT	119.5
0.5606 (2J)041	0.0160	(2J)041	(2J)040	CONDUIT	131.9
0.3183 (2J)042	0.0160	(2J)042	(2J)041	CONDUIT	766.6
0.3091 (2J)043	0.0160	(2J)043	(2J)042	CONDUIT	92.4
0.3573 (2J)044	0.0160	(2J)044	(2J)043	CONDUIT	210.9
0.2940 (2J)045	0.0160	(2J)045	(2J)044	CONDUIT	129.6
0.3317 (2J)045	0.0160 A	(2,T) 045A	(2 ₁ T) 045	CONDUIT	143.8
0.2851 (2J)046	0.0160	(2,T) 046	(2.T) 045A	CONDULT	161.6
0.3156 (2.T) 047	0.0160	(2.T) 047	(2.7) 046	CONDILLT	309 4
0.2974	0.0160	(2.T) 048	(2.T) 047	CONDULT	301.7
0.3049	0.0160	(2.7) 049	(2.7) 048	CONDIT	27 7
0.5052	0.0160	(2.1) 050	(23)040	CONDULT	306 3
0.3199	0.0160	(21)051	(20)049	CONDUIT	179 6
0.3024	0.0160	(20)051	(25)050	CONDUIT	144 7
0.4422	0.0160	(23)052	(20)051	CONDULT	122 0
0.4106	0.0160	(23)055	(23)052	CONDULT	100.9
0.4253	0.0160	(20)054	(20)053	CONDULT	343.3
(23)055	0.0160	(20)055	(20)054	CONDULT	212.4
(23)056	0.0160	(2J)056	(2J)055	CONDUIT	144./
(2J)057 0.4041	0.0160	(2J)057	(2J)056	CONDUIT	138.6
(2J)058 0.3694	0.0160	(2J)060	(2J)057	CONDUIT	303.2
(2K)001 0.0377	0.0160	(2K)001	(2J)019	CONDUIT	397.9
(2K)002 1.7176	0.0160	(2K)002	(2K)001	CONDUIT	333.0
(2K)003 0.3585	0.0160	(2K)003	(2K)002	CONDUIT	359.9
(2K)004 0.2946	0.0160	(2K)004	(2K)003	CONDUIT	366.6

A state of the second se

5 . . B ...

(2K)005	(2K)005	(2K)004	CONDUIT	359.9
0.3001 0.01 (2K)006	60 (2K)006	(2K)005	CONDUIT	411.4
0.3063 0.01 (2K)007	60 (2K)007	(2K)006	CONDUIT	404.6
0.4078 0.01 (2K)008	60 (2K)008	(2K)007	CONDUIT	368.8
0.3091 0.01 (2K)009	60 (2K)009	(2K)008	CONDUIT	344.2
0.3312 0.01 (2K)010	(2K)010	(2K)009	CONDUIT	391.1
(2K)011	(2K)011	(2K)010	CONDUIT	458.3
(2K)012	(2K)012	(2K)011	CONDUIT	321.1
(2K)013 0 2895 0 01	(2K)013	(2K)012	CONDUIT	304.0
(2K)014 0.4385 0.01	(2K)014	(2K)013	CONDUIT	161.9
(2K)015 0.2463 0.01	(2K)015 60	(2K)014	CONDUIT	243.6
(2K)016 0.4160 0.01	(2K)016 60	(2K)015	CONDUIT	254.8
(2K)017 0.3943 0.01	(2K)017 60	(2K)016	CONDUIT	131.9
(2K)018 0.3415 0.01	(2K)018 60	(2K)017	CONDUIT	292.8
(2K)018A 0.3807 0.01	(2K)018A 60	(2K)018	CONDUIT	105.1
(2K)019 0.4539 0.01	(2K)019 60	(2K)018A	CONDUIT	154.2
(2K)020 0.4221 0.01	(2K) 020 60	(2K)019	CONDULT	236.9
(2K)021 0.2601 0.01	60 (2K) 022	(2K) 020	CONDULT	20.5
(2K)022 0.4656 0.01	(2K) 022 60 (2K) 0227	(2K) 021	CONDULT	237.0
0.4023 0.01	60 (2K) 023	(2K) 022	CONDULT	212 3
0.3768 0.01 (2K)024	60 (2K) 024	(2K) 023	CONDUIT	176.6
0.4531 0.01 (2K)024A	60 (2K)024A	(2K) 024	CONDUIT	27.8
0.3601 0.01 (2K)025	60 (2K)025	(2K) 024A	CONDUIT	330.4
0.4237 0.01 (2K)026	60 (2K)026	(2K)025	CONDUIT	435.8
0.3029 0.01 (2K)027	60 (2K)027	(2K)026	CONDUIT	60.4
7.2577 0.01 (2K)028	60 (2K)028	(2K)027	CONDUIT	371.0
0.2237 0.01 (2K)029	60 (2K)029	(2K)028	CONDUIT	449.3
0.2159 0.01 (2K)030	60 (2K)030	(2K)029	CONDUIT	433.6
(2K) 031	(2K)031	(2K)030	CONDUIT	520.8
(2K)032	(2K)032	(2K)031	CONDUIT	498.4

PUMP1@(2A)000-(ForcedMain	(PLANT)(2A)000 LiftStation	(PLANT) ForcedMain	TYPE4 TYPE4 PUMP	PUMP
1 23.5714 0.0160	(1P)002)	LiftStation	CONDUIT	7.0
NorthEnid 0.0010 0.0160	NorthEnidStora	age (10) 005E	CONDUIT	101.4
Line2ToPlant 0.3204 0.0160	(1A)000	(2A)000	CONDUIT	387.0
FordedMain2	ForcedMain	(2A)001	CONDUIT	1693.0
(2K) 317 0 3333 0 0160	(2K)317	(2K)316	CONDUIT	108.0
0.2329 0.0160 (2K)316	(2K)316	(2K) 315	CONDUIT	252.6
(2K) 315	(2K)315	(2K)314	CONDUIT	377.8
(2K) 314	(2K)314	(2K)001	CONDUIT	310.7
(2K) 052 0 2133 0 0160	(2K)052	(2K)051	CONDUIT	322.0
(2K)051	(2K)051	(2K)050	CONDUIT	322.0
(2K) 050 0.2133 0.0160	(2K)050	(2K)049	CONDUIT	322.0
(2K)049 0.2133 0.0160	(2K)049	(2K)048	CONDUIT	400.0
(2K)048 0.2133 0.0160	(2K)048	(2K)047	CONDUIT	400.0
(2K)047 0.2133 0.0160	(2K)047	(2K)046	CONDUIT	400.0
(2K)046 0.2133 0.0160	(2K)046	(2K)045	CONDUIT	400.0
(2K)045 0.2133 0.0160	(2K)045	(2K)044	CONDUIT	400.0
(2K)044 0.2133 0.0160	(2K)044	(2K)043	CONDUIT	400.0
(2K)043 0.2133 0.0160	(2K)043	(2K)042	CONDUIT	400.0
(2K)042 0.2133 0.0160	(2K)042	(2K)041	CONDUIT	239.0
(2K)041 0.2133 0.0160	(2K)041	(2K)040	CONDUIT	399.0
(2K)040 0.2133 0.0160	(2K)040	(2K)039	CONDUIT	327.0
(2K)039 0.2133 0.0160	(2K)039	(2K)038	CONDUIT	409.0
(2K)038 0.2133 0.0160	(2K)038	(2K)037	CONDUIT	177.0
(2K)037 0.2132 0.0160	(2K)037	(2K)036	CONDUIT	525.3
(2K)036 0.2227 0.0160	(2K)036	(2K)035	CONDULT	494.0
0.2344 0.0160	(2K) 035	(2K) 034	CONDUIT	469.4
0.2113 0.0160	(2K) 034	(2K) 033A	CONDULT	203.5
(2K)033A 0.2051 0.0160	(2K) 033A	(2K) 033	CONDUIT	321.9
0.2167 0.0160	(2K) 033	(2K) 032	CONDULT	502.9
0.2227 0.0160			0010111	500 0

.

the second s

· · ·

OverflowPump (IO)304C-O	(2A)000 (10)304C	PlantStorage NorthEnidStora	TYPE1 geORIFI	PUMP CE	
(10) 304-1	(10) 304	(1A) STOR (10) 304A	WEIR	WEIK	
* * * * * * * * * * * * * * *	* * * * * *				
Cross Section	Summary				
		Full	Full	Hyd.	Max.
No. of Full Conduit Barrels Flow	Shape	Depth	Area	Rad.	Width
				·	
(1A)000A	CIRCULAR	2.75	5.94	0.69	2.75
(1A)000B	CIRCULAR	2.75	5.94	0.69	2.75
(1A)001	CIRCULAR	2.75	5.94	0.69	2.75
1 3272.59 (1A)002	CIRCULAR	2.75	5.94	0.69	2.75
1 6449.69 (1A)003	CIRCULAR	2.75	5.94	0.69	2.75
1 10675.22 (1A)004	CIRCULAR	2.75	5.94	0.69	2.75
1 8407.38 (1A)005	CIRCULAR	2.75	5.94	0.69	2.75
1 9569.40 (1A)006	CIRCULAR	2.75	5.94	0.69	2.75
1 12876.77 (1A)007	CIRCULAR	2.75	5.94	0.69	2.75
1 12272.52 (1A)008	CIRCULAR	2.75	5.94	0.69	2.75
1 12360.35 (1A)009	CIRCULAR	2.75	5.94	0.69	2.75
1 7915.83 (1A)010	CIRCULAR	2.75	5.94	0.69	2.75
(1A)011	CIRCULAR	2.75	5.94	0.69	2.75
1 4380.48 (1A)012	CIRCULAR	2.75	5.94	0.69	2.75
1 4840.93 (1A)013	CIRCULAR	2.75	5.94	0.69	2.75
(1A)014	CIRCULAR	2.75	5.94	0.69	2.75
(1A)015	CIRCULAR	2.75	5.94	0.69	2.75
(1A)016	CIRCULAR	2.75	5.94	0.69	2.75
(1A)017	CIRCULAR	2.75	5.94	0.69	2.75
(1A)018	CIRCULAR	2.50	4.91	0.63	2.50
(1A) 019	CIRCULAR	2.50	4.91	0.63	2.50
(1A) 020	CIRCULAR	2.50	4.91	0.63	2.50
(1A)021	CIRCULAR	2.50	4.91	0.63	2.50

.

1	8584.63					
- 1	(1A) 022	CIRCULAR	2.50	4.91	0.63	2.50
1	(1A)023	CIRCULAR	2.50	4.91	0.63	2.50
T	8200.10 (1A)024	CIRCULAR	2.50	4.91	0.63	2.50
1	10020.34 (1A)024A	CIRCULAR	2.50	4.91	0.63	2.50
1	4739.20 (1A)025	CIRCULAR	2.50	4.91	0.63	2.50
1	35774.56 (1A)026	CIRCULAR	2.50	4.91	0.63	2.50
1	9304.70 (1A)027	CIRCULAR	2.50	4.91	0.63	2.50
1	10584.97 (1A)028	CIRCULAR	2.50	4,91	0.63	2,50
1	5448.56 (1A)029	CIRCULAR	2 50	4 91	0.63	2 50
1	8287.61		2.50	1 01	0.63	2.50
1	5182.62	CIDCULAR	2.50	4.91	0.05	2.50
1	(1A)031 6781.81	CIRCULAR	2.50	4.91	0.63	2.50
1	(1A)032 6252.43	CIRCULAR	2.50	4.91	0.63	2.50
1	(1A)033 6436.08	CIRCULAR	2.50	4.91	0.63	2.50
1	(1A)034 4975.75	CIRCULAR	2.50	4.91	0.63	2.50
1	(1A)035 7515.50	CIRCULAR	2.50	4.91	0.63	2.50
1	(1A)035A 5133.21	CIRCULAR	2.50	4.91	0.63	2.50
1	(1A)036 8852.73	CIRCULAR	2.50	4.91	0.63	2.50
1	(1A)037 6422.48	CIRCULAR	2.50	4.91	0.63	2.50
1	(1A) 038 3991.80	CIRCULAR	2.50	4.91	0.63	2.50
1	(1A) 039 8313 07	CIRCULAR	2.50	4.91	0.63	2.50
1	(1A)040	CIRCULAR	2.50	4.91	0.63	2.50
1	(1A)041	CIRCULAR	2.50	4.91	0.63	2.50
1	(1A) 042	CIRCULAR	3.00	7.07	0.75	3.00
1	(1B)001	CIRCULAR	2.00	3.14	0.50	2.00
1	(1B)002	CIRCULAR	2.00	3.14	0.50	2.00
1	4763.87 (1B)003	CIRCULAR	2.00	3.14	0.50	2.00
1	4567.14 (1B)004	CIRCULAR	2.00	3.14	0.50	2.00
1	1294.81 (1B)005	CIRCULAR	2.00	3.14	0.50	2.00
1	(1B)006	CIRCULAR	2.00	3.14	0.50	2.00
⊥ 1	4598.89 (1B)009 4713 43	CIRCULAR	2.00	3.14	0.50	2.00
-						

and the second
с. . е.

-	(1B)010	CIRCULAR	2.00	3.14	0.50	2.00
1	6537.95 (1B)011	CIRCULAR	2.00	3.14	0.50	2.00
1	4434.44 (1B)013	CIRCULAR	2.00	3.14	0.50	2.00
1	56/3.6/ (1B)014	CIRCULAR	2.00	3.14	0.50	2.00
1	4709.00 (1C)001	CIRCULAR	2.00	3.14	0.50	2.00
1	4939.88 (1C)001A	CIRCULAR	2.00	3.14	0.50	2.00
1	4617.74 (1C)001B	CIRCULAR	2.00	3.14	0.50	2.00
1	(1C)001B0	CIRCULAR	2.00	3.14	0.50	2.00
1	(1C)001C 9901 33	CIRCULAR	2.00	3.14	0.50	2.00
1	(1C)001D 4404 88	CIRCULAR	2.00	3.14	0.50	2.00
1	(1C)001E 11255.47	CIRCULAR	2.00	3.14	0.50	2.00
-	(1C)001F 8509.40	CIRCULAR	2.00	3.14	0.50	2.00
1	(1C)001G 9321.19	CIRCULAR	2.00	3.14	0.50	2.00
1	(1C)002 2118.38	CIRCULAR	1.00	0.79	0.25	1.00
1	(1C)003 325.91	CIRCULAR	0.83	0.54	0.21	0.83
1	(1C)004 611.73	CIRCULAR	0.83	0.54	0.21	0.83
1	(1C)005 147.48	CIRCULAR	0.83	0.54	0.21	0.83
1	(1C)006 536.21	CIRCULAR	0.83	0.54	0.21	0.83
1	(1C)006A 643.64	CIRCULAR	0.83	0.54	0.21	0.83
1	(1C)007 568.80	CIRCULAR	0.83	0.54	0.21	0.83
1	(1C)009 6834.61	CIRCULAR	2.00	3.14	0.50	2.00
1	(1C)010 9557.52	CIRCULAR	2.00	3.14	0.50	2.00
1	8113.44	CIRCULAR	2.00	3.14	0.50	2.00
1	(1C)012 1470.22 (1C)0150	CIRCULAR	0.83	0.54	0.21	2.00
1	5361.35	CIRCULAR	2.00	3.14	0.50	2.00
1	7172.97	CIRCULAR	2.00	3 17	0.50	2.00
1	6968.48 (1C)016	CIRCULAR	2.00	3.14	0.50	2.00
1	5557.65 (1C)016A	CIRCULAR	2.00	3.14	0.50	2.00
1	6164.47 (1C)016B	CIRCULAR	2.00	3.14	0.50	2.00
1	5294.30 (1C)016C	CIRCULAR	2.00	3.14	0.50	2.00

4 · · · ·

1	5203.89 (1C)017	CIRCULAR	2.00	3.14	0.50	2.00
T	(1C)018	CIRCULAR	0.83	0.54	0.21	0.83
1	510.16 (1C)019	CIRCULAR	0.83	0.54	0.21	0.83
1	493.25 (1C)01D	CIRCULAR	2.00	3.14	0.50	2.00
1	5870.89 (1C)020	CIRCULAR	0.83	0.54	0.21	0.83
1	509.66 (1C)021	CIRCULAR	2.00	3.14	0.50	2.00
1	7001.12 (1C)021A	CTRCIII.AR	1 50	1 77	0 38	1.50
1	1622.09		1 50	1 77	0.38	1 50
1	2319.34	CINCULAR	1.50	1 77	0.00	1 50
1	2213.23	CIRCULAR	1.50	1.77	0.38	1.50
1	(1C)021D 2117.34	CIRCULAR	1.50	1.77	0.38	1.50
1	(1C)022 530.99	CIRCULAR	0.83	0.54	0.21	0.83
1	(1C)023 455.80	CIRCULAR	0.83	0.54	0.21	0.83
1	(1C)024 483.17	CIRCULAR	0.83	0.54	0.21	0.83
-	(1C)025 310.99	CIRCULAR	0.83	0.54	0.21	0.83
1	(1C)026	CIRCULAR	0.83	0.54	0.21	0.83
1	(1C)026A	CIRCULAR	1.50	1.77	0.38	1.50
1	(1C)027	CIRCULAR	0.83	0.54	0.21	0.83
1	458.26 (1C)028	CIRCULAR	0.83	0.54	0.21	0.83
1	455.58 (1C)041	CIRCULAR	0.83	0.54	0.21	0.83
1	643.11 (1C)176	CIRCULAR	1.00	0.79	0.25	1.00
1	1263.73 (1C)177	CIRCULAR	1.00	0.79	0.25	1.00
1	1259.27 (1C)178	CIRCULAR	1.00	0.79	0.25	1.00
1	1254.34 (1C)179	CIRCULAR	1.00	0.79	0.25	1.00
1	1261.47	CTRCIILAR	1 00	0 79	0.25	1 00
1	1005.70		1.00	0.79	0.25	1 00
1	1257.32		1.00	0.79	0.25	1.00
1	1257.17	CIRCULAR	1.00	0.79	0.25	1.00
1	(IC)181 1250.69	CIRCULAR	1.00	0.79	0.25	1.00
1	(1C)182 1244.07	CIRCULAR	1.00	0.79	0.25	1.00
1	(1C)Storage 1189.84	CIRCULAR	1.00	0.79	0.25	1.00
1	(1D)001 1263.78	CIRCULAR	0.83	0.54	0.21	0.83

. . .

ad the second best of the second best of the second better second s

a manufacto come accordo a contra con contra de secondo de

1	(1D)002	CIRCULAR	0.83	0.54	0.21	0.83
T	(1D)003	CIRCULAR	0.83	0.54	0.21	0.83
Ţ	(1D)004	CIRCULAR	0.83	0.54	0.21	0.83
1	1066.34 (1D)005	CIRCULAR	0.83	0.54	0.21	0.83
1	692.76 (1D)006	CIRCULAR	0.83	0.54	0.21	0.83
1	773.20 (1D)007	CIRCULAR	0.83	0.54	0.21	0.83
1	762.05 (1D)008	CIRCULAR	0.83	0.54	0.21	0.83
1	764.34	CIRCULAR	0.83	0 54	0.21	083
1	511.15		0.00	0.54	0.21	0.03
1	(1D)010 500.45 (1D)011	CIRCULAR	0.05	0.54	0.21	0.05
1	(ID)0II 905.45	CIRCULAR	0.83	0.54	0.21	0.83
1	(1D)012 530.42	CIRCULAR	0.83	0.54	0.21	0.83
1	(1D)013 1124.34	CIRCULAR	0.83	0.54	0.21	0.83
1	(1D)014 561.08	CIRCULAR	0.83	0.54	0.21	0.83
1	(1D)015 512 05	CIRCULAR	0.83	0.54	0.21	0.83
1	(1D)016 431.76	CIRCULAR	0.83	0.54	0.21	0.83
1	(1D)017	CIRCULAR	0.83	0.54	0.21	0.83
T	426.73 (1D)018	CIRCULAR	0.83	0.54	0.21	0.83
T	431.53 (1D)019	CIRCULAR	0.83	0.55	0.21	0.83
1	438.75 (1D)020	CIRCULAR	0.83	0.55	0.21	0.83
1	436.53 (1D)021	CIRCULAR	0.83	0.55	0.21	0.83
1	439.02 (1D)022	CIRCULAR	0.83	0.55	0.21	0.83
1	435.60 (1D)023	CIRCULAR	0.83	0.54	0.21	0.83
1	435.44 (1E)001	CTRCULAR	1.00	0.79	0.25	1.00
1	777.96		1 00	0 79	0.25	1 00
1	743.45		1.00	0.70	0.25	1 00
1	(1E)003 729.54	CIRCULAR	1.00	0.79	0.25	1.00
1	(IE)003A 743.27	CIRCULAR	1.00	0.79	0.25	1.00
1	(1E)005 733.28	CIRCULAR	1.00	0.79	0.25	1.00
1	(1E)006 745.23	CIRCULAR	1.00	0.79	0.25	1.00
1	(1E)007 745.23	CIRCULAR	1.00	0.79	0.25	1.00
-	(1E)008 723.07	CIRCULAR	1.00	0.79	0.25	1.00
T	(1E)009	CIRCULAR	1.00	0.79	0.25	1.00

and and the

į į
	(1F)023	CIRCULAR	0.83	0.54	0.21	0.83
1	576.36 (1F)024	CIRCULAR	0.83	0.54	0.21	0.83
1	1275.98 (1F)025	CIRCULAR	0.83	0.54	0.21	0.83
1	(1F) 026	CIRCULAR	0.83	0.54	0.21	0.83
⊥ 1	(1F) 026A 412 02	CIRCULAR	0.83	0.54	0.21	0.83
1	(1F) 027 423, 92	CIRCULAR	0.83	0.54	0.21	0.83
-	(1F)028 417.26	CIRCULAR	0.83	0.54	0.21	0.83
1	(1F)029 428.88	CIRCULAR	0.83	0.54	0.21	0.83
1	(1F)029A 420.32	CIRCULAR	0.83	0.54	0.21	0.83
1	(1F)030 421.83	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)001 10248.75	CIRCULAR	3.00	7.07	0.75	3.00
1	(1G)001A 11120.72	CIRCULAR	3.00	7.07	0.75	3.00
1	(1G)002 11211.11	CIRCULAR	3.00	7.07	0.75	3.00
1	(1G)003 7902.60	CIRCULAR	3.00	7.07	0.75	3.00
1	(1G)004 9648.47	CIRCULAR	3.00	7.07	0.75	3.00
1	(1G)005 12185.71	CIRCULAR	3.00	7.07	0.75	3.00
1	(1G)006 5741.02	CIRCULAR	3.00	7.07	0.75	3.00
1	(1G)007 13392.71 (1G)008		3.00	7.07	0.75	3.00
1	(1G)008 10069.70 (1G)008C	CIRCULAR	3.00	7.07	0.75	3.00
1	9918.40 (1G)009	CIRCULAR	3.00	7 07	0.75	3.00
1	16097.49 (1G)009A	CIRCULAR	3.00	7.07	0.75	3.00
1	11387.71 (1G)009B	CIRCULAR	3.00	7.07	0.75	3.00
1	11412.39 (1G)009C	CIRCULAR	3.00	7.07	0.75	3.00
1	11049.68 (1G)009D	CIRCULAR	3.00	7.07	0.75	3.00
1	10623.97 (1G)009E	CIRCULAR	3.00	7.07	0.75	3.00
1	9967.87 (1G)010	CIRCULAR	3.00	7.07	0.75	3.00
1	11165.66 (1G)011	CIRCULAR	3.00	7.07	0.75	3.00
1	11232.43 (1G)012	CIRCULAR	3.00	7.07	0.75	3.00
1	(1G)013	CIRCULAR	3.00	7.07	0.75	3.00
T	(1G)014	CIRCULAR	0.83	0.54	0.21	0.83

1	2207.83					
1	(1G)014A	CIRCULAR	0.83	0.54	0.21	0.83
1	476.88 (1G)015 457.29	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)016 (1G) 464 38	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)017 (72,95	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)018 468_21	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)018A 730 40	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)019 1182.80	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)0190 456.57	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)020 478.29	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)045 800.40	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)046 482.23	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)047 453.78	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)048 449.21	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)049 433.31	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)050 366.46	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)051 374.37	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)052 206.97	CIRCULAR	0.67	0.35	0.17	0.67
1	(1G)053 206.97	CIRCULAR	0.67	0.35	0.17	0.67
1	(1G)054 206.97	CIRCULAR	0.67	0.35	0.17	0.67
1	(1G)055 206.97	CIRCULAR	0.67	0.35	0.17	0.67
1	(1G)056 206.97	CIRCULAR	0.67	0.35	0.17	0.67
1	(1G)057 312.02	CIRCULAR	0.67	0.35	0.17	0.67
1	(1G)058 312.02	CIRCULAR	0.67	0.35	0.17	0.67
1	(IG)059 312.02	CIRCULAR	0.67	0.35	0.17	0.67
1	(1G)060 312.02	CIRCULAR	0.67	0.35	0.17	0.67
1	(1G)061 312.02	CIRCULAR	0.67	0.35	0.17	0.67
1	(1G)062 341.80	CIRCULAR	0.67	0.35	0.17	0.67
1	(1G)063 341.80	CIRCULAR	U.6/	0.35	U.1/	0.67
1	(1G)064 341.80	CIRCULAR	0.67	0.35	U.17	0.67
1	(1G)065 341.80	CIRCULAR	U.6/	0.35	U.1/	U.6/

: : .

and a second of the second
-	(1G)066	CIRCULAR	0.67	0.35	0.17	0.67
1	341.80 (1G)067	CIRCULAR	0.67	0.35	0.17	0.67
1	341.80 (1G)068	CIRCULAR	0.67	0.35	0.17	0.67
1	341.80 (1G)069 341.80	CIRCULAR	0.67	0.35	0.17	0.67
1	(1G)070 341.80	CIRCULAR	0.67	0.35	0.17	0.67
1	(1G)071 341.80	CIRCULAR	0.67	0.35	0.17	0.67
1	(1G)146 816.65	CIRCULAR	1.00	0.79	0.25	1.00
1	(1G)146A 938 79	CIRCULAR	1.00	0.79	0.25	1.00
1	(1G)162 451 97	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)162A 461.67	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)162B 473.89	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)162C 460.45	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)162D 2882.21	CIRCULAR	0.83	0.54	0.21	0.83
1	(1G)243 449.08	CIRCULAR	0.83	0.54	0.21	0.83
1	(1H)001 570.46	CIRCULAR	0.83	0.54	0.21	0.83
1	(1H)004 1962.63	CIRCULAR	1.00	0.79	0.25	1.00
1	(1H)005 66.40	CIRCULAR	0.83	0.54	0.21	0.83
1	(1H)006 521.92	CIRCULAR	0.83	0.54	0.21	0.83
1	(1H)007 561.12	CIRCULAR	0.83	0.54	0.21	0.83
1	(1H)008 536.47	CIRCULAR	0.83	0.54	0.21	0.83
1	(1H)009 595.38	CIRCULAR	0.83	0.54	0.21	0.83
1	(1H)010 422.17	CIRCULAR	0.83	0.54	0.21	0.83
1	(1H)011 1086.48	CIRCULAR	0.83	0.54	0.21	0.83
1	(1H)038 948.73	CIRCULAR	0.83	0.54	0.21	0.83
1	(1H)039 1107.61	CIRCULAR	0.83	0.54	0.21	0.83
1	(1H)040 2702.87	CIRCULAR	0.83	0.54	0.21	0.83
1	(1H)041 368.35	CIRCULAR	0.83	0.54	0.21	0.83
1	(1H)042 1414.57	CIRCULAR	1.00	0.79	0.25	1.00
1	(1H)043 636.37	CIRCULAR	0.83	0.54	0.21	0.83
1	(1H)044 575.73	CIRCULAR	0.83	0.54	0.21	0.83
	(1H)045	CIRCULAR	0.83	0.54	0.21	0.83

1	562 88					
1	(1J)001	CIRCULAR	3.00	7.07	0.75	3.00
Ţ	(1J)002	CIRCULAR	3.00	7.07	0.75	3.00
Ţ	12568.54 (1J)003	CIRCULAR	3.00	7.07	0.75	3.00
1	11781.38 (1J)004	CIRCULAR	3.00	7.07	0.75	3.00
1	10398.99 (1J)005	CIRCULAR	3.00	7.07	0.75	3.00
1	9926.33 (1J)006	CIRCULAR	3.00	7.07	0.75	3.00
1	10581.86 (1J)007	CIRCULAR	3.00	7.07	0.75	3.00
1	11433.87 (1J)008	CIRCULAR	3.00	7.07	0.75	3.00
1	14115.94 (1J)009	CIRCULAR	3.00	7.07	0.75	3.00
1	9919.49 (1J)010	CIRCULAR	3.00	7.07	0.75	3.00
1	11581.61 (1J)011	CIRCULAR	3.00	7.07	0.75	3.00
1	8567.27 (1J)012	CIRCULAR	3.00	7.07	0.75	3.00
1	10488.98	CIRCULAR	3.00	7 07	0.75	3 00
1	11034.59		3.00		0.75	3.00
1	12345.08	CIRCULAR	1.00	1.07	0.75	1 25
1	2077.63	CIRCULAR	1.25	1.23	0.31	1.25
1	(1J)042 2802.46	CIRCULAR	1.25	1.23	0.31	1.25
1	(1J)042A 2676.15	CIRCULAR	1.25	1.23	0.31	1.25
1	(1J)042B 3085.30	CIRCULAR	1.25	1.23	0.31	1.25
1	(1J)043 2334.64	CIRCULAR	1.25	1.23	0.31	1.25
1	(1J)044 931.27	CIRCULAR	1.25	1.23	0.31	1.25
1	(1J)045 2292.33	CIRCULAR	1.75	2.41	0.44	1.75
-	(1J)046 1849.05	CIRCULAR	1.75	2.41	0.44	1.75
-	(1J)047 2287 83	CIRCULAR	1.75	2.41	0.44	1.75
1	(1J)048	CIRCULAR	1.75	2.41	0.44	1.75
1	(1J) 050	CIRCULAR	1.75	2.41	0.44	1.75
1	(1J) 050A	CIRCULAR	1.75	2.41	0.44	1.75
1	(1J)051	CIRCULAR	1.75	2.41	0.44	1.75
1	4148.04 (1J)052	CIRCULAR	1.25	1.23	0.31	1.25
T	342.4/ (1J)053	CIRCULAR	1.25	1.23	0.31	1.25
1	991.94 (1J)054	CIRCULAR	1.25	1.23	0.31	1.25
1	1593.36					

-	(1J)054A	CIRCULAR	1.25	1.23	0.31	1.25
1	1561.55 (1J)055	CIRCULAR	1.25	1.23	0.31	1.25
T	410.45 (1J)056	CIRCULAR	1.25	1.23	0.31	1.25
T	(1J)057	CIRCULAR	1.25	1.23	0.31	1.25
T	949.33 (1J)058	CIRCULAR	1.25	1.23	0.31	1.25
1	(1J) 059	CIRCULAR	1.25	1.23	0.31	1.25
1	691.71 (1J)060	CIRCULAR	1.25	1.23	0.31	1.25
1	592.25 (1K)001 2507.40	CIRCULAR	1.25	1.23	0.31	1.25
1	(1K)002	CIRCULAR	1.25	1.23	0.31	1.25
1	(1K)002A	CIRCULAR	1.25	1.23	0.31	1.25
1	(1K)003	CIRCULAR	1.00	0.79	0.25	1.00
1	(1K)004 556 91	CIRCULAR	1.00	0.79	0.25	1.00
1	(1K)005 631.94	CIRCULAR	1.00	0.79	0.25	1.00
-	(1K)006 202.44	CIRCULAR	1.00	0.79	0.25	1.00
1	(1K)007 631.05	CIRCULAR	1.00	0.79	0.25	1.00
1	(1K)008 617.93	CIRCULAR	1.00	0.79	0.25	1.00
1	(1K)008A 846.85	CIRCULAR	1.00	0.79	0.25	1.00
1	(1K)009 480.70	CIRCULAR	1.00	0.79	0.25	1.00
1	(1K)010 601.17	CIRCULAR	1.00	0.79	0.25	1.00
1	(1K)011 654.74	CIRCULAR	1.00	0.79	0.25	1.00
1	(1K)012 595.04	CIRCULAR	1.00	0.79	0.25	1.00
1	(1K)013 445.31	CIRCULAR	1.00	0.79	0.25	1.00
1	(1K)014 554.63	CIRCULAR	1.00	0.79	0.25	1.00
1	(IM)000 12266.85 (IM)0007	CIRCULAR	3.00	7.07	0.75	3.00
1	(1M)000A 22889.18 (1M)000D	CIRCULAR	3.00	7.07	0.75	3.00
1	12629.31		3.00	7.07	0.75	3.00
1	16998.53		3.00	7.07	0.75	3.00
1	12560.66 (1M)003	CIRCULAR	3 00	,.0, 7 07	0.75	3.00
1	13987.58 (1M)010	CIRCULAR	2.00	3.14	0.50	2,00
1	5773.80 (1M)011	CIRCULAR	1.00	0.79	0.25	1.00

: : .

. .

the second second

and a final second s

and the second
1	639.26					
1	(1M)012 1068 25	CIRCULAR	1.00	0.79	0.25	1.00
-	(1M)0120	CIRCULAR	0.83	0.54	0.21	0.83
T	(1M)013	CIRCULAR	1.00	0.79	0.25	1.00
1	636.62 (1M)014	CIRCULAR	1.00	0.79	0.25	1.00
1	642.43 (1M)015	CIRCULAR	1.00	0.79	0.25	1.00
1	641.30 (1M)016	CIRCULAR	1.00	0.79	0.25	1.00
1	636.10 (1M)017	CIRCULAR	1.00	0.79	0.25	1.00
1	1242.28			0.75	0.20	1.00
1	(IM)018 676.55	CIRCULAR	1.00	0.79	0.25	1.00
1	(1M)019 651.65	CIRCULAR	1.00	0.79	0.25	1.00
1	(1M)020 650_20	CIRCULAR	1.00	0.79	0.25	1.00
1	(1M)0200	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)021	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)022	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)023	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)024	CIRCULAR	0.83	0.54	0.21	0.83
1	452.01 (1M)024A 463.70	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)025	CIRCULAR	0.83	0.54	0.21	0.83
1	404.55 (1M)027 455.64	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)028	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)035 702 63	CIRCULAR	1.00	0.79	0.25	1.00
1	(1M) 036	CIRCULAR	1.00	0.79	0.25	1.00
1	(1M) 037	CIRCULAR	0.83	0.54	0.21	0.83
1	475.48 (1M)038	CIRCULAR	0.83	0.54	0.21	0.83
1	478.12 (1M)039	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)040	CIRCULAR	0.83	0.54	0.21	0.83
1	499.51 (1M)041	CIRCULAR	0.83	0.54	0.21	0.83
1	460.16 (1M)092	CIRCULAR	0.83	0.54	0.21	0.83
1	455.19 (1M)093	CIRCULAR	0.83	0.54	0.21	0.83
1	830.44 (1M)094	CIRCULAR	0.83	0.54	0.21	0.83
⊥ 1	448.61 (1M)116 661.75	CIRCULAR	0.83	0.54	0.21	0.83

1	(1M)117	CIRCULAR	0.83	0.54	0.21	0.83
1	585.23 (1M)118	CIRCULAR	0.83	0.54	0.21	0.83
1	484.31 (1M)119 466.35	CIRCULAR	0.83	0.54	0.21	0.83
1	400.35 (1M)120	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)121 (157 18	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)122 (182_01	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)123 (1M)123	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)124 (158,76	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)125 466.95	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M) 126 486 56	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)127 454.10	CIRCULAR	0.83	0.54	0.21	0.83
-	(1M)128 477.21	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)129 459.56	CIRCULÁR	0.83	0.54	0.21	0.83
1	(1M)130 21279601.62	CIRCULAR	43.00	1452.20	10.75	43.00
1	(1M)131 490.28	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)132 458.10	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)133 459.12	CIRCULAR	0.83	0.54	0.21	0.83
1	(1M)161 604.23	CIRCULAR	0.67	0.35	0.17	0.67
1	(1M)162 312.02	CIRCULAR	0.67	0.35	0.17	0.67
1	(1M)163 312.02	CIRCULAR	0.67	0.35	0.17	0.67
1	(1M)164 312.02	CIRCULAR	0.67	0.35	0.17	0.67
1	(1M)165 312.02	CIRCULAR	0.67	0.35	0.17	0.67
1	(1M)278 12522.37	CIRCULAR	3.00	7.07	0.75	3.00
1	(1M)279 12829.34	CIRCULAR	3.00	7.07	0.75	3.00
1	(1M)279B 13623.26	CIRCULAR	3.00	7.07	0.75	3.00
1	(1M)281 15590.54	CIRCULAR	3.00	7.07	0.75	3.00
1	(1M)281B 5506.01	CIRCULAR	2.00	3.14	0.50	2.00
1	(1M)282 3424.61	CIRCULAR	2.00	3.14	0.50	2.00
1	(1M)283 4518.16	CIRCULAR	2.00	3.14	0.50	2.00
1	(1M)284 3900.15	CIRCULAR	2.00	3.14	0.50	2.00
	(1M)285	CIRCULAR	2.00	3.14	0.50	2.00

.

and the second s

1	1050 67					
1	4038.87 (1M)285A	CIRCULAR	2.00	3.14	0.50	2.00
T	4030.77 (1M)286	CIRCULAR	2.00	3.14	0.50	2.00
1	3861.22 (1M)287	CIRCULAR	2.00	3.14	0.50	2.00
1	4344./I (1M)2876A	CIRCULAR	2.00	3.14	0.50	2.00
1	4319.84 (1M)288	CIRCULAR	2.00	3.14	0.50	2.00
1	4340.73 (1M)288A	CIRCULAR	2.00	3.14	0.50	2.00
1	4439.80 (1M)288B	CIRCULAR	2.00	3.14	0.50	2.00
1	4401.57 (1M)288C	CIRCULAR	2.00	3.14	0.50	2.00
1	4067.81 (1N)004	CIRCULAR	2.00	3.14	0.50	2.00
1	4236.34 (1N)005	CIRCULAR	2.00	3.14	0.50	2.00
1	4266.45 (1N)006	CIRCULAR	2.00	3.14	0.50	2.00
1	4386.80 (1N)007	CIRCULAR	2.00	3.14	0.50	2.00
1	4425.09 (1N)007D	CIRCULAR	0.83	0.54	0.21	0.83
1	548.73 (1N)007E	CIRCULAR	0.83	0.54	0.21	0.83
1	586.96 (1N)008	CIRCULAR	0.83	0.54	0.21	0.83
1	460.38 (1N)009	CIRCULAR	0.83	0.54	0.21	0.83
1	479.87 (1N)011	CIRCULAR	0.83	0.54	0.21	0.83
1	456.85 (1N)013	CIRCULAR	0.83	0.54	0.21	0.83
1	459.32 (1N)014	CIRCULAR	0.83	0.54	0.21	0.83
1	455./3 (1N)015	CIRCULAR	0.83	0.54	0.21	0.83
T	485.46 (1N)016	CIRCULAR	0.83	0.54	0.21	0.83
T	461.02 (1N)017	CIRCULAR	0.83	0.54	0.21	0.83
Ţ	460.84 (1N)018	CIRCULAR	0.83	0.54	0.21	0.83
T	4/9.6/ (1N)019	CIRCULAR	0.83	0.54	0.21	0.83
1	424.03 (1N)020	CIRCULAR	0.83	0.54	0.21	0.83
1	495.40 (1N)021	CIRCULAR	0.83	0.54	0.21	0.83
1	459.70 (1N)022	CIRCULAR	0.83	0.54	0.21	0.83
1	459.54 (1N)023	CIRCULAR	0.83	0.54	0.21	0.83
1	460.01 (1N)024	CIRCULAR	0.83	0.54	0.21	0.83
1	45/.36 (1N)025	CIRCULAR	0.83	0.54	0.21	0.83
T	454.64					

. . .

-	(1N)045	CIRCULAR	0.83	0.54	0.21	0.83
T	/85.58 (1N)046	CIRCULAR	0.83	0.54	0.21	0.83
1	482.87	0111001111	0.00	0.01	0.21	0.00
1	(1N)047 464 10	CIRCULAR	0.83	0.54	0.21	0.83
Ŧ	(1N)109A	CIRCULAR	2.00	3.14	0.50	2.00
1	3891.64		2 00	2 1 /	0 50	2 00
1	5039.82	CINCOLAR	2.00	0.14	0.50	2.00
1	(1N)111A 3954 86	CIRCULAR	2.00	3.14	0.50	2.00
Т	(1N)112A	CIRCULAR	2.00	3.14	0.50	2.00
1	4138.86		2 00	2 1 /	0 5 0	2 00
1	4653.95	CINCULAR	2.00	3.14	0.50	2.00
1	(10)001	CIRCULAR	0.83	0.54	0.21	0.83
T	(10)001A	CIRCULAR	0.83	0.54	0.21	0.83
1	474.34	CIRCULAR	0.83	0 54	0.21	0 83
1	697.53	CINCOLAN	0.05	0.54	0.21	0.05
1	(10)002A 708 24	CIRCULAR	0.83	0.54	0.21	0.83
÷	(10)003	CIRCULAR	0.83	0.54	0.21	0.83
1	479.37 (10)004	CIRCULAR	0.83	0.54	0.21	0.83
1	476.83					
1	(10)005A 474.86	CIRCULAR	0.83	0.54	0.21	0.83
1	(10)005B	CIRCULAR	1.00	0.79	0.25	1.00
T	(10)005C	CIRCULAR	1.00	0.79	0.25	1.00
1	932.55		1 00	0 70	0.25	1 00
1	939.19	CIRCULAR	1.00	0.79	0.25	1.00
1	(10)005E 935 38	CIRCULAR	1.00	0.79	0.25	1.00
Ŧ	(10)010	CIRCULAR	0.67	0.35	0.17	0.67
1	93.32	CIRCULAR	0.67	0.35	0.17	0.67
1	92.56				0.11	0.01
1	(10)012 241.69	CIRCULAR	0.67	0.35	0.17	0.67
1	(10)013	CIRCULAR	0.67	0.35	0.17	0.67
Ţ	(10)014	CIRCULAR	0.67	0.35	0.17	0.67
1	241.69		0.67	0.25	0 17	0 67
1	241.69	CIRCULAR	0.67	0.35	0.17	0.67
1	(10)016	CIRCULAR	0.67	0.35	0.17	0.67
T	(10)017	CIRCULAR	0.67	0.35	0.17	0.67
1	241.69	CTRCULAR	0 67	0 35	0 17	0 67
1	241.69	OTHOU DAIL	0.07	0.00	U. 1 /	0.07
1	(10)019 279.08	CIRCULAR	0.67	0.35	0.17	0.67
-	(10) 020	CIRCULAR	0.67	0.35	0.17	0.67
T	2/9.08 (10)021	CIRCULAR	0.67	0.35	0.17	0.67

. . . .

denotes a denotes and a second

1	279.08					
- 1	(10)072	CIRCULAR	2.00	3.14	0.50	2.00
-	(10)157	CIRCULAR	2.00	3.14	0.50	2.00
T	4269.98 (10)300	CIRCULAR	2.00	3.14	0.50	2.00
T	4445.34 (10)301	CIRCULAR	2.00	3.14	0.50	2.00
1	4461.33 (10)302	CIRCULAR	2.00	3.14	0.50	2.00
1	4307.79 (10)303	CIRCULAR	2.00	3.14	0.50	2.00
1	4326.23 (10)304	CIRCULAR	2.00	3.14	0.50	2.00
1	4116.06 (10)304A	CIRCULAR	1.00	0.79	0.25	1.00
1	2927.39 (10)304B	CIRCULAR	1.00	0.79	0.25	1.00
1	686.97 (10) 304C	CIRCULAR	1 00	0 79	0.25	1 00
1	226.00	CIRCULAR	2.00	3 1 /	0.50	2 00
1	1095.29	CIRCULAR	2.00	2 14	0.50	2.00
1	40308.56	CIRCULAR	2.00	2.14	0.50	2.00
1	4339.64	CIRCULAR	2.00	3.14	0.50	2.00
1	(10)306A 4333.24	CIRCULAR	2.00	3.14	0.50	2.00
1	(10)307 4339.90	CIRCULAR	2.00	3.14	0.50	2.00
1	(10)308 4312.68	CIRCULAR	2.00	3.14	0.50	2.00
1	(10)308A 4354.22	CIRCULAR	2.00	3.14	0.50	2.00
1	(10)309 4179.35	CIRCULAR	2.00	3.14	0.50	2.00
1	(1P)003 1513.10	CIRCULAR	1.00	0.79	0.25	1.00
1	(1P)004 993.07	CIRCULAR	1.00	0.79	0.25	1.00
1	(1P)005 1312 02	CIRCULAR	1.00	0.79	0.25	1.00
1	(1P)006 1071 50	CIRCULAR	1.00	0.79	0.25	1.00
1	(1P)007	CIRCULAR	1.00	0.79	0.25	1.00
1	(1P)008	CIRCULAR	1.00	0.79	0.25	1.00
1	(1P)008A	CIRCULAR	1.00	0.79	0.25	1.00
T	(1P)009	CIRCULAR	1.00	0.79	0.25	1.00
T	1894.23 (1P)010	CIRCULAR	1.00	0.79	0.25	1.00
Ţ	11/6.67 (1P)011	CIRCULAR	1.00	0.79	0.25	1.00
1	1239.82 (1P)012	CIRCULAR	1.00	0.79	0.25	1.00
1	1232.18 (1P)013	CIRCULAR	1.00	0.79	0.25	1.00
1	1225.03					

For a state of the state of

_	(1P)014	CIRCULAR	1.00	0.79	0.25	1.00
1	1226.25 (1P)015	CIRCULAR	1.00	0.79	0.25	1.00
1	1232.47 (1P)016 1069.41	CIRCULAR	1.00	0.79	0.25	1.00
1	(1P)016A 1075 26	CIRCULAR	1.00	0.79	0.25	1.00
1	(1P)017 1072_20	CIRCULAR	1.00	0.79	0.25	1.00
1	(1P)018 1068.42	CIRCULAR	1.00	0.79	0.25	1.00
1	(1P)024 1070.05	CIRCULAR	1.00	0.79	0.25	1.00
1	(1P)042 1152.31	CIRCULAR	0.83	0.54	0.21	0.83
1	(1P)042A 539.73	CIRCULAR	0.83	0.54	0.21	0.83
1	(1P)043 547.19	CIRCULAR	0.83	0.54	0.21	0.83
1	(1P)044 547.82	CIRCULAR	0.83	0.54	0.21	0.83
1	(1P)065 530.40	CIRCULAR	0.83	0.54	0.21	0.83
1	(1P)073 1227.42	CIRCULAR	1.00	0.79	0.25	1.00
1	(1P)079 1215.19	CIRCULAR	1.00	0.79	0.25	1.00
1	(2A)001 8932.36	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)002 47824.60	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)003 15714.33 (2A)004		3.00	7.07	0.75	3.00
1	14505.38 (2A)005	CIRCULAR	3.00	7.07	0.75	3.00
1	14408.24 (2A)006	CIRCULAR	3.00	7 07	0.75	3.00
1	9099.02 (2A)007	CIRCULAR	3.00	7.07	0.75	3.00
1	10258.98 (2A)008	CIRCULAR	3.00	7.07	0.75	3.00
1	9609.86 (2A)009	CIRCULAR	3.00	7.07	0.75	3.00
1	9556.02 (2A)010	CIRCULAR	3.00	7.07	0.75	3.00
1	9518.94 (2A)011	CIRCULAR	3.00	7.07	0.75	3.00
1	9275.24 (2A)012	CIRCULAR	3.00	7.07	0.75	3.00
1	9511.38 (2A)013	CIRCULAR	3.00	7.07	0.75	3.00
1	9201.10 (2A)014	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A) 015	CIRCULAR	3.00	7.07	0.75	3.00
⊥ 1	(2A) 016 10281 03	CIRCULAR	3.00	7.07	0.75	3.00
T	(2A)017	CIRCULAR	3.00	7.07	0.75	3.00

.

1.1.1

1	10992 04					
1	(2A)018 10369 18	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)019	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A) 020	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A) 021	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)022	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A) 023	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)024 17444 91	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)025 19257_01	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)026 17839 59	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)027 10419 62	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A) 028 8961 78	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A) 029 9809, 45	CIRCULAR	3.00	7.07	0.75	3.00
-	(2A)030 10739.24	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)031 12012.40	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)032 9566.97	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)033 11411.05	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)034 14266.00	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)035 14344.93	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)036 14385.10	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)037 13355.05	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)038 14589.17	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)039 14361.27	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)040 14215.39	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)041 14377.99	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)042 14375.57	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)043 15334.35	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)044 14098.50	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)045 13677.67	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)046 13351.13	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)047 9477.75	CIRCULAR	3.00	7.07	0.75	3.00

-	(2A)048	CIRCULAR	3.00	7.07	0.75	3.00
1	9378.28 (2A)0480	CIRCULAR	1.00	0.79	0.25	1.00
1	(2A)049 9685 55	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A) 050 9134 39	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A) 051 14559 53	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)052 14338.48	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)053 14635.32	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)054 24485.14	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)055 9488.64	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)056 9444.98	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)057 11960.96	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)058 11190.94	CIRCULAR	3.00	7.07	0.75	3.00
1	(2A)059 7116.06	CIRCULAR	2.50	4.91	0.63	2.50
1	(2A)060 9295.82	CIRCULAR	2.50	4.91	0.63	2.50
1	(2A)061 8480.87	CIRCULAR	2.50	4.91	0.63	2.50
1	(2A)062 10228.16	CIRCULAR	2.50	4.91	0.63	2.50
1	(2A)063 4516.89	CIRCULAR	1.50	1.//	0.58	1.50
1	9733.03		2.50	4.91	0.63	2.50
1	9516.11 (2A)066	CIRCULAR	2.50	4.91	0.63	2.50
1	20742.05 (2A)067	CIRCULAR	2.50	4.91	0.63	2.50
1	10099.95 (2A)068	CIRCULAR	2.50	4.91	0.63	2.50
1	9709.56 (2A)069	CIRCULAR	1.00	0.79	0.25	1.00
1	4644.80 (2C)001	CIRCULAR	1.00	0.79	0.25	1.00
1	508.32 (2C)002	CIRCULAR	1.00	0.79	0.25	1.00
1	515.22 (2C)003	CIRCULAR	1.00	0.79	0.25	1.00
1	610.74 (2C)004	CIRCULAR	1.00	0.79	0.25	1.00
1	619.72 (2C)005	CIRCULAR	1.00	0.79	0.25	1.00
1	632.84 (2C)006	CIRCULAR	1.00	0.79	0.25	1.00
1	584.87 (2C)007	CIRCULAR	1.00	0.79	0.25	1.00
Ţ	(2C)008	CIRCULAR	1.00	0.79	0.25	1.00

. . .

1	COF 10					
1	635.12 (2C)009	CIRCULAR	1.00	0.79	0.25	1.00
1	(2C) 0090	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D)001	CIRCULAR	1.00	0.79	0.25	1.00
1	456.44 (2D)001A	CIRCULAR	1.00	0.79	0.25	1.00
1	431.78 (2D)002	CIRCULAR	1.00	0.79	0.25	1.00
1	828.87 (2D)003	CIRCULAR	1.00	0.79	0.25	1.00
1	(2D)004	CIRCULAR	1.00	0.79	0.25	1.00
1	(2D) 005	CIRCULAR	1.00	0.79	0.25	1.00
1	843.73 (2D)006	CIRCULAR	1.00	0.79	0.25	1.00
1	(2D)007	CIRCULAR	1.00	0.79	0.25	1.00
1	(2D)008	CIRCULAR	1.00	0.79	0.25	1.00
1	(2D)009	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D)010 261 64	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D)011	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D) 012 338 01	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D) 013	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D)014 305 27	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D) 015	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D)016 287 54	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D)017 320_66	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D)018 337 74	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D)019 338 38	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D) 020 282 58	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D) 021 286_63	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D) 022 282 72	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D) 023	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D) 024 310 02	CIRCULAR	0.67	0.35	0.17	0.67
- 1	(2D) 025 406 69	CIRCULAR	0.67	0.35	0.17	0.67
1	(2D) 039 748 86	CIRCULAR	0.83	0.54	0.21	0.83
1	(2D)040 307.25	CIRCULAR	0.83	0.54	0.21	0.83

1	(2D)041	CIRCULAR	0.83	0.54	0.21	0.83
Ţ	504.09 (2D)042	CIRCULAR	0.83	0.54	0.21	0.83
1	493.70 (2D)043	CIRCULAR	0.83	0 54	0 21	0 83
1	502.86	OID CUL AD	0.00	0.01	0.21	0.00
1	(2D)044 503.43	CIRCULAR	0.83	0.54	0.21	0.83
1	(2D)045 504 40	CIRCULAR	0.83	0.54	0.21	0.83
-	(2D)045A	CIRCULAR	0.83	0.54	0.21	0.83
T	461.50 (2D)046	CIRCULAR	0.83	0.54	0.21	0.83
1	509.27 (2D)046A	CIRCULAR	0.83	0.54	0.21	0.83
1	478.03 (2D)241	CIRCULAR	1.50	1.77	0.38	1.50
1	3218.22		1 60	1 77	0.20	1 50
1	1937.49	CIRCULAR	1.50	1.//	0.38	1.50
1	(2D)243 1933.12	CIRCULAR	1.50	1.77	0.38	1.50
1	(2D)244	CIRCULAR	1.50	1.77	0.38	1.50
1	(2D)2440	CIRCULAR	0.83	0.54	0.21	0.83
Ţ	1344.13 (2D)245	CIRCULAR	1.50	1.77	0.38	1.50
1	1430.35 (2D)246	CIRCULAR	1.50	1.77	0.38	1.50
1	1955.36 (2D)247	CIRCULAR	1.50	1.77	0.38	1.50
1	1945.02		1 50	1 77	0.20	1 50
1	2010.04	CIRCULAR	1.50	1.//	0.38	1.50
1	(2D)249 1932.23	CIRCULAR	1.50	1.77	0.38	1.50
1	(2D)250 2063 59	CIRCULAR	1.50	1.77	0.38	1.50
-	(2D) 251	CIRCULAR	1.50	1.77	0.38	1.50
T	(2D)252	CIRCULAR	1.00	0.79	0.25	1.00
1	671.58 (2D)253	CIRCULAR	1.50	1.77	0.38	1.50
1	1980.04		1 50	1 77	0 30	1 50
1	1980.04		1.50	1	0.50	1.50
1	(2D)255 1980.04	CIRCULAR	1.50	1.77	0.38	1.50
1	(2D)256 1980-04	CIRCULAR	1.50	1.77	0.38	1.50
1	(2D) 257	CIRCULAR	1.50	1.77	0.38	1.50
1	(2D) 258	CIRCULAR	1.50	1.77	0.38	1.50
Ţ	(2D) 259	CIRCULAR	1.50	1.77	0.38	1.50
Ţ	1980.04 (2D)260	CIRCULAR	1.50	1.77	0.38	1.50
1	1980.04 (2D)261	CIRCULAR	1.50	1.77	0.38	1.50
1	1980.04 (2D)262	CTRCULAR	1 50	1 77	0 38	1 50
	· /					

the second second

al a second se

1	1980 04					
1	(2D)263	CIRCULAR	1.50	1.77	0.38	1.50
1	(2D)264	CIRCULAR	1.50	1.77	0.38	1.50
Ţ	1980.04 (2D)265	CIRCULAR	1.25	1.23	0.31	1.25
1	1217.65 (2D)266	CIRCULAR	1.25	1.23	0.31	1.25
1	1217.65 (2D)267	CIRCULAR	1.25	1.23	0.31	1.25
1	1217.65 (2E)001	CIRCULAR	2.50	4.91	0.63	2.50
1	4764.84 (2E)002	CIRCULAR	2.50	4.91	0.63	2.50
1	6070.23 (2E)003	CIRCULAR	2.50	4.91	0.63	2.50
1	10227.00 (2E)004	CIRCULAR	2.50	4 91	0.63	2.50
1	5624.29	CIRCULAR	2.50	1.91	0.63	2.50
1	3358.16		2.50	4.91	0.00	2.50
1	(2E)000 3271.92	CIRCULAR	2.50	4.91	0.03	2.50
1	(2E)007 5809.93	CIRCULAR	2.50	4.91	0.63	2.50
1	(2E)008 8940.87	CIRCULAR	2.50	4.91	0.63	2.50
1	(2E)009 6696.37	CIRCULAR	2.50	4.91	0.63	2.50
1	(2E)010 5662.63	CIRCULAR	2.50	4.91	0.63	2.50
1	(2E)011 5609.45	CIRCULAR	2.50	4.91	0.63	2.50
1	(2E)012 5649.17	CIRCULAR	2.50	4.91	0.63	2.50
1	(2E)013 5481.75	CIRCULAR	2.50	4.91	0.63	2.50
1	(2E)014 5497 61	CIRCULAR	2.50	4.91	0.63	2.50
1	(2E) 043	CIRCULAR	1.00	0.79	0.25	1.00
1	(2F)001	CIRCULAR	2.50	4.91	0.63	2.50
1	(2F)002	CIRCULAR	2.50	4.91	0.63	2.50
1	(2F)003	CIRCULAR	2.50	4.91	0.63	2.50
1	(2F)004	CIRCULAR	2.50	4.91	0.63	2.50
1	5325.82 (2F)005	CIRCULAR	2.50	4.91	0.63	2.50
T	5420.82 (2F)006	CIRCULAR	2.50	4.91	0.63	2.50
Ţ	5424./9 (2F)007	CIRCULAR	2.50	4.91	0.63	2.50
1	5406.45 (2F)008	CIRCULAR	2.50	4.91	0.63	2.50
1	5093.65 (2F)009	CIRCULAR	2.25	3.98	0.56	2.25
1	4216.18 (2F)010	CIRCULAR	1.50	1.77	0.38	1.50
1	5727.28					

_	(2F)011	CIRCULAR	1.50	1.77	0.38	1.50
1	1885.64 (2F)012	CIRCULAR	1.50	1.77	0.38	1.50
1	1836.49 (2F)013	CIRCULAR	1.50	1.77	0.38	1.50
1	1702.29 (2F)014	CIRCULAR	1.50	1.77	0.38	1.50
1	1731.79 (2F)015	CIRCULAR	1.50	1.77	0.38	1.50
1	1750.22 (2F)016	CIRCULAR	1.50	1.77	0.38	1.50
1	1702.27 (2F)017	CIRCULAR	1.50	1.77	0.38	1.50
1	1702.29 (2F)018	CIRCULAR	1.50	1.77	0.38	1.50
1	1719.63	CIRCULAR	1 50	1 77	0 38	1 50
1	(2F) 029 1719.72 (2F) 020	CIRCULAR	1 50	1 77	0.38	1 50
1	1685.27		1.50	1 77	0.30	1.50
1	1708.05	CIRCULAR	1.50	1.77	0.38	1.50
1	(2E)022 2071.46	CIRCULAR	1.50	1.77	0.38	1.50
1	(2F)023 602.60	CIRCULAR	1.00	0.79	0.25	1.00
1	(2F)024 618.23	CIRCULAR	1.00	0.79	0.25	1.00
1	(2F)025 194.86	CIRCULAR	1.00	0.79	0.25	1.00
-	(2F) 026 207 85	CIRCULAR	1.00	0.79	0.25	1.00
1	(2F)027 207.85	CIRCULAR	1.00	0.79	0.25	1.00
1	(2F)028	CIRCULAR	1.00	0.79	0.25	1.00
1	(2F) 029	CIRCULAR	1.00	0.79	0.25	1.00
1	207.85 (2F)030	CIRCULAR	1.00	0.79	0.25	1.00
1	207.85 (2F)031	CIRCULAR	1.00	0.79	0.25	1.00
1	207.85 (2F)032	CIRCULAR	1.00	0.79	0.25	1.00
1	207.85 (2F)033	CIRCULAR	1.00	0.79	0.25	1.00
1	207.85 (2G)001	CIRCULAR	1.00	0.79	0.25	1.00
1	/54.64 (2G)002	CIRCULAR	1.00	0.79	0.25	1.00
Ţ	735.24 (2G)002A	CIRCULAR	1.00	0.79	0.25	1.00
1	746.92 (2G)003	CIRCULAR	1.00	0.79	0.25	1.00
1	740.28 (2G)004	CIRCULAR	1.00	0.79	0.25	1.00
1	746.70 (2G)005	CIRCULAR	1.00	0.79	0.25	1.00
1	745.85 (2G)006	CIRCULAR	0.83	0.54	0.21	0.83
1	567.38 (2G)007	CIRCULAR	0.83	0.54	0.21	0.83

and a second
1	559.87					
1	(2G)008 476 52	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G)009 590 75	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G)010	CIRCULAR	0.83	0.54	0.21	0.83
1	549.21 (2G)011	CIRCULAR	0.83	0.54	0.21	0.83
1	362.00 (2G)012 369.07	CIRCULAR	0.83	0.54	0.21	0.83
-	(2G)012A	CIRCULAR	0.83	0.54	0.21	0.83
1	594.62 (2G)013	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G)013A 797 92	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G)014 652-85	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G)015 323.96	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G)016 360_19	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G)016A 338.87	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G)018 364.66	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G)019 355.09	CIRCULAR	0.83	0.54	0.21	0.83
-	(2G) 020 354,96	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G) 021 357.92	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G) 022 357,72	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G) 023 357 - 62	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G)024 355.73	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G)025 561.58	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G)026 802.70	CIRCULAR	0.83	0.54	0.21	0.83
1	(2G)040 915.00	CIRCULAR	1.00	0.79	0.25	1.00
1	(2G)041 309.89	CIRCULAR	1.00	0.79	0.25	1.00
1	(2G)042 309.89	CIRCULAR	1.00	0.79	0.25	1.00
1	(2G) 043 309-89	CIRCULAR	1.00	0.79	0.25	1.00
1	(2G)043A 309.89	CIRCULAR	1.00	0.79	0.25	1.00
1	(2G)044 309.89	CIRCULAR	1.00	0.79	0.25	1.00
1	(2G) 045 309-89	CIRCULAR	1.00	0.79	0.25	1.00
- 1	(2G) 359 362 32	CIRCULAR	0.83	0.54	0.21	0.83
1	(2H)001 2813.84	CIRCULAR	1.75	2.41	0.44	1.75

	(2H)002	CIRCULAR	1.75	2.41	0.44	1.75
1	2346.29 (2H)003	CIRCULAR	1 75	2 /1	0 44	1 75
1	2289.32	OTICODIAN	1.75	2.41	0.44	1.75
1	(2H)005	CIRCULAR	1.75	2.41	0.44	1.75
T	(2H)006	CIRCULAR	1.75	2.41	0.44	1.75
1	2312.74				_	
1	(2H)007 2561.14	CIRCULAR	1.75	2.41	0.44	1.75
	(2H)008	CIRCULAR	1.75	2.41	0.44	1.75
1	3587.28 (2H)009	CTRCIILAR	1 75	2 11	0 4 4	1 75
1	3325.59	CINCOLAR	1.75	2.41	0.44	1.75
1	(2H)010	CIRCULAR	1.75	2.41	0.44	1.75
Т	(2H)011	CIRCULAR	1.75	2.41	0.44	1.75
1	3526.04					
1	(2H)012 2690.95	CIRCULAR	1.75	2.41	0.44	1.75
_	(2H)013	CIRCULAR	1.75	2.41	0.44	1.75
1	2479.85 (2H)014	CIRCULAR	1 50	1 77	038	1 50
1	2387.77	OTHOULING	1.50	1.11	0.50	1.50
1	(2H)015 2022 37	CIRCULAR	1.50	1.77	0.38	1.50
-	(2H)016	CIRCULAR	1.50	1.77	0.38	1.50
1	1463.60		1 50	1 77	0 20	1 50
1	3717.55	CINCULAR	1.50	1.//	0.30	1.50
1	(2H)017A	CIRCULAR	1.50	1.77	0.38	1.50
T	(2H)018	CIRCULAR	1.50	1.77	0.38	1.50
1	1883.35		1 50	1	0.00	
1	1935.77	CIRCULAR	1.50	1.//	0.38	1.50
-	(2H)020	CIRCULAR	1.50	1.77	0.38	1.50
1	1841.33 (2H)021	CIRCULAR	1 50	1 77	0 38	1 50
1	2067.07		1.00	±•//	0.00	1.50
1	(2H)022 1820 78	CIRCULAR	1.25	1.23	0.31	1.25
-	(2H) 023	CIRCULAR	1.25	1.23	0.31	1.25
1	1871.49	CTOCIITAD	1 25	1 00	0 21	1 25
1	1691.10	CINCULAR	1.20	1.25	0.51	1.23
1	(2H) 025	CIRCULAR	1.25	1.23	0.31	1.25
T	(2H) 026	CIRCULAR	1.00	0.79	0.25	1.00
1	1102.63					
1	(2H)U27 765.53	CIRCULAR	1.00	0.79	0.25	1.00
-	(2H)028	CIRCULAR	1.00	0.79	0.25	1.00
T	//6.53 (2H)029	CTRCULAR	1 00	0 79	0 25	1 00
1	791.03				J. 20	
1	(2H)030 684 58	CIRCULAR	1.00	0.79	0.25	1.00
-	(2H)031	CIRCULAR	1.00	0.79	0.25	1.00
1	396.08 (2H)032		1 00	0 7 0	0.25	1 00
	1211/032	CINCULAR	T.00	0.19	0.25	T.00

o te cre i t

.

. . .

.

1	502.67					
1	(2H)033 2457 42	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)034 755.88	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)036 775 25	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)037 858 69	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)038 777.40	CIRCULAR	1.00	0.79	0.25	1.00
-	(2H)039 846.62	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)040 624.21	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)041 777.10	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)042 973.03	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)043 642.33	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)044 715.66	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)045 722.62	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)046 773.42	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)047 386.00	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)048 1395.01	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)049 684.39	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)050 573.31	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)051 563.47	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)051A 669.24	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)052 798.81	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)053 333.32	CIRCULAR	1.00	0.79	0.25	1.00
1	(2H)054 512.64	CIRCULAR	0.83	0.54	0.21	0.83
1	(2H)054A 512.95	CIRCULAR	0.83	0.54	0.21	0.83
1	(2H)055 513.55	CIRCULAR	0.83	0.54	0.21	0.83
1	(2H)055A 513.55	CIRCULAR	0.83	0.54	0.21	0.83
1	(2H)056 513.55	CIRCULAR	0.83	0.54	0.21	0.83
1	(2H)057 513.55	CIRCULAR	0.83	0.54	0.21	0.83
1	(2H)058 513.55	CIRCULAR	0.83	0.54	0.21	0.83
1	(2H)285 482.52	CIRCULAR	0.83	0.54	0.21	0.83
1	(2H)286 459.62	CIRCULAR	0.83	0.54	0.21	0.83

. . . .

the second second second second by the second se

	(2H)287	CIRCULAR	0.83	0.54	0.21	0.83
1	458.67 (2H)288	CIRCULAR	0.83	0.54	0.21	0.83
1	458.63 (2H)289 457.41	CIRCULAR	0.83	0.54	0.21	0.83
1	(2H)290 460.81	CIRCULAR	0.83	0.54	0.21	0.83
1	(2I)001 1317.11	CIRCULAR	1.25	1.23	0.31	1.25
1	(2I)001A 941.02	CIRCULAR	1.25	1.23	0.31	1.25
1	(2I)002 2363.70	CIRCULAR	1.25	1.23	0.31	1.25
1	(2I)003 1505.25	CIRCULAR	1.25	1.23	0.31	1.25
1	(2I)004 1453.82	CIRCULAR	1.25	1.23	0.31	1.25
1	(21)005 1510.84	CIRCULAR	1.25	1.23	0.31	1.25
1	(21)008 1531.40 (21)008	CIRCULAR	1.25	1.23	0.31	1.25
1	1503.14 (21)009	CIRCULAR	1.25	1.23	0.31	1.25
1	1475.18 (2I)010	CIRCULAR	1.25	1.23	0.31	1.25
1	1538.62 (2I)011	CIRCULAR	1.25	1.23	0.31	1.25
1	1502.87 (2I)012	CIRCULAR	1.25	1.23	0.31	1.25
1	1505.92 (2I)013	CIRCULAR	1.25	1.23	0.31	1.25
1	(2I)014 1283 31	CIRCULAR	1.25	1.23	0.31	1.25
1	(2I) 015 1286,11	CIRCULAR	1.25	1.23	0.31	1.25
1	(2I)016 1325.24	CIRCULAR	1.25	1.23	0.31	1.25
1	(2I)017 1459.56	CIRCULAR .	1.25	1.23	0.31	1.25
1	(2I)018 651.87	CIRCULAR	1.00	0.79	0.25	1.00
1	(2I)019 1397.26	CIRCULAR	1.25	1.23	0.31	1.25
1	(21)020 797.91	CIRCULAR	1.00	0.79	0.25	1.00
1	(21)021 711.82 (21)0217	CIRCULAR	1.00	0.79	0.25	1.00
1	1062.23 (21)021B	CIRCULAR	1 17	1 07	0.29	1 17
1	1057.05 (21)021C	CIRCULAR	1.17	1.07	0.29	1.17
1	572.94 (2I)022	CIRCULAR	1.17	1.07	0.29	1.17
1	1032.37 (2I)023	CIRCULAR	1.00	0.79	0.25	1.00
1	709.42 (2I)024	CIRCULAR	1.00	0.79	0.25	1.00

. . . .

a Borner and the second s

1	707.04					
-	(2I)025 709 40	CIRCULAR	1.00	0.79	0.25	1.00
1	(2I)025A	CIRCULAR	1.00	0.79	0.25	1.00
1	(21)026	CIRCULAR	1.00	0.79	0.25	1.00
1	/40.86 (2I)027	CIRCULAR	1.00	0.79	0.25	1.00
1	709.93 (2I)028	CIRCULAR	1.00	0.79	0.25	1.00
1	675.56 (2I)029	CIRCULAR	1.00	0.79	0.25	1.00
1	734.04 (2I)044	CIRCULAR	1.00	0.79	0.25	1.00
1	1299.27 (2I)045	CIRCULAR	1.00	0.79	0.25	1.00
1	1299.27 (2I)046	CIRCULAR	1.00	0.79	0.25	1.00
1	1299.27 (2T) 047	CIRCULAR	1.00	0.79	0.25	1.00
1	1299.27 (2T)048	CIRCULAR	1 00	0 79	0.25	1 00
1	1299.27		1 00	0.79	0.25	1 00
1	1299.27	CIRCULAR	1.00	0.79	0.25	1.00
1	821.73	CIRCULAR	1.00	0.79	0.25	1.00
1	(21)051 821.73	CIRCULAR	1.00	0.79	0.25	1.00
1	(2I)052 821.73	CIRCULAR	1.00	0.79	0.25	1.00
1	(2I)053 821.73	CIRCULAR	1.00	0.79	0.25	1.00
1	(2I)054 821.73	CIRCULAR	1.00	0.79	0.25	1.00
1	(2I)055 821.73	CIRCULAR	1.00	0.79	0.25	1.00
1	(2I)056 821.73	CIRCULAR	1.00	0.79	0.25	1.00
1	(2I)057 821.73	CIRCULAR	1.00	0.79	0.25	1.00
1	(2I) 058 821.73	CIRCULAR	1.00	0.79	0.25	1.00
-	(2I) 059 821 73	CIRCULAR	1.00	0.79	0.25	1.00
1	(2J)001 4754 69	CIRCULAR	2.25	3.98	0.56	2.25
1	(2J)002	CIRCULAR	2.25	3.98	0.56	2.25
1	(2J)003	CIRCULAR	2.25	3.98	0.56	2.25
1	(2J)004	CIRCULAR	2.25	3.98	0.56	2.25
1	(2J)005	CIRCULAR	2.25	3.98	0.56	2.25
Ţ	4282.25 (2J)006	CIRCULAR	2.25	3.98	0.56	2.25
Ţ	3933.94 (2J)007	CIRCULAR	2.25	3.98	0.56	2.25
Ţ	3894./8 (2J)008	CIRCULAR	2.25	3.98	0.56	2.25
1	3894.91					

real of a second of the second

-	(2J)009	CIRCULAR	2.25	3.98	0.56	2.25
T	5141.41 (2J)010	CIRCULAR	2.25	3.98	0.56	2.25
1	5189.38 (2J)011	CIRCULAR	2.00	3.14	0.50	2.00
1	5046.16 (2.T) 012	CIRCULAR	2 00	3 14	0 50	2 00
1	3698.22	CIDCULAD	2.00	D 14	0.50	2.00
1	3639.35	CIRCULAR	2.00	3.14	0.50	2.00
1	(2J)014 3750.51	CIRCULAR	2.00	3.14	0.50	2.00
1	(2J)015 3643.82	CIRCULAR	2.00	3.14	0.50	2.00
- 1	(2J)016	CIRCULAR	2.00	3.14	0.50	2.00
T	(2J)017	CIRCULAR	2.00	3.14	0.50	2.00
1	3989.50 (2J)018	CIRCULAR	2.00	3.14	0.50	2.00
1	3710.83 (2J)019	CIRCULAR	1.75	2.41	0.44	1.75
1	2862.13 (2J)020	CIRCULAR	0.75	0.44	0.19	0.75
1	76.97	CIRCULAR	0.75	0.44	0 19	0 75
1	729.52	CINCULAR	0.75	0.11	0.10	0.75
1	(25)022 331.72	CIRCULAR	0.75	0.44	0.19	0.75
1	(2J)023 361.26	CIRCULAR	0.83	0.54	0.21	0.83
1	(2J)024 771.41	CIRCULAR	0.83	0.54	0.21	0.83
- 1	(2J)0250	CIRCULAR	0.83	0.54	0.21	0.83
1	(2J)026	CIRCULAR	0.83	0.54	0.21	0.83
T	445.64 (2J)027	CIRCULAR	0.83	0.54	0.21	0.83
1	455.80 (2J)028	CIRCULAR	0.83	0.54	0.21	0.83
1	442.88 (2J)029	CIRCULAR	0.83	0.54	0.21	0.83
1	456.23	CIRCULAR	0 67	0 35	0.17	0 67
1	303.35		0.67	0.35	0.17	0 67
1	293.29	CIRCULAR	0.67	0.35	0.17	0.67
1	(2J)032 280.94	CIRCULAR	0.67	0.35	0.17	0.67
1	(2J)033 286.66	CIRCULAR	0.67	0.35	0.17	0.67
1	(2J)040 597 59	CIRCULAR	0.83	0.54	0.21	0.83
-	(2J)041	CIRCULAR	0.83	0.54	0.21	0.83
1	450.32 (2J)042	CIRCULAR	0.83	0.54	0.21	0.83
1	443.78 (2J)043	CIRCULAR	0.83	0.54	0.21	0.83
1	477.06 (2J)044	CIRCULAR	0.83	0.54	0.21	0.83
1	432.76 (2J)045	CIRCULAR	0.83	0.54	0.21	0.83

F ----

ŕ

1	159 69					
1	(2J) 045A (2J) 15	CIRCULAR	0.83	0.54	0.21	0.83
1	426.15 (2J)046	CIRCULAR	0.83	0.54	0.21	0.83
1	448.36 (2J)047	CIRCULAR	0.83	0.54	0.21	0.83
1	435.24 (2J)048	CIRCULAR	0.83	0.54	0.21	0.83
1	440.74 (2J)049	CIRCULAR	0.83	0.54	0.21	0.83
1	(2J) 050	CIRCULAR	0.83	0.54	0.21	0.83
1	431.40 (2J)051 438.92	CIRCULAR	0.83	0.54	0.21	0.83
1	430.92 (2J)052	CIRCULAR	0.67	0.35	0.17	0.67
1	(2J) 053	CIRCULAR	0.67	0.35	0.17	0.67
1	(2J) 054 287 78	CIRCULAR	0.67	0.35	0.17	0.67
1	(2J)055 290 40	CIRCULAR	0.67	0.35	0.17	0.67
1	(2J) 056 291 16	CIRCULAR	0.67	0.35	0.17	0.67
1	(2J)057 280 52	CIRCULAR	0.67	0.35	0.17	0.67
1	(2J) 058 268 18	CIRCULAR	0.67	0.35	0.17	0.67
1	(2K)001 1121.85	CIRCULAR	1.75	2.41	0.44	1.75
1	(2K) 002 3087.32	CIRCULAR	1.25	1.23	0.31	1.25
-	(2K)003 1410.42	CIRCULAR	1.25	1.23	0.31	1.25
1	(2K)004 1278.70	CIRCULAR	1.25	1.23	0.31	1.25
1	(2K)005 1290.55	CIRCULAR	1.25	1.23	0.31	1.25
1	(2K)006 1303.70	CIRCULAR	1.25	1.23	0.31	1.25
1	(2K)007 1504.42	CIRCULAR	1.25	1.23	0.31	1.25
1	(2K)008 1309.71	CIRCULAR	1.25	1.23	0.31	1.25
1	(2K)009 1355.73	CIRCULAR	1.25	1.23	0.31	1.25
1	(2K)010 1271.78	CIRCULAR	1.25	1.23	0.31	1.25
1	(2K)011 1174.94	CIRCULAR	1.25	1.23	0.31	1.25
1	(2K)012 1403.75	CIRCULAR	1.25	1.23	0.31	1.25
1	(2K)013 1267.51	CIRCULAR	1.25	1.23	0.31	1.25
1	(2K)014 860.38	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K)015 644.79	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K)016 838.01	CIRCULAR	1.00	0.79	0.25	1.00

	(2K)017	CIRCULAR	1.00	0.79	0.25	1.00
1	815.82 (2K)018	CIRCULAR	1.00	0.79	0.25	1.00
1	759.31 (2K)018A	CIRCULAR	1.00	0.79	0.25	1.00
1	801.66 (2K)019	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K) 020	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K) 021 662 60	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K) 022 886.52	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K) 022A 824.08	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K)023 797.51	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K)024 874.53	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K)024A 779.67	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K)025 845.71	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K)026 715.03	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K)027 3500.23	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K)028 614.52	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K)029 603.71	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K)030 611.35	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K) 031 607.89	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K)032 613.14	CIRCULAR	1.00	0.79	0.25	1.00
1	(2K) 033 604.88 (2K) 033D	CIRCULAR	1.00	0.79	0.25	1.00
1	588.36		1.00	0.79	0.25	1 00
1	597.24 (2K)035	CIRCULAR	1.00	0.79	0.25	1.00
1	628.97 (2K)036	CIRCULAR	1.00	0.79	0.25	1.00
1	613.12 (2K)037	CIRCULAR	1.00	0.79	0.25	1.00
1	599.96 (2K)038	CIRCULAR	1.00	0.79	0.25	1.00
1	600.06 (2K)039	CIRCULAR	1.00	0.79	0.25	1.00
1	600.06 (2K)040	CIRCULAR	1.00	0.79	0.25	1.00
1	600.06 (2K)041	CIRCULAR	1.00	0.79	0.25	1.00
1	600.06 (2K)042	CIRCULAR	1.00	0.79	0.25	1.00
1	600.06 (2K)043	CIRCULAR	1.00	0.79	0.25	1.00

. . .

all and an area that as

1 - F

1	600.06					
_	(2K)044	CIRCULAR	1.00	0.79	0.25	1.00
1	600.06		1 00	0 70	0.05	1 0 0
1	(ZK)045 600 06	CIRCULAR	1.00	0.79	0.25	1.00
-	(2K)046	CIRCULAR	1.00	0.79	0.25	1.00
1	600.06					
_	(2K)047	CIRCULAR	1.00	0.79	0.25	1.00
1	600.06		1 00		0.05	1 0 0
1	(2K)048	CIRCULAR	1.00	0.79	0.25	1.00
T	(2K)049	CTRCIITAR	1 00	0 70	0 25	1 00
1	600.06	CINCODAN	1.00	0.19	0.25	1.00
	(2K)050	CIRCULAR	1.00	0.79	0.25	1.00
1	600.06					
	(2K)051	CIRCULAR	1.00	0.79	0.25	1.00
1	600.06					
1	(2K)052	CIRCULAR	1.00	0.79	0.25	1.00
Τ	600.06 (2K)311		0 02	0 54	0 21	0 03
1	570.99	CINCULAR	0.05	0.54	0.21	0.05
-	(2K)315	CIRCULAR	0.83	0.54	0.21	0.83
1	385.19					
	(2K)316	CIRCULAR	0.83	0.54	0.21	0.83
1	471.10					
1	(2K) 317	CIRCULAR	0.83	0.54	0.21	0.83
T	46U.// FordodMain?	CTOCULAD	0 67	0 25	0 17	0 67
1	1.37.76	CINCULAN	0.07	0.55	0.17	0.07
-	Line2ToPlant	CIRCULAR	2.75	5.94	0.69	2.75
1	10917.24					
	NorthEnid	CIRCULAR	1.00	0.79	0.25	1.00
1	40.80					
1		CIRCULAR	1.00	0.79	0.25	1.00
T	6307.99					

1

r F

**************************************	Volume acre-feet	Volume Mgallons
Sewershed Rainfall RDII Produced RDII Ratio	7.129 0.643 0.090	2.323 0.210
**************************************	Volume acre-feet	Depth inches
Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Surface Storage Continuity Error (%)	967.651 0.000 418.507 504.700 44.267 0.018	0.980 0.000 0.424 0.511 0.045
**************************************	Volume acre-feet	Volume Mgallons
Dry Weather Inflow	87.042	28.364

Wet Weather Inflow	504.699	164.464
Groundwater Inflow	0.000	0.000
RDII Inflow	0.643	0.210
External Inflow	3.898	1.270
External Outflow	71.944	23.444
Surface Flooding	513.729	167.406
Evaporation Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	10.693	3.484
Continuity Error (%)	-0.014	

and the construction could

		Total	Total	Total	Total	Total
Peak Runc	off					
		Precip	Runon	Evap	Infil	Runoff
Runoff C Subcatchme GPM	Coeff ent	in	in	in	in	in
	·					
Basin1A1 2441_291	0.099	0.980	0.000	0.000	0.833	0.097
Basin1A2		0.980	0.000	0.000	0.104	0.821
10485.074 Basin1A3	0.837	0.980	0.000	0.000	0.226	0.703
7684.863	0.718					
Basin1B1	0 113	0.980	0.000	0.000	0.530	0.404
Basin1B2	0.415	0.980	0.000	0.000	0.245	0.692
8355.060	0.706			0.000	01210	
Basin1B3		0.980	0.000	0.000	0.284	0.652
16596.611 Basin1B4	0.665	0 980	0 000	0 000	0 274	0 662
8609.841	0.676	0.000	0.000	0.000	0.271	0.001
Basin1C1		0.980	0.000	0.000	0.285	0.652
12567.899	0.665					
BasinICIA	0 662	0.980	0.000	0.000	0.287	0.650
Basin1C1B	0.005	0,980	0.000	0.000	0.325	0.611
9366.611	0.624			0.000	0.010	
Basin1C1C		0.980	0.000	0.000	0.376	0.560
10613.581	0.571	0 000	0 000	0 0 0 0	0 510	0.416
BasiniciD	0 425	0.980	0.000	0.000	0.518	0.416
Basin1C2	0.425	0.980	0.000	0.000	0.248	0.689
9140.888	0.703					
Basin1C3	0 677	0.980	0.000	0.000	0.274	0.663
10068.859 Basip1C4	0.6//	0 980	0 000	0 000	0 296	0 651
8938.294	0.664	0.900	0.000	0.000	0.200	0.001
Basin1D1		0.980	0.000	0.000	0.544	0.390
4819.147	0.398					
Basin1D2		0.980	0.000	0.000	0.374	0.562

6452.397	0.573					
Basin1D3	0 670	0.980	0.000	0.000	0.280	0.657
148/1.396 Basin1D4	0.670	0.980	0.000	0.000	0.381	0.555
10871.928	0.567					
Basin1E1	0 171	0.980	0.000	0.000	0.763	0.168
Basin1E2	0.1/1	0.980	0.000	0.000	0.398	0.538
6874.224	0.549					
Basin1F1	0 410	0.980	0.000	0.000	0.531	0.403
Basin1F2	0.412	0.980	0.000	0.000	0.651	0.281
3215.587	0.287					
Basin1F3	0 524	0.980	0.000	0.000	0.413	0.523
10500.898 Basin1F4	0.534	0.980	0 000	0 000	0 329	0 608
9781.890	0.621	0.900	0.000	0.000	0.029	0.000
Basin1F5		0.980	0.000	0.000	0.086	0.854
14059.284 Pagip1C1	0.871	0 990	0 000	0 000	0 140	0 707
6979.829	0.813	0.900	0.000	0.000	0.140	0.191
Basin1G2		0.980	0.000	0.000	0.349	0.587
20281.951	0.599	0 000	0 000	0 000	0 000	
13981.578	0.671	0.980	0.000	0.000	0.280	0.657
Basin1G4	0.071	0.980	0.000	0.000	0.263	0.674
18221.377	0.687	0 980	0 000	0 000	0 330	0 506
15856.390	0.608	0.900	0.000	0.000	0.550	0.590
Basin1G6		0.980	0.000	0.000	0.330	0.607
9318.534 Basip168	0.619	0 980	0 000	0 000	0 367	0 569
11528.483	0.581	0.900	0.000	0.000	0.507	0.505
Basin1G9		0.980	0.000	0.000	0.516	0.418
5398./89 Basin1H1	0.426	0 980	0 000	0 000	0 202	0 733
19574.069	0.748	0.900	0.000	0.000	0.202	0.755
Basin111		0.980	0.000	0.000	0.209	0.725
15240.436 Basin1.11	0.740	0 980	0 000	0 000	0 194	0 742
18429.132	0.757	0.900	0.000	0.000	0.191	0.712
Basin1J2	0 605	0.980	0.000	0.000	0.267	0.671
6349./42 Basin1K1	0.685	0 980	0 000	0 000	0 358	0 579
8588.449	0.590	0.900	0.000	0.000	0.550	0.575
Basin1K2		0.980	0.000	0.000	0.547	0.388
5935.036	0.396	0 000	0 000	0 000	0 423	0 512
17143.857	0.523	0.900	0.000	0.000	0.425	0.512
Basin1K4		0.980	0.000	0.000	0.354	0.583
10677.666	0.595	0 000	0 000	0 000	0 5 0 4	0 420
5485.024	0.438	0.980	0.000	0.000	0.504	0.450
Basin1M2		0.980	0.000	0.000	0.430	0.504
6081.850	0.514	0 000	0 000	0 000	0 200	0 616
10927.564	0.628	0.900	0.000	0.000	0.320	0.010
Basin1M4		0.980	0.000	0.000	0.313	0.624
11688.184	0.636	0 000	0.000	0 000		0 0 0 0
BasiniM5 11576.089	0.372	0.980	0.000	0.000	U.568	U.365

.

-

.

.

Basin1M6	0 700	0.980	0.000	0.000	0.171	0.767
10739.830 Basin1N1	0.783	0.980	0.000	0.000	0.355	0.581
10595.094	0.593	0 000	0 000	0 000	0 0 0 0	0 (77
10558.020	0.690	0.900	0.000	0.000	0.260	0.677
Basin1N3		0.980	0.000	0.000	0.445	0.489
5551.138 Basin1N4	0.499	0.980	0 000	0 000	0 704	0 229
7288.103	0.233	0.200	0.000	0.000	0.701	0.229
Basin1N5 3263 628	0 597	0.980	0.000	0.000	0.351	0.585
Basin1N6	0.057	0.980	0.000	0.000	0.363	0.573
20481.760 Basip1N7	0.584	0 980	0 000	0 000	0 632	0 300
11479.953	0.306	0.900	0.000	0.000	0.052	0.500
Basin1N8	0 673	0.980	0.000	0.000	0.277	0.660
Basin101	0.075	0.980	0.000	0.000	0.356	0.580
26573.767	0.592	0 000	0 000	0 000	0 001	0 0 2 0
8128.319	0.847	0.980	0.000	0.000	0.091	0.830
Basin103		0.980	0.000	0.000	0.365	0.572
14553./94 Basin104	0.583	0.980	0.000	0.000	0.602	0.332
12676.644	0.339	0.000				
Basin105 9064.934	0.640	0.980	0.000	0.000	0.308	0.628
Basin1P1		0.980	0.000	0.000	0.594	0.338
17556.376 Basin1P2	0.345	0.980	0.000	0 000	0 591	0 342
5183.497	0.349		0.000	0.000	0.001	0.012
Basin1P3 9004.163	0.253	0.980	0.000	0.000	0.684	0.248
Basin2A1	0.200	0.980	0.000	0.000	0.838	0.094
1084.572 Basin2A2	0.096	0 980	0 000	0 000	0 903	0 027
857.123	0.028	0.900	0.000	0.000	0.905	0.027
Basin2B1 8995 105	0 639	0.980	0.000	0.000	0.310	0.626
Basin2B2	0.000	0.980	0.000	0.000	0.274	0.663
9905.917 Basin2B3	0.677	0 980	0 000	0 000	0 280	0 649
16470.338	0.661	0.900	0.000	0.000	0.209	0.040
Basin2C1	0 186	0.980	0.000	0.000	0.459	0.476
Basin2C2	0.400	0.980	0.000	0.000	0.550	0.384
2907.203	0.392	0 000	0 000	0 000	0 200	0 550
14078.695	0.561	0.900	0.000	0.000	0.380	0.550
Basin2D1	0 070	0.980	0.000	0.000	0.853	0.077
457.051 Basin2D2	0.078	0.980	0.000	0.000	0.351	0.586
39382.951	0.598	0 000	0 000	0 000	0.000	0 004
вазіп203 1649.981	0.035	0.980	0.000	0.000	0.896	0.034
Basin2D4	0 315	0.980	0.000	0.000	0.236	0.701
121/3.054 Basin2D5	0./15	0.980	0.000	0.000	0.531	0.403
12669.296	0.411	0 0 0 0				
Basin2E1		υ.980	0.000	0.000	0.000	0.940

. : .

. .

2358.020 Basip2E2	0.960	0 990	0 000	0 000	0 011	0 1 2 1
309.945	0.123	0.980	0.000	0.000	0.811	0.121
Basin2F1	0.120	0.980	0.000	0.000	0.577	0.377
3766.268	0.384					
Basin2F2	0 (70	0.980	0.000	0.000	0.273	0.664
Basin2F3	0.078	0.980	0 000	0 000	0 568	0 377
5272.488	0.384	0.900	0.000	0.000	0.000	0.0//
Basin2F4		0.980	0.000	0.000	0.427	0.507
2298.314	0.518	0 000	0 000	0 000	0 517	0 404
7730.837	0.432	0.980	0.000	0.000	0.517	0.424
Basin2G1	0.102	0.980	0.000	0.000	0.274	0.664
9691.476	0.677					
Basin2G2	0 603	0.980	0.000	0.000	0.268	0.669
Basin2G3	0.083	0.980	0.000	0 000	0 041	0 900
17616.558	0.918		0.000	0.000	0.011	0.900
Basin2G4	0 670	0.980	0.000	0.000	0.272	0.665
23201.236 Basin265	0.679	0 980	0 000	0 000	0 280	0 656
12448.156	0.670	0.900	0.000	0.000	0.200	0.000
Basin2G6		0.980	0.000	0.000	0.605	0.330
14534.390 Basip2410	0.336	0 000	0 000	0 000	0 252	0 504
4784.192	0.596	0.980	0.000	0.000	0.552	0.584
Basin2H2		0.980	0.000	0.000	0.536	0.398
4381.817	0.406	0 000	0 000	0 000	0 455	0 100
13956.665	0.490	0.980	0.000	0.000	0.455	0.480
Basin2H4		0.980	0.000	0.000	0.602	0.332
10897.170	0.339		0.000			
Basin2H5 3523 153	0 480	0.980	0.000	0.000	0.465	0.471
Basin2H6	0.100	0.980	0.000	0.000	0.697	0.236
1717.732	0.241					
Basin2H7	0 584	0.980	0.000	0.000	0.363	0.573
Basin2H8	0.004	0.980	0.000	0.000	0.414	0.522
10416.577	0.532					
Basin2H9	0 104	0.980	0.000	0.000	0.829	0.102
Basin2I1	0.104	0,980	0.000	0.000	0.540	0.395
4987.077	0.403					
Basin2I10		0.980	0.000	0.000	0.398	0.539
Basin2T11	0.550	0.980	0 000	0 000	0 464	0 472
10105.592	0.482	0.000	0.000	0.000	0.101	0.172
Basin2I2	0 5 4 0	0.980	0.000	0.000	0.398	0.538
3922.348 Basin2T3	0.549	0 980	0 000	0 000	0 120	0 509
1475.507	0.519	0.900	0.000	0.000	0.420	0.000
Basin2I4		0.980	0.000	0.000	0.527	0.407
4813.886	0.415	0 0 0 0	0 000	0 000	0.266	
11364.573	0.581	0.900	0.000	0.000	0.300	0.369
Basin2I6		0.980	0.000	0.000	0.466	0.469
17130.821	0.479	0 000	0 000	0 000	0 015	0 001
2148.329	0.634	0.900	0.000	0.000	0.315	U.621
	-					

Friday -

a dia 1980 ary amin'ny soratra amin'ny soratra amin'ny soratra ary 1990. Ny soratra ary 1990 amin'ny soratra
Basin2I8 7825.418	0.598	0.980	0.000	0.000	0.349	0.586
Basin2I9 12405.361	0.432	0.980	0.000	0.000	0.512	0.424
Basin2J1 7797.906	0.912	0.980	0.000	0.000	0.047	0.894
Basin2J2	0.912	0.980	0.000	0.000	0.254	0.684
12025.945 Basin2J3	0.698	0.980	0.000	0.000	0.227	0.709
23258.152 Basin2J4	0.723	0.980	0.000	0.000	0.245	0.693
9899.569 Basip2.15	0.707	0 980	0 000	0 000	0 216	0 721
7656.490	0.736	0.000	0.000	0.000	0.210	0.721
Basin2J6 5342.098	0.644	0.980	0.000	0.000	0.304	0.631
Basin2K1 10619.730	0.867	0.980	0.000	0.000	0.080	0.850
Basin2K2	0.007	0.980	0.000	0.000	0.333	0.602
6700.603 Basin2K3	0.615	0.980	0.000	0.000	0.436	0.499
4028.908 Basin2K4	0.509	0.980	0.000	0.000	0.472	0.463
6055.480 Basip2K5	0.472	0 980	0 000	0 000	0 452	0 484
7759.793	0.494	0.000	0.000	0.000	0.402	0.400
15655.865	0.437	0.980	0.000	0.000	0.507	0.429
Basin2K7 4944.197	0.453	0.980	0.000	0.000	0.491	0.444
Basin2K8	0 374	0.980	0.000	0.000	0.567	0.366
Basin2K9	0.074	0.980	0.000	0.000	0.688	0.245
12940.673	0.250					
System 0.5111232951	1.070	0.980 0.522	0.000	0.000	0.424	
********* Node Depth *******	********* Summary ********					
			Average	Mavimum	Maximum	Time of May
Max Vol.	Total		Average		PIAXIMUM	
Ponded Minu	utes		vepth	Depth	HGL	Occurrence
Node acre-in Flo	ooded	Туре	Feet	Feet	Feet	days hr:min
(1A)000		JUNCTION	1.02	1.08	1148.57	3 07:09
0 0 (1A)000A 0 0		JUNCTION	1.13	1.19	1149.68	3 07:08

. . .

a the state of the

0	(1A)000B	JUNCTION	2.35	2.54	1151.94	0	07:13
0	(1A)001	JUNCTION	5.75	6.74	1156.29	0	07:13
0	4034 (1A)002	JUNCTION	1.54	6.55	1156.21	1	06:51
0	22 (1A)003	JUNCTION	1.29	1.95	1152.81	1	07:04
0	0	JUNCTION	1.29	1 95	1153 44	1	07.02
0	(1x) 005		1 20	1 77	115/ 13	- 1	07.01
0	(1A) 0000 0		1.20	1 51	1155 00	1	07.01
0	(1A)000 0	JUNCTION	1.04	1.51	1155.86	T	07:00
0	(IA) 007 0	JUNCTION	1.04	1.51	1157.91	1	07:00
0	(1A)008 0	JUNCTION	1.32	1.54	1159.99	1	17:13
0	(1A)009 0	JUNCTION	1.32	1.53	1160.83	1	17:12
0	(1A)010 0	JUNCTION	2.00	2.51	1163.66	1	07:09
0	(1A)011	JUNCTION	2.71	7.50	1168.90	1	05:34
0	(1A)012	JUNCTION	2.04	3.95	1165.70	1	05 : 37
0	(1A)013	JUNCTION	1.55	10.33	1173.05	1	06:20
0	(1A)014	JUNCTION	1.17	3.58	1166.93	1	06 : 37
0	95 (1A)015	JUNCTION	1.30	1.48	1165.68	1	10:13
0	0 (1A)016	JUNCTION	1.48	1.71	1166.76	1	10:11
0	0 (1A)017	JUNCTION	1.48	1.71	1167.34	1	10:09
0	0 (1A)018	JUNCTION	2.15	2.37	1169.02	0	07:31
0	0 (1A)019	JUNCTION	9.52	11.75	1178.50	0	07:10
0	3929 (1A) 020	TUNCTION	1 22	1 39	1169 47	2	08+25
0	(1A) 021	UNCTION	1 22	1 20	1171 24	2	20.06
0	0	UNCTION	1.05	1 40	1170 41	2	20.00
0	0	JUNCITON	1.25	1.43	11/3.41	2	21:45
0	(1A) 023 0	JUNCTION	1.25	1.43	1174.91	2	21:44
0	(1A)024 0	JUNCTION	1.87	2.32	1177.95	0	20:10
0	(1A)024A 1299	JUNCTION	3.40	8.06	1184.16	0	20:10
0	(1A)025 0	JUNCTION	1.12	2.29	1180.07	1	06:37
0 0	(1A)026 81	JUNCTION	1.30	13.58	1193.56	1	06 : 37
0	(1A) 027	JUNCTION	1.55	18.54	1200.25	1	06:53
0	(1A) 028	JUNCTION	1.46	1.68	1183.93	3	08:24
U	(1A)029	JUNCTION	1.51	1.74	1184.71	3	08:23

1.1

• • • • • • •

a harring and the second of the second s

_	-						
0	0 (1A)030	JUNCTION	1.51	1.74	1185.22	3	08:21
0	(1A)031	JUNCTION	1.34	1.53	1186.04	3	08:19
0	(1A)032	JUNCTION	1.34	1.53	1186.83	3	08 : 17
0	(1A)033	JUNCTION	1.56	1.80	1187.93	2	22:36
0	(1A)034	JUNCTION	1.56	1.80	1188.40	3	08:53
0	(1A)035	JUNCTION	1.52	1.76	1189.27	2	09:17
0	0 (1A)035A	JUNCTION	1.53	1.76	1189.72	0	08 : 35
0	(1A)036	JUNCTION	1.32	1.50	1189.91	2	22:33
0	(1A)037	JUNCTION	1.89	2.31	1191.55	3	07:54
0	0 (1A)038	JUNCTION	4.86	11.16	1200.64	0	08:01
0	16/3 (1A)039	JUNCTION	1.22	2.28	1192.71	1	06:14
0	(1A)040	JUNCTION	2.01	10.91	1202.00	1	05:32
0	460 (1A)041	JUNCTION	2.27	14.50	1205.93	1	05 : 32
0	440 (1A)042	JUNCTION	1.58	13.90	1206.00	1	05 : 46
0	(1B)001	JUNCTION	0.50	0.74	1178.20	1	14 : 49
0	(1B)002	JUNCTION	0.51	0.76	1179.08	1	14:49
0	(1B)003	JUNCTION	1.05	1.83	1181.26	1	15 : 10
Ū Q	(1B)004	JUNCTION	2.11	11.00	1190.50	1	05 : 06
0	(1B)005	JUNCTION	0.79	9.87	1191.00	1	05 : 34
0	(1B)006	JUNCTION	1.22	13.68	1195.85	1	05 : 24
0	(1B)009	JUNCTION	1.29	18.33	1201.16	1	05:24
0	(1B)010	JUNCTION	0.52	1.83	1187.26	1	11:01
0	(1B)011	JUNCTION	1.08	10.00	1196.63	1	05:23
0	(1B)013	JUNCTION	0.51	1.82	1189.76	1	05 : 57
0	(1B)014	JUNCTION	1.40	15.35	1204.49	1	05:22
0	(1C)001	JUNCTION	1.20	17.11	1206.78	1	05 : 30
0	(1C)001A	JUNCTION	0.87	13.37	1204.00	1	05 : 32
0	(1C)001C	JUNCTION	0.38	1.82	1198.82	1	06:09
0	(1C)001D	JUNCTION	0.94	15.70	1213.48	1	05:40
0	(1C)001E	JUNCTION	0.27	1.21	1202.17	1	05:45
U	U						

. . .

0	(1C)001F	JUNCTION	0.30	1.41	1204.92	1	05:44
0	(1C)001G	JUNCTION	0.10	0.21	1192.71	1	07:09
0	(1C)002	JUNCTION	0.21	0.91	1198.68	1	10 : 17
U	(1C)003	JUNCTION	0.15	0.19	1198.21	0	20:37
0	0 (1C)004	JUNCTION	0.15	0.19	1199.39	0	08:01
0	0 (1C)005	JUNCTION	0.15	0.20	1199.41	0	08:01
0	0 (1C)006	JUNCTION	0.08	0.10	1200.29	0	21:00
0	0 (1C)006A	JUNCTION	0.07	0.09	1201.61	0	20:31
0	0 (1C)007	JUNCTION	0.07	0.10	1201.82	0	19:01
0	0 (1C)009	JUNCTION	0.30	1.41	1205.89	1	05:42
0	0 (1C)010	JUNCTION	0.27	1.25	1207.78	1	05:42
0	0 (1C)011	JUNCTION	0.35	1.99	1209.34	1	08:52
0	0 (1C)012	JUNCTION	0.00	0.00	1213.57	0	00:00
0	0 (1C) 015A	JUNCTION	0.74	12 27	1219 80	1	05:41
0	187 (1C)015B	JUNCTION	0.29	1 50	1211 61	1	06.05
0	(1C) 015C	JUNCTION	0.32	1 82	1213 27	1	06.04
0	(1C) 015C 0 (1C) 015D	TUNCTION	0.52	10 75	1225.27	1	00.04
0	(1C)015D 176 (1C)016	TUNCTION	0.71	12.75	1216 45	1	05:40
0		JUNCTION	0.29	2.00	1216.45	1	05:45
0	(1C)016A 0	JUNCTION	0.28	1.80	1217.04	Ţ	08:08
0	(1C)016B 0	JUNCTION	0.29	2.00	1218.58	1	05:42
0	(1C)016C 141	JUNCTION	0.71	16.94	1234.85	1	05 : 42
0	(1C)017 0	JUNCTION	0.07	0.09	1217.71	0	08:04
0	(1C)018 0	JUNCTION	0.07	0.09	1219.27	0	08:01
0	(1C)019 0	JUNCTION	0.07	0.09	1220.32	0	08:00
0	(1C)020 0	JUNCTION	0.06	0.07	1221.60	0	07:00
0	(1C)021 103	JUNCTION	2.28	10.58	1230.80	1	05 : 52
0	(1C) 021A 181	JUNCTION	0.81	15.62	1236.60	1	05 : 33
0 0	(1C)021B 156	JUNCTION	0.76	17.83	1239.65	1	05 : 36
0	(1C) 021C	JUNCTION	0.10	0.20	1223.18	1	08:00
0	(1C)021D	JUNCTION	0.10	0.20	1224.16	1	08:00
U	(1C)022	JUNCTION	0.15	0.54	1223.47	1	08:00

and the same of the

0	0						
0	(1C)023	JUNCTION	0.14	0.54	1224.79	1	08:00
0	(1C)024	JUNCTION	0.16	0.76	1225.92	1	11:22
0	(1C)025	JUNCTION	0.98	12.67	1238.23	1	05:23
0	349 (1C)027	JUNCTION	0.82	11.62	1239.56	1	05:26
0	306 (1C)028	JUNCTION	0.76	10.71	1239.72	1	05 : 20
0	312 (1C)041	JUNCTION	0.05	0.06	1203.89	0	07:00
0	0 (1C)176	JUNCTION	0.20	1.00	1201.93	1	05:13
0	0 (1C)177	JUNCTION	0.47	12.58	1216.51	1	06:00
0	121 (1C)178	JUNCTION	0.97	14.25	1221.37	1	05:12
0	295 (1C) 179	JUNCTION	0.98	17.25	1227.38	1	05:20
0	254 (1C)179A	JUNCTION	0.83	17 55	1227 78	- 1	05.20
0	208	UINCTION	0.14	1/ 02	1228 16	1	08.45
0	(10)1807	UNCTION	0.13	1 00	1217 23	1	05.33
0	(1C) 100A 0	UNCTION	0.10	1.00	1000 17	1	05.55
0	(10)181	JUNCTION	0.13	1.00	1220.17	T	05:31
0	(10)182	JUNCTION	0.54	12.00	1232.72	T	05:31
0	(1D)001 0	JUNCTION	0.25	0.73	1173.71	1	10:09
0	(1D)002 0	JUNCTION	0.25	0.83	1175.62	1	05 : 17
0	(1D)003 0	JUNCTION	0.23	0.62	1176.96	1	05:43
0	(1D)004 0	JUNCTION	0.26	0.76	1181.92	1	05 : 42
0	(1D)005 296	JUNCTION	0.69	8.08	1191.18	1	05:13
0	(1D)006	JUNCTION	0.23	0.52	1185.67	1	11 : 35
0	(1D)007	JUNCTION	0.23	0.52	1189.50	1	11:34
0	(1D)008	JUNCTION	0.29	0.75	1193.74	1	13:11
0	(1D)009	JUNCTION	0.30	0.83	1195.51	1	05 : 12
0	(1D)010	JUNCTION	1.24	13.04	1208.54	1	05:11
0	(1D)011	JUNCTION	0.28	0.76	1196.98	1	10:58
0	0 (1D)012	JUNCTION	1.04	11.51	1208.55	1	05:10
0	353 (1D)013	JUNCTION	0.26	0.76	1204.94	1	05:56
0	0 (1D)014	JUNCTION	0.63	6.35	1212.18	1	05:08
0	323 (1D)015	JUNCTION	0.28	0.78	1208.03	1	06:15
0	0		-	-	-		

· · · · · · · · · ·

the second se

0	(1D)016	JUNCTION	0.52	10.29	1218.52	1	06:00
0	(1D)017	JUNCTION	1.18	9.75	1218.96	1	05:10
0	503 (1D)018	JUNCTION	1.56	13.83	1224.02	1	05:06
0	500 (1D)019	JUNCTION	0.24	0.83	1212.02	1	05:20
0	0 (1D)020	JUNCTION	1.45	16.45	1228.59	1	05:19
0	390 (1D)021	JUNCTION	1.43	17.21	1230.31	1	05:18
0	377		1 37	16 91	1231 03	1	05.18
0	370	TINCTION	1 21	14 72	1220 02	1	05.10
0	375	JUNGELON	1.21	1 00	1229.02	1	05:12
0	(IE)001 0	JUNCTION	0.16	1.00	1192.96	Ţ	05:33
0	(1E)002 0	JUNCTION	0.16	1.00	1194.20	1	05:25
0	(1E)003 220	JUNCTION	0.42	6.75	1201.47	1	05:25
0	(1E)003A 220	JUNCTION	0.38	5.91	1201.91	1	05:22
0	(1E)005 3	JUNCTION	0.16	10.95	1208.55	1	08:41
0	(1E)006	JUNCTION	0.16	1.00	1200.00	1	05:26
0	(1E)007	JUNCTION	0.16	1.00	1201.04	1	05 : 23
0	(1E)008	JUNCTION	0.51	10.00	1211.70	1	05:20
0	(1E)009	JUNCTION	0.41	7.81	1210.34	1	05:20
0	190 (1F)001	JUNCTION	0.87	17.39	1212.62	1	05:35
0	206 (1F)003	JUNCTION	0.22	1.60	1200.80	1	06:13
0	0 (1F)004	JUNCTION	0.58	9.94	1209.72	1	05 : 31
0	208 (1F)005	JUNCTION	0.31	6.43	1206.31	1	05:41
0	120 (1F)006	JUNCTION	0 17	1 41	1201 52	1	07.21
0	(1F)008	JUNCTION	0 14	1 60	1201.02	1	06.14
0	(1F)0000 (1F)0000	TUNCETON	0.14	7 07	1202.02	1	00.14
0	103 (17) 008A	JUNCIION	0.25	1.21	1207.81	1	05:38
0	(IF)009 0	JUNCTION	0.12	1.60	1202.24	1	06:11
0	(1F)010 89	JUNCTION	0.23	7.96	1208.77	1	05:41
0	(1F)011 0	JUNCTION	0.04	0.05	1201.50	0	07:00
0	(1F)012A 0	JUNCTION	0.11	0.15	1202.62	0	08:00
0	(1F)013 0	JUNCTION	0.13	0.17	1203.97	0	08:04
о О	(1F)014 0	JUNCTION	0.13	0.17	1204.07	0	21:00
U	(1F)015	JUNCTION	0.08	0.11	1205.09	0	08:00

-
~	0						
0	(1F)016	JUNCTION	0.08	0.10	1205.85	0	07:00
0	(1F)017	JUNCTION	0.97	3.00	1203.94	1	05:40
0	0 (1F)017A	JUNCTION	1.39	17.37	1218.70	1	05:41
0	146 (1F)017B	JUNCTION	0.93	2.08	1203.56	1	07:08
0	0 (1F)017C	JUNCTION	1.09	3.00	1204.83	1	10:17
0	0 (1F)017D	JUNCTION	1.72	14.25	1216.20	1	05:41
0	279 (1F)017E	JUNCTION	0.98	3.00	1205.33	1	05:52
0	0 (1F)017F	JUNCTION	0.16	0.30	1203.50	1	12:36
0	0 (1F)017G	JUNCTION	0.23	0.45	1206.56	1	12:36
0	0 (1F)018	JUNCTION	0.31	0.74	1207.88	1	12 : 35
0	0 (1F)019	JUNCTION	0.31	0.83	1208.71	1	12 : 31
0	0 (1F)020	JUNCTION	0.33	0.83	1211.27	1	05:15
0	0 (1F)021	JUNCTION	0.96	8.00	1220.29	1	05:06
0	445 (1F)022	JUNCTION	0.28	0.57	1214.37	1	08:00
0	0 (1F)023	JUNCTION	0.27	0.54	1215.43	1	08:00
0	0 (1F)024	JUNCTION	0.06	0.08	1221.71	0	08:00
0	0 (1F)025	JUNCTION	0.06	0.08	1227.15	0	20:42
0	0 (1F)026	JUNCTION	0.10	0.13	1233.19	0	08:00
0	0 (1F)026A	JUNCTION	0.10	0.13	1233.76	0	20 : 37
0	0 (1F)027	JUNCTION	0.09	0.11	1234.34	0	20 : 32
0	0 (1F)028	JUNCTION	0.08	0.10	1234.84	0	20 : 29
0	0 (1F)029	JUNCTION	0.08	0.10	1235.43	0	08:01
0	0 (1F)029A	JUNCTION	0.08	0.10	1236.03	0	08:00
0	0 (1F)030	JUNCTION	0.08	0.10	1236.77	0	07:00
0	0 (1G)001	JUNCTION	1.30	14.39	1217.60	1	05:56
0	145 (1G)001A	JUNCTION	1.20	14.91	1218.51	1	06:05
0	113 (1G)002	JUNCTION	1.36	15.43	1219.50	1	06:06
0	109 (1G)003	JUNCTION	1.88	17.96	1222.30	1	05 : 37
0	263 (1G)004	JUNCTION	0.86	1.75	1206.42	1	07:11
0	0 (1G)005	JUNCTION	1.16	2.74	1207.91	1	06:09
0	0						

.

. . . .

0	(1G)006	JUNCTION	1.95	18.23	1223.50	1	05:36
0	(1G)007	JUNCTION	0.88	2.74	1208.39	1	08:24
0	(1G)008A	JUNCTION	0.89	3.00	1209.37	1	05:43
0	0 (1G)008B	JUNCTION	0.89	2.74	1210.01	1	06:07
0	0 (1G)008C	JUNCTION	1.37	18.85	1226.50	1	05:44
0	153 (1G)009A	JUNCTION	1.26	18.48	1226.50	1	05:45
0	140 (1G)009B	JUNCTION	1.26	18.23	1226.70	1	05:44
0	140 (1G)009C	JUNCTION	0.82	2.53	1211.45	1	06:20
0	(1G) 009D	JUNCTION	0.85	3.00	1211.98	1	06:12
0	(1G)009E	JUNCTION	1 06	22 47	1231 70	-	06.19
0	55 (1C) 010		0.75	3 00	1212 71	1	06.56
0	(10)010	TUNCTION	0.75	2.00	1010 07	1	06.50
0		JUNCIION	0.75	3.00	1213.07	T	06:50
0	(1G)012 0	JUNCTION	0.76	3.00	1213.60	Ţ	06:52
0	(1G)013 0	JUNCTION	0.76	3.00	1214.10	1	06:44
0	(1G)014 0	JUNCTION	0.21	0.27	1220.21	1	08:01
0	(1G)014A 0	JUNCTION	0.21	0.27	1220.85	1	08:00
0	(1G)015 0	JUNCTION	0.21	0.27	1221.97	1	08:00
0	(1G)016	JUNCTION	0.21	0.27	1222.75	1	07:44
0	(1G)017	JUNCTION	0.19	0.25	1223.45	1	08:00
0	(1G)018	JUNCTION	0.19	0.24	1224.26	1	07:00
0	0 (1G)018A	JUNCTION	0.14	0.18	1224.37	1	21:01
0	0 (1G)020	JUNCTION	2.71	12.75	1238.54	1	05:03
0	959 (1G)045	JUNCTION	0.34	0.76	1228.51	1	05 : 57
0	0 (1G)046	JUNCTION	2.21	12.54	1241.28	1	05:12
0	801 (1G)047	JUNCTION	0.28	0.53	1229.62	1	07:00
0	0	JUNCTION	0.13	0.42	1230.72	1	06:31
0	0	TUNCTION	0 14	0 47	1231 33	1	06.30
0	(1C)050		0.14	0.17	1001.00	1	06.30
0			0.17	0.47	1000 00	1	00.00
0	(IG)USI 0	JUNCTION	0.17	0.63	1232.30	1	16:31
0	(1G)052 1	JUNCTION	0.17	8.50	1240.58	1	16:45
	(1G)053	JUNCTION	1.24	8.50	1241.41	1	05:03

- - - -

0	686 (1G)054	JUNCTION	0.11	8.50	1242.21	1	13:09
0	1 (1G)055	JUNCTION	0.11	0.67	1235.18	1	05 : 35
0	0 (1G)056	JUNCTION	0.84	9.00	1244.32	1	05 : 31
0	443 (1G)057	JUNCTION	0.10	0.67	1237.81	1	06:10
0	0 (1G)058	JUNCTION	0.10	0.67	1239.63	1	05:33
0	0 (1G)059	JUNCTION	0.10	0.67	1241.34	1	05:32
0	0 (1G)060	JUNCTION	0.09	0.67	1241.49	1	05:31
0	0 (1G)061	JUNCTION	0.82	10.00	1252.52	1	05 : 31
0	390 (1G)062	JUNCTION	0.09	0.67	1245.19	1	05 : 29
0	0 (1G)063	JUNCTION	0.09	0.67	1245.55	1	05 : 28
0	0 (1G)064	JUNCTION	0.09	0.67	1247.68	1	05:26
0	0 (1G)065	JUNCTION	0.09	0.67	1249.15	1	05:24
0	0 (1G)066	JUNCTION	0.09	0.67	1250.11	1	05 : 22
0	0 (1G)067	JUNCTION	0.09	0.67	1251.82	1	05 : 20
0	0 (1G)068	JUNCTION	0.10	10.15	1263.41	1	11:43
 0	1 (1G)069	JUNCTION	0.10	10.15	1265.93	1	11 : 39
0	(1G)070	JUNCTION	0.09	0.67	1258.61	1	05:12
0	0 (1G)071	JUNCTION	0.80	10.15	1269.75	1	05:12
0	375 (1G)146	JUNCTION	0.00	0.00	1204.48	0	00:00
0	0 (1G)146A	JUNCTION	0.00	0.00	1204.74	0	00:00
0	(1G)162	JUNCTION	0.43	15.00	1232.52	1	21:03
0	3 (1G)162A	JUNCTION	0.42	15.00	1233.46	1	21:05
0	(1G)162B	JUNCTION	0.39	0.83	1219.99	1	21:03
0	(1G)162C	JUNCTION	0.42	0.83	1220.82	1	05:05
0	(1G)162D	JUNCTION	0.40	0.83	1216.76	1	21:04
0	(1G)243	JUNCTION	0.00	0.00	1229.12	0	00:00
0	(1H)001	JUNCTION	0.25	0.53	1216.49	1	07:12
0	(1H)004	JUNCTION	0.68	0.83	1219.09	0	08:09
0	(1H)005	JUNCTION	6.06	9.73	1228.01	0	06:08
0	(1H)006	JUNCTION	0.28	0.60	1220.38	1	16:36
U	v						

- 64 - 64 - 64

0	(1H)007	JUNCTION	0.28	0.59	1221.28	1	16 : 35
0	(1H)008	JUNCTION	0.28	0.59	1222.45	1	07:00
0	(1H)009	JUNCTION	0.33	0.76	1222.76	1	05:43
0	(1H) 010	JUNCTION	1.88	12.27	1234.66	1	05:16
0	(1H) 011	JUNCTION	1.20	12.00	1235.00	1	05 : 33
0	(1H) 038	JUNCTION	0.19	0.38	1219.19	1	07:00
0	(1H)039	JUNCTION	0.17	0.35	1224.38	1	06:06
0	(1H)040	JUNCTION	0.32	0.76	1229.22	1	06:06
0	(1H)041 725	JUNCTION	1.50	9.00	1238.00	1	05 : 11
0	(1H) 042	JUNCTION	0.26	0.83	1231.68	1	14 : 56
0	(1H)043 578	JUNCTION	1.33	10.11	1241.45	1	05:19
0	(1H)044	JUNCTION	0.14	0.19	1232.81	0	08:00
0	(1H)045 0	JUNCTION	0.14	0.18	1233.74	0	07:00
0	(1J)001 0	JUNCTION	1.02	2.35	1195.31	1	08:03
0	(1J)002	JUNCTION	1.04	2.35	1196.37	1	08:02
0	(1J)003	JUNCTION	1.10	2.21	1196.99	1	08:01
0	(1J)004	JUNCTION	1.13	2.30	1197.84	1	08:00
0	(1J)005	JUNCTION	1.13	2.30	1198.60	1	08:00
0	(1J)006	JUNCTION	1.09	2.18	1199.20	1	07:00
0	(1J)007 0	JUNCTION	1.04	2.05	1199.57	1	10 : 58
0	(1J)008 0	JUNCTION	1.12	2.30	1200.15	1	10:58
0	(1J)009 0	JUNCTION	1.12	2.30	1200.53	1	10 : 57
0	(1J)010 0	JUNCTION	1.24	2.74	1201.56	1	05:56
0	(1J)011 324	JUNCTION	1.85	12.30	1211.35	1	05 : 34
0	(1J)012 186	JUNCTION	1.50	13.24	1212.80	1	05 : 42
0	(1J)013 154	JUNCTION	1.59	19.59	1219.66	1	05 : 42
0	(1J)014 0	JUNCTION	1.03	3.00	1203.42	1	05:42
0	(1J)041 0	JUNCTION	0.43	0.56	1201.46	1	08:02
0	(1J)042 0	JUNCTION	0.38	0.49	1204.65	1	08:01
0	(1J)042A	JUNCTION	0.38	0.49	1206.97	1	08:01
U	(1J)042B	JUNCTION	0.41	0.53	1210.63	1	08:00

0	0						
0	(1J)043	JUNCTION	0.69	0.97	1214.03	1	08:00
0	(1J)044	JUNCTION	0.69	0.93	1214.78	1	20:02
0	(1J)045	JUNCTION	0.55	0.70	1215.18	1	08:00
0	0 (1J)046	JUNCTION	0.55	0.69	1215.38	1	19 : 35
0	0 (1J)047	JUNCTION	0.47	0.59	1215.38	1	08:00
0	0 (1J)048	JUNCTION	0.36	0.45	1215.79	1	08:00
0	0 (1J)050	JUNCTION	0.37	0.48	1217.37	1	22:46
0	0 (1J)050A	JUNCTION	0.37	0.48	1217.46	1	22:45
0	0 (1J)051	JUNCTION	0.78	1.15	1219.92	1	23:25
0	(1.T) 052	JUNCTION	2 81	10 80	1229.52	1	05.06
0	1060	UNCTION	1 22	0 51	1220.02	1	05.00
0	(10)055 504	JUNCTION	1.33	9.51	1228.48	1	03:22
0	(1J) 054	JUNCTION	0.31	0.46	1220.76	T	07:28
0	(1J)054A 0	JUNCTION	0.66	1.14	1221.75	1	13:39
0	(1J)055 469	JUNCTION	2.75	23.66	1244.36	1	05:19
0	(1J)056 0	JUNCTION	0.41	0.75	1222.27	1	11:23
0	(1J)057 0	JUNCTION	0.41	0.75	1222.83	1	11:22
Û	(1J)058	JUNCTION	0.49	0.96	1223.71	1	11:21
0	(1J)059	JUNCTION	0.55	1.15	1224.19	1	11 : 36
0	(1J)060	JUNCTION	1.24	10.58	1233.83	1	05 : 10
0	(1K)001	JUNCTION	0.51	13.83	1242.98	1	05:49
U	(1K)002	JUNCTION	0.22	0.37	1230.05	1	07:00
0	0 (1K)002A	JUNCTION	0.36	0.66	1230.79	1	06:23
0	0 (1K)003	JUNCTION	0.44	0.91	1231.42	1	11:04
0	0 (1K)004	JUNCTION	0.91	7.95	1239.06	1	05:14
0	336 (1K)005	JUNCTION	0.70	0.92	1232.89	0	08:11
0	0 (1K)006	JUNCTION	2.58	7.45	1239.43	0	07:12
0	1443 (1K)007	JUNCTION	0 41	1 00	1233 87	1	05.19
0	(1K) 008		1 1 /	11 04	1244 70	- 1	05.18
0	367	TIMOTON	1,14 0 <i>4 4</i>	LT.04	1005 01	1	00.10
0	(1K)000A 0	JUNCIION	0.44	10.91	1255.01	1	00:20
0	(IK)009 495	JUNCTION	2.15	18.33	1252.79	T	05:22

•

0	(1K)010	JUNCTION	0.68	12.91	1248.15	1	06:02
0	(1K)011	JUNCTION	0.37	1.00	1236.70	1	07:00
0	(1K)012	JUNCTION	0.17	0.94	1237.52	1	13:04
0	(1K)013	JUNCTION	2.23	23.41	1260.59	1	05:13
0	460 (1K)014	JUNCTION	0.83	8.77	1246.43	1	05:14
0	427 (1M)000	JUNCTION	0.71	2.30	1213.82	1	07:02
0	0 (1M)001	JUNCTION	0.70	2.26	1216.81	1	07:01
0	0 (1M)001A	JUNCTION	0.70	2.25	1215.33	1	07:01
0	0 (1M)001B	JUNCTION	0.70	2.25	1214.29	1	07:02
0	0 (1M)002	JUNCTION	0.70	2.26	1217.71	1	07:00
0	0 (1M)003	JUNCTION	0.69	2.08	1218.13	1	07:00
0	0 (1M)010	JUNCTION	0.56	0.91	1221.25	1	06:26
0	0 (1M)011	JUNCTION	2.20	13.54	1234.84	1	05 : 16
0	658 (1M)013	JUNCTION	0.45	0.78	1223.36	. 1	08:08
0	0 (1M)014	JUNCTION	0.45	0.78	1224.39	1	08:06
0	0 (1M)015	JUNCTION	0.46	0.79	1225.45	1	08:03
0	0 (1M)016	JUNCTION	0.46	0.78	1226.62	1	08:02
0	(1M)017	JUNCTION	0.44	0.74	1226.71	1	08:02
0	(1M)018	JUNCTION	0.45	0.77	1227.26	1	08:01
0	(1M)019	JUNCTION	0.45	0.77	1228.07	1	08:00
0	(1M)021	JUNCTION	0.42	0.48	1229.59	0	19:18
0	(1M)022	JUNCTION	0.41	0.47	1230.22	0	19 : 17
0	(1M)023	JUNCTION	0.42	0.48	1230.88	0	19:16
0	(1M)024	JUNCTION	0.42	0.48	1232.28	0	19 : 14
0	(1M)025	JUNCTION	0.41	0.47	1233.17	0	19 : 13
0	(1M)026	JUNCTION	0.41	0.48	1233.99	0	19:11
0	(1M)027	JUNCTION	0.41	0.48	1235.34	0	19:09
0	(1M) 028	JUNCTION	0.41	0.47	1236.32	0	07:06
U	(1M)035	JUNCTION	0.18	0.24	1219.66	1	07:59
0	(1M)036	JUNCTION	0.18	0.24	1220.11	1	08:00
U	(1M)037	JUNCTION	0.18	0.24	1220.69	1	07:59

1.1

-

and the second
Ο	0						
0	(1M)038	JUNCTION	0.22	0.29	1221.29	1	08:00
0	(1M)039	JUNCTION	0.34	0.68	1223.05	1	13:27
0	(1M)040	JUNCTION	0.36	0.77	1223.79	1	13:23
0	(1M)041	JUNCTION	1.19	9.25	1233.29	1	05:12
0	496 (1M)092	JUNCTION	1.11	8.65	1233.72	1	05:11
0	490 (1M)093	JUNCTION	0.32	0.77	1226.00	1	13:23
0	0 (1M)094	JUNCTION	1.25	10.50	1237.25	1	05:06
0	485 (1M)116	JUNCTION	0.21	0.60	1227.54	1	10:48
0	0 (1M)117	JUNCTION	0.24	0.74	1227.91	1	10:47
0	0 (1M)118	JUNCTION	0.25	0.83	1228.59	1	05:15
0	0 (1M)119	JUNCTION	0.25	0.83	1229.75	1	05:10
0	0 (1M)120	JUNCTION	0.24	0.76	1229.86	1	10:43
0	0 (1M)121	JUNCTION	0.58	5.80	1236.02	1	05:07
0	336 (1M)122	JUNCTION	0.90	10.87	1241.70	1	05:07
0	328 (1M)123	JUNCTION	0.20	0.27	1232.00	1	07:59
0	0 (1M)124	JUNCTION	0.09	0.17	1233.10	0	08:04
0	(1M) 125	JUNCTION	0 08	0 17	1233.77	1	08:02
0	(1M) 126	JUNCTION	0.09	0 17	1234 36	-	08.01
0	(1M) 127	JUNCTION	0.09	0.17	1235 68	1	08.00
0	(1M) 129	TINCTION	0.09	0.17	1236 36	-	08.00
0	(1M) 120	JUNCTION	0.00	0.15	1007 07	0	20.29
0	(1M) 129 0	JUNCTION	0.00	0.15	1007 40	0	20:29
0	(IM) I 30 0	JUNCTION	0.11	0.14	1237.49	0	08:00
0	(1M)131 0	JUNCTION	0.11	0.14	1238.02	0	20:31
0	(1M)132 0	JUNCTION	0.10	0.12	1239.06	0	20:25
0	(1M)133 0	JUNCTION	0.08	0.10	1240.04	0	07:00
0	(1M)161 0	JUNCTION	0.12	0.61	1236.61	1	06:03
0	(1M)162 606	JUNCTION	1.55	12.50	1250.27	1	05:03
0	(1M)163 1	JUNCTION	0.13	17.79	1257.35	1	14:59
0	(1M)164 0	JUNCTION	0.12	0.67	1242.03	1	05:11
0	(1M)165 571	JUNCTION	1.84	15.81	1259.00	1	05:09
2							

	(1M)278	JUNCTION	0.68	1.47	1218.50	1	07 : 56
0	0 (1M)279	JUNCTION	0.67	1.45	1218.95	1	07:56
0	0 (1M)279B	JUNCTION	0.65	1.40	1219.34	1	07:56
0	0 (1M)281	JUNCTION	0.69	2.00	1220.99	1	07:57
0	0 (1M)281B	JUNCTION	1.31	18.35	1238.00	1	05:41
0	136 (1M)282	JUNCTION	1.71	18.35	1238.50	1	05:46
0	256 (1M)283	JUNCTION	0.66	2.00	1222.70	1	05 : 57
0	0 (1M)284	JUNCTION	0.48	24.03	1252.50	1	08 : 17
0	3 (1M)285	JUNCTION	0.46	2.00	1231.45	1	05:44
0	0 (1M) 285A	JUNCTION	0.47	2.00	1231.86	1	05:43
0	0 (1M)286	JUNCTION	1.21	27.12	1257.50	1	05:43
0	149 (1M)286A	JUNCTION	1.17	28.15	1259.20	1	05:44
0	139 (1M)287	JUNCTION	0.38	0.65	1232.37	1	08:14
0	0 (1M)288	JUNCTION	0.38	0.65	1233.12	1	08:12
0	0 (1M)288A	JUNCTION	0.38	0.65	1233.67	1	08:12
0	0 (1M)288B	JUNCTION	0.40	0.68	1234.34	1	08:11
0	0 (1M)288C	JUNCTION	0.40	0.69	1234.90	1	08:10
0	0 (1N)004	JUNCTION	1.16	17.39	1238.60	1	05 : 58
0	165 (1N)005	JUNCTION	1.02	13.00	1235.11	1	05 : 52
0	166 (1N)006	JUNCTION	1.28	22.14	1245.30	1	05 : 56
0	159 (1N)007	JUNCTION	1.15	17.91	1242.10	1	05:52
0	161 (1N)007D	JUNCTION	0.38	0.63	1225.10	1	17:13
0	0 (1N)007E	JUNCTION	0.45	0.83	1225.55	1	14:07
0	0 (1N)008	JUNCTION	0.93	5.42	1231.19	1	05 : 13
0	523 (1N)009	JUNCTION	0.45	0.83	1227.13	1	05:09
0	0 (1N)011	JUNCTION	0.72	3.44	1230.87	1	05:08
0	526 (1N)013	JUNCTION	0.86	4.85	1233.45	1	05:04
0	524 (1N)014	JUNCTION	0.99	6.75	1236.52	1	05:18
0	477 (1N)015	JUNCTION	0.42	0.83	1231.15	1	05 : 17
0	0 (1N)016	JUNCTION	0.42	6.54	1237.76	1	13:02
0	3 (1N)017	JUNCTION	1.09	8.00	1240.30	1	05 : 12

.

and a second
Ω	173						
0	(1N)018	JUNCTION	1.16	9.13	1242.01	1	05:13
0	459 (1N)019	JUNCTION	1.11	8.92	1242.36	1	05:10
0	463 (1N)020	JUNCTION	0.35	0.83	1235.34	1	05:11
0	0 (1N)021	JUNCTION	1.17	10.21	1245.79	1	05:09
0	443 (1N)022	JUNCTION	1.26	11.25	1247.89	1	05:04
0	447 (1N)023	JUNCTION	0.33	0.83	1238.56	1	05:16
0	0 (1N)024	JUNCTION	0.33	0.83	1239.61	1	05 : 13
0	0 (1N)025	JUNCTION	1.03	10.79	1250.97	1	05:11
0	356 (1N)045	JUNCTION	0.42	0.76	1228.72	1	17:11
0	0 (1N)046	JUNCTION	0.44	0.83	1230.38	1	05:00
0	0 (1N)047	JUNCTION	2.81	17.50	1248.18	1	04:58
0	715 (1N)109A	JUNCTION	0.48	20.24	1245.30	1	08:15
0	3 (1N)110	JUNCTION	0.46	2.00	1227.92	1	08:17
0	0 (1N)111A	JUNCTION	0.47	22.42	1249.20	1	08:14
0	3 (1N)112A	JUNCTION	0.45	2.00	1229.62	1	05 : 51
0	0 (1N)112B	JUNCTION	0.46	2.00	1230.10	1	08:19
0	0 (10)001	JUNCTION	0.40	0.46	1236.70	0	07:05
0	0 (10)001A	JUNCTION	0.40	0.46	1237.51	0	07:04
0	0 (10)002	JUNCTION	0.32	0.37	1237.57	0	07:04
0	0 (10)002A	JUNCTION	0.39	0.45	1237.79	0	07:04
0	0 (10)003	JUNCTION	0.39	0.45	1238.45	0	07:03
0	0 (10)004	JUNCTION	0.39	0.45	1239.00	0	07:02
0	0 (10)005A	JUNCTION	0.39	0.44	1239.73	0	07:02
0	0 (10)005B	JUNCTION	0.32	0.36	1239.84	2	18:13
0	0 (10)005C	JUNCTION	0.31	0.35	1240.01	2	18:13
0	0 (10)005D	JUNCTION	0.74	1.00	1240.82	0	07:02
0	0 (10)005E	JUNCTION	0.00	0.00	1239.83	0	00:00
0	0 (10)010	JUNCTION	0.00	0.00	1251.71	0	00:00
0	(10)011	JUNCTION	0.00	0.00	1251.77	0	00:00
0	(10)012	TUNCTION	0 00	0 00	1252 51	Ň	00:00
0	0	00001100	0.00	0.00	+202.01	v	

. . . .

0	(10)013	JUNCTION	0.00	0.00	1253.50	0	00:00
0	(10)014	JUNCTION	0.00	0.00	1253.87	0	00:00
0	(10)015	JUNCTION	0.00	0.00	1255.16	0	00:00
0	(10)016	JUNCTION	0.00	0.00	1256.10	0	00:00
0	(10)017	JUNCTION	0.00	0.00	1257.34	0	00:00
0	(10)018	JUNCTION	0.00	0.00	1258.62	0	00:00
0	0 (10)019	JUNCTION	0.00	0.00	1260.25	0	00:00
0	0 (10)020	JUNCTION	0.00	0.00	1261.74	0	00:00
0	0 (10)021	JUNCTION	0.00	0.00	1262.57	0	00:00
0	0 (10) 072	JUNCTION	0.36	0.94	1239.10	1	08:03
0	0 (10) 157	JUNCTION	0.75	14.03	1265.80	1	05 : 38
0	178 (10)300	JUNCTION	0.38	0.68	1235.52	1	08:10
0	(10)301	JUNCTION	0.38	0.71	1236.33	1	08:06
0	(10) 302	JUNCTION	0.38	0.70	1237.15	1	08:05
0	(10) 303	JUNCTION	0.37	0.81	1238.12	1	08:03
0	(10) 304A	JUNCTION	0.15	0.58	1250.27	1	08:29
0	(10) 304B	JUNCTION	2.02	20.00	1260.00	1	05:10
0	424 (10) 305	JUNCTION	2.37	12.65	1261.20	1	05:05
0	(10) 305A	JUNCTION	0.88	1.83	1250.33	1	17:02
0	(10) 306	JUNCTION	0.49	12.61	1262.00	1	10:05
0	(10) 306A	JUNCTION	0.48	2.00	1252.23	1	05 : 28
0	(10) 307	JUNCTION	0.48	2.00	1252.66	1	05:27
0	(10) 308	JUNCTION	1.11	13.96	1265.13	1	05:28
0	(10) 308A	JUNCTION	0.33	2.00	1253.31	1	05 : 38
0	(10) 309	JUNCTION	0.61	13.14	1264.72	1	05:38
0	(1P) 002	JUNCTION	0.55	1.00	1131.00	1	05:10
0	(1P)003	JUNCTION	1.61	12.25	1142.67	1	05:11
0	412 (1P)004	JUNCTION	3.23	12.50	1144.38	0	07 : 17
0	(1P)005	JUNCTION	0.66	0.96	1135.46	0	08:05
0	(1P)006	JUNCTION	3.06	12.78	1149.40	0	07:17
U	(1P)007	JUNCTION	0.64	1.00	1141.56	0	08:00

2**^{*} * . <u>}</u> - 11 - 1

0	0						
0	(1P)008	JUNCTION	2.04	14.00	1157.00	1	05:03
0	(1P)008A	JUNCTION	0.40	1.00	1144.50	1	11:18
0	(1P)009	JUNCTION	1.27	11.67	1158.43	1	05:13
0	365 (1P)010	JUNCTION	0.45	0.61	1147.66	0	08:07
0	(1P)011	JUNCTION	0.44	0.59	1150.01	0	08:06
0	(1P)012	JUNCTION	0.44	0.60	1152.41	0	08:04
0	(1P)013	JUNCTION	0.44	0.60	1154.78	0	08:03
0	(1P)014	JUNCTION	0.44	0.60	1157.14	0	08:02
0	(1P)015	JUNCTION	0.47	0.66	1159.57	0	08:01
0	(1P)016	JUNCTION	0.47	0.66	1161.37	0	08:01
0	0 (1P)016A	JUNCTION	0.47	0.66	1162.21	0	08:00
0	(1P)017	JUNCTION	0.47	0.69	1162.57	0	08:00
0	(1P)018	JUNCTION	0.45	0.60	1164.37	0	07:00
0	(1P)024	JUNCTION	0.12	0.15	1164.24	0	07:00
0	(1P)042	JUNCTION	0.21	0.78	1134.06	1	12:01
0	0 (1P)042A	JUNCTION	1.13	12.37	1147.09	1	05:10
0	402 (1P)043	JUNCTION	1.26	13.92	1150.08	1	05:04
0	404 (1P)044	JUNCTION	0.00	0.00	1136.52	0	00:00
0	(1P)065	JUNCTION	0.06	0.08	1137.32	0	07:00
0	(1P)073	JUNCTION	0.04	0.05	1164.31	0	07:00
0	(1P)079	JUNCTION	0.04	0.05	1162.62	0	07:00
0	0 (2A)001	JUNCTION	1.23	12.25	1159.10	1	06:03
0	185 (2A)002	JUNCTION	0.59	1.72	1150.37	1	08:50
0	0 (2A)003	JUNCTION	0.62	1.81	1151.58	1	08:50
0	(2A)004	JUNCTION	0.62	1.82	1152.81	1	08:51
0	(2A)005	JUNCTION	0.80	3.00	1155.28	1	08:51
0	0 (2A)006	JUNCTION	1.28	15.99	1168.80	1	06:01
0	180 (2A)007	JUNCTION	0.78	3.00	1156.44	1	08:51
Û	0 (2A)008	JUNCTION	0.80	3.00	1156.93	1	05:54
0	0 (2A)009	JUNCTION	0.80	3.00	1157.63	1	05:51
U	0						

; ; ;

0	(2A)010	JUNCTION	0.81	3.00	1158.34	1	05:48
0	(2A)011	JUNCTION	0.81	10.55	1166.60	1	08:47
0	(2A)012	JUNCTION	0.81	3.00	1159.66	1	05:43
0	0 (2A)013	JUNCTION	0.98	7.69	1164.95	1	05:41
0	180 (2A)014	JUNCTION	0.77	6.06	1164.00	1	05:44
0	34 (2A)015	JUNCTION	0.77	3.00	1161.17	1	05:43
0	0 (2A)016	JUNCTION	1.02	10.51	1169.00	1	05:42
0	167 (2A)017	JUNCTION	1.01	10.93	1170.05	1	05:42
0	160 (2A)018		0.76	3 00	1162 49	-	05•46
0	(2A) 019		0.75	2 74	1162 59	1	08.16
0	0	TUNCTION	1 05	13 01	1173 70	1	05.45
0	146	TUNCETON	1.00	1 07	1102 54	1	07.26
0	0	JUNCTION	0.52	1.07	1165.54	L	07:20
0	(ZA) 022 0	JUNCTION	0.51	1.05	1165.40	1	0/:24
0	(2A)023 0	JUNCTION	0.51	1.04	1166.31	1	07:24
0	(2A)024 0	JUNCTION	0.49	1.01	1166.75	1	07:24
0	(2A)025 0	JUNCTION	0.48	1.00	1167.00	1	07:23
0	(2A)026 0	JUNCTION	0.63	1.33	1167.72	1	07:23
0	(2A)027 0	JUNCTION	0.69	1.45	1168.54	1	07 : 22
0	(2A) 028	JUNCTION	0.69	1.46	1168.91	1	07 : 21
0	(2A) 029	JUNCTION	0.66	1.38	1169.18	1	07:20
0	(2A) 030	JUNCTION	0.63	1.31	1169.51	1	07 : 19
0	(2A)031	JUNCTION	0.66	1.40	1170.91	1	07:18
0	(2A) 032	JUNCTION	0.66	1.40	1171.09	1	07 : 17
0	(2A)033	JUNCTION	0.61	1.27	1171.33	1	07:17
0	(2A)034	JUNCTION	0.54	1.12	1171.41	1	07 : 16
0	0 (2A)035	JUNCTION	0.54	1.12	1173.15	1	07:15
0	0 (2A)036	JUNCTION	0.56	1.16	1174.93	1	07:14
0	0 (2A)037	JUNCTION	0.56	1.17	1176.67	1	07 : 12
0	0 (2A)038	JUNCTION	0.54	1.12	1178.36	1	07:11
0	0 (2A)039	JUNCTION	0.55	1.13	1179.92	1	07:10
0	0 (2A)040	JUNCTION	0.55	1.13	1181.35	1	07:09

r 1

	0						
	(2A)041	JUNCTION	0.54	1.12	1183.07	1	07:07
	(2A)042	JUNCTION	0.54	1.12	1184.67	1	07:06
	(2A)043	JUNCTION	0.55	1.13	1186.51	1	07:05
	(2A)044	JUNCTION	0.56	1.15	1187.85	1	07:04
	(2A)045	JUNCTION	0.57	1.17	1189.07	1	07:03
	(2A)046	JUNCTION	0.67	1.41	1190.81	1	07:02
	0 0 (2A)047	JUNCTION	0.68	1.42	1191.42	1	07:00
	0 0 (2A)049	JUNCTION	1.03	1.69	1193.16	1	07:15
	0 0 (2A)050	JUNCTION	1.03	1.69	1193.98	1	07:13
	0 0 (2A)051	JUNCTION	0.81	1.30	1194.99	1	07:12
	0 0 (2A)052	JUNCTION	0.82	1.30	1196.39	1	07:11
	0 0 (2A)053	JUNCTION	0.81	1.28	1197.42	1	07:10
	0 0 (2A)054	JUNCTION	1.01	1.65	1200.84	1	07:09
	0 0 (2A)055	JUNCTION	1.02	1.66	1201.51	1	07:08
	0 0 (2A)056	JUNCTION	1.02	1.66	1202.33	1	07:07
Y	0 0 (2A)057	JUNCTION	0.90	1.44	1203.44	1	07:05
	0 0 (2A)058	JUNCTION	0.94	1.55	1204.65	1	07 : 03
	0 0 (2A)059	JUNCTION	0.94	1.55	1205.77	1	07:02
	0 0 (2A)060	JUNCTION	0.86	1.38	1207.12	1	07:01
	0 0 (2A)061	JUNCTION	0.86	1.38	1208.35	1	07:00
	0 0 (2A)062	JUNCTION	1.13	1.50	1210.76	1	10:20
	0 0 (2A)063	JUNCTION	1.09	7.36	1219.37	1	05:41
	0 279 (2A)064	JUNCTION	0.76	1.65	1215.58	1	07:00
	0 0 (2A)065	JUNCTION	0.76	1.31	1217.18	1	09:00
	0 0 (2A)066	JUNCTION	0.73	1.26	1226.27	1	08:59
	0 0 (2A)067	JUNCTION	0.75	1.29	1227.08	1	08:59
	0 0 (2A)068	JUNCTION	1.12	2.28	1229.30	1	06:44
	0 0 (2A)069	JUNCTION	0.45	0.92	1206.74	1	09:51
	0 0 (2C)001	JUNCTION	1.19	13.90	1220.00	1	05:06
	0 288 (2C)002	JUNCTION	1.18	13.60	1220.00	1	05:02
1 - 2 ⁴	0 289						

0	(2C)003	JUNCTION	0.95	10.94	1218.00	1	05:02
0	(2C)004	JUNCTION	0.41	1.00	1208.78	1	05:22
0	(2C)005	JUNCTION	0.42	1.00	1209.49	1	08:43
0	0 (2C)006	JUNCTION	0.62	5.79	1214.81	1	05:17
0	210 (2C)007	JUNCTION	0.41	5.21	1214.71	1	08:38
0	2 (2C)008	JUNCTION	0.41	1.00	1210.91	1	05 : 13
0	0 (2D)001	JUNCTION	0.54	1.00	1212.09	1	05 : 33
0	0 (2D)001A	JUNCTION	0.84	5.83	1217.28	1	05:33
0	305 (2D)002	JUNCTION	0.46	7.00	1220.00	1	06:55
0	71 (2D)003	JUNCTION	0.47	8.17	1222.87	1	06:55
0	66 (2D)004	JUNCTION	0.29	0.44	1216.71	1	08:01
0	0 (2D)005	JUNCTION	0.28	0.42	1218.28	1	08:00
0	0 (2D)006	JUNCTION	0.29	0.43	1219.92	1	08:02
0	(2D) 007		0.30	0 45	1221 80	1	08.00
0	(2D) 008		0.30	0.45	1222 79	1	08.00
0	(2D) 009	UNCTION	0.35	0.45	1225 70	1	17.04
0	(2D) 010	TUNCETON	0.35	0.00	1225.70	1	17:04
0	(2D) 010 735 (2D) 011	JUNCTION	3.20	20.56	1246.00	1	04:52
0	(2D) 011 688 (2D) 010	JUNCTION	2.97	19.88	1246.00	Ţ	04:52
0	(2D)012 0	JUNCTION	0.24	0.34	1228.30	0	08:00
0	(2D)013 0	JUNCTION	0.24	0.32	1229.47	0	07:00
0	(2D)014 0	JUNCTION	0.00	0.00	1229.96	0	00:00
0	(2D)015 0	JUNCTION	0.00	0.00	1240.96	0	00:00
0	(2D)016 0	JUNCTION	0.00	0.00	1243.40	0	00:00
0	(2D)017 0	JUNCTION	0.00	0.00	1245.11	0	00:00
0 0	(2D)018	JUNCTION	0.00	0.00	1245.82	0	00:00
0	(2D)019	JUNCTION	0.00	0.00	1246.10	0	00:00
0	(2D) 020	JUNCTION	0.00	0.00	1246.74	0	00:00
0	(2D)021	JUNCTION	0.00	0.00	1248.58	0	00:00
0	(2D) 022	JUNCTION	0.00	0.00	1249.58	0	00:00
0	(2D) 023	JUNCTION	0.00	0.00	1249.81	0	00:00
U	(2D)024	JUNCTION	0.00	0.00	1251.25	0	00:00

- 14 - 14 - 1

and the second se							
	(2D)025	JUNCTION	0.00	0.00	1251.56	0	00:00
	(2D)039	JUNCTION	0.19	0.30	1216.36	1	06 : 52
	(2D)040	JUNCTION	2.59	21.42	1239.06	1	05:08
	0 529 (2D)041	JUNCTION	0.33	0.83	1220.07	1	07:04
	(2D)042	JUNCTION	0.35	24.71	1245.45	1	08:08
	0 2 (2D)043	JUNCTION	0.33	0.83	1223.37	1	07:04
	0 0 (2D)044	JUNCTION	0.33	0.83	1225.17	1	07:04
	0 0 (2D)045	JUNCTION	0.35	0.76	1226.90	1	05 : 37
	0 0 (2D)045A	JUNCTION	1.90	18.00	1244.86	1	05:01
	0 456 (2D)046	JUNCTION	0.34	0.83	1228.59	1	05:08
	0 0 (2D)046A	JUNCTION	108.36	1305.00	2533.58	1	05:06
	0 418 (2D)241	JUNCTION	0.36	1.09	1214.96	1	07 : 13
	0 0 (2D)242	JUNCTION	0.36	1.08	1215.99	1	07 : 12
	(2D)243	JUNCTION	0.36	1.08	1216.91	1	07:10
	0 0 (2D)245	JUNCTION	0.43	19.50	1237.00	1	06 : 51
	0 20 (2D)246	JUNCTION	0.30	1.15	1219.42	1	07:05
	(2D)247	JUNCTION	0.31	1.15	1220.20	1	07:03
	(2D)248	JUNCTION	0.31	1.16	1221.03	1	07:02
	(2D)249	JUNCTION	0.31	1.17	1221.90	1	07:01
	(2D)250	JUNCTION	0.30	1.15	1222.37	1	07:00
	(2D)251	JUNCTION	0.34	1.15	1223.07	1	07:00
	(2D) 252	JUNCTION	0.32	0.42	1223.43	1	08:13
	(2D) 253	JUNCTION	0.28	0.36	1223.85	1	08:12
	(2D)254	JUNCTION	0.28	0.36	1224.79	1	08:11
	(2D) 255	JUNCTION	0.28	0.36	1225.67	1	08:08
	(2D) 256	JUNCTION	0.28	0.36	1226.44	1	08:07
	0 0 (2D)257	JUNCTION	0.28	0.36	1227.08	1	08:06
	(2D) 258	JUNCTION	0.28	0.36	1227.76	1	08:05
	(2D)259	JUNCTION	0.28	0.36	1228.48	1	08:04
	(2D)260	JUNCTION	0.28	0.36	1229.11	1	08:03
	U U						

.

0	(2D)261	JUNCTION	0.28	0.36	1229.82	1	08:02
0	(2D)262	JUNCTION	0.28	0.36	1230.97	1	08:00
0	(2D)263	JUNCTION	0.28	0.36	1232.00	0	08:04
0	(2D)264	JUNCTION	0.28	0.38	1232.94	0	08:02
0	(2D)265	JUNCTION	0.28	0.38	1233.69	0	08:01
0	(2D)266	JUNCTION	0.28	0.40	1234.61	0	08:00
0	(2D)267	JUNCTION	0.28	0.37	1235.55	0	07:00
0	(2E)001	JUNCTION	1.79	19.08	1246.54	1	05:39
0	201 (2E)002	JUNCTION	1.63	22.41	1250.66	1	05:39
0	161 (2E)003	JUNCTION	1.25	15.41	1244.63	1	05:51
0	101 (2E)004	JUNCTION	1.33	2.26	1231.84	1	14:56
0	(2E)005	JUNCTION	1.38	2.50	1232.22	1	05:46
0	(2E)006	JUNCTION	3.04	18.50	1248.46	1	05:42
0	522 (2E)007	JUNCTION	1.02	2.50	1233.16	1	05:54
0	(2E)008	JUNCTION	0.92	1.84	1233.21	1	09:51
0	(2E)009	JUNCTION	1.02	2.29	1234.37	1	09:50
0	(2E)010	JUNCTION	1.04	2.50	1235.29	1	05:46
0	(2E)011	JUNCTION	1.04	2.50	1235.85	1	05:43
0	(2E)012	JUNCTION	1.06	2.50	1236.40	1	05 : 41
0	(2E)013	JUNCTION	1.82	20.25	1254.87	1	05 : 42
0	215 (2E)014	JUNCTION	12.43	20.87	1255.99	1	05 : 36
0	(2E)043	JUNCTION	0.21	0.27	1247.78	0	07:00
0	(2F)001	JUNCTION	1.49	22.25	1258.02	1	05:53
0	(2F) 002	JUNCTION	1.03	22.48	1258.90	1	08:03
0	(2F)003	JUNCTION	1.03	2.50	1239.57	1	05 : 36
0	(2F)004	JUNCTION	1.46	19.02	1256.40	1	05:36
0	(2F) 005	JUNCTION	0.99	1.80	1239.53	1	07:00
0	(2F)006	JUNCTION	0.96	1.77	1239.64	1	12:20
U	(2F)007	JUNCTION	0.99	1.84	1240.15	1	12:19
U	(2F)008	JUNCTION	1.02	2.25	1240.73	1	12:20
U	(2F)009	JUNCTION	2.26	17.45	1256.00	1	05 : 32

. . .

^	100						
0	408 (2F)010	JUNCTION	1.16	17.58	1257.00	1	05:41
0	165 (2F)011	JUNCTION	1.11	16.28	1256.00	1	05:36
0	159 (2F)012	JUNCTION	0.65	1.07	1241.89	1	08:07
0	0 (2F)013	JUNCTION	0.65	1.07	1242.82	1	08:04
0	0 (2F)014	JUNCTION	0.65	1.06	1243.74	1	08:03
0	0 (2F)015	JUNCTION	0.65	1.07	1244.68	1	08:01
0	0 (2F)016	JUNCTION	0.65	1.07	1245.61	1	08:00
0	0 (2F)017	JUNCTION	0.66	1.07	1246.54	1	07:00
0	0 (2F)018	JUNCTION	0.65	1.05	1247.45	1	08:43
0	0 (2F)019	JUNCTION	0.65	1.07	1248.40	1	08:37
0	0 (2F)020	JUNCTION	0.65	1.07	1249.33	1	08:37
0	0 (2F)021	JUNCTION	0.65	1.06	1250.25	1	08:36
0	0 (2F)022	JUNCTION	0.67	1.00	1251.52	2	08:15
0	0 (2F) 023	JUNCTION	1.11	22.17	1272.74	-	05:14
0	203 (2F) 024	JUNCTION	0.41	1.00	1252.93	- 1	11:23
0	(2F) 025	JUNCTION	1 80	19 94	1272 00	1	05.03
0	368 (2F) 026	TINCTION	0.34	0 45	1252 66	- 0	21.46
0	(2E) 027	UNCTION	0.34	0.40	1252.00	0	21.70
0	(2E) 029	UNCTION	0.34	0.40	1252.70	0	21.30
0	(2E) 020	JUNCTION	0.34	0.46	1252.92	0	21:29
0	(2F) 029 0	JUNCTION	0.34	0.40	1253.00	1	00:21
0	(2F) 030 0	JUNCTION	0.34	0.47	1253.18	1	08:00
0	(2F) 031 0	JUNCTION	0.34	0.48	1253.32	Ţ	08:05
0	(2E) 032	JUNCTION	0.34	0.51	1253.49	1	08:00
0	(2F)033 0	JUNCTION	0.34	0.45	1253.52	0	07:00
0	(2G)001 0	JUNCTION	0.71	1.00	1253.28	0	07:33
0	(2G)002 1288	JUNCTION	4.70	16.58	1269.58	0	07:47
0	(2G)002A 1016	JUNCTION	3.96	17.21	1270.70	1	05:02
0	(2G)003 0	JUNCTION	0.51	0.72	1254.53	1	08:00
0	(2G)004 0	JUNCTION	0.50	0.71	1256.13	1	07:01
0	(2G)005 0	JUNCTION	0.48	0.78	1257.82	1	08:01

0	(2G)006	JUNCTION	0.47	0.83	1260.40	1	07:01
0	(2G)007	JUNCTION	0.50	0.83	1261.20	1	07:00
0	(2G)008	JUNCTION	1.57	10.46	1270.94	1	05:02
0	(2G)009	JUNCTION	1.28	10.12	1271.47	1	05:04
0	445 (2G)010	JUNCTION	0.42	0.53	1262.43	3	07:25
0	(2G)011	JUNCTION	0.54	0.77	1263.80	2	08:01
0	(2G)012	JUNCTION	0.56	0.83	1264.65	0	07:12
0	0 (2G)012A	JUNCTION	0.40	0.48	1264.76	0	19:16
0	0 (2G)013	JUNCTION	0.38	0.47	1265.57	0	19:16
0	0 (2G)013A	JUNCTION	0.36	0.44	1266.07	2	21 : 19
0	0 (2G)014	JUNCTION	0.59	0.83	1268.78	0	07:06
0	0 (2G)015	JUNCTION	3.03	9.29	1277.29	0	07:10
0	1447 (2G)016	JUNCTION	2.46	12.58	1281.20	1	04:59
0	815 (2G)016A	JUNCTION	1.95	13.25	1282.02	1	04:59
0	598 (2G)018	JUNCTION	1.77	12.46	1281.68	1	05:00
0	566 (2G)019	JUNCTION	1.37	9.15	1278.87	1	04:55
0	563 (2G)020	JUNCTION	1.09	9.42	1279.97	1	05:08
0	410 (2G)021	JUNCTION	1.15	10.46	1281.64	1	05:08
0	398 (2G)022	JUNCTION	1.03	8.83	1280.71	1	05:02
0	404 (2G)023	JUNCTION	0.97	8.17	1280.65	1	05:00
0	405 (2G)024	JUNCTION	0.87	6.87	1279.74	1	04:55
0	410 (2G)025	JUNCTION	0.74	7.08	1280.51	1	05:01
0	348 (2G)026	JUNCTION	0.42	5.62	1282.15	1	05:12
0	248 (2G)040	JUNCTION	1.89	16.00	1271.99	1	05:08
0	453 (2G)041	JUNCTION	0.50	0.71	1256.95	0	08:13
0	(2G)042	JUNCTION	0.50	0.71	1257.21	1	08:08
0	(2G)043	JUNCTION	0.50	0.71	1257.45	0	08:04
0	0 (2G)043A	JUNCTION	0.50	0.73	1257.61	1	08:02
0	(2G)044	JUNCTION	0.50	0.78	1257.82	1	08:00
0	0 (2G)045	JUNCTION	0.50	0.68	1257.87	0	07:00
0	0 (2G) 359	JUNCTION	0.66	6.67	1280.89	1	05:00

and a second
0	317						
Ω	(2H)001 0	JUNCTION	0.53	1.64	1250.54	1	11:00
0	(2H)002	JUNCTION	0.55	1.75	1251.34	1	05 : 23
0	(2H)003	JUNCTION	1.81	21.68	1272.00	1	05 : 25
0	(2H)005	JUNCTION	0.55	1.75	1252.80	1	05:16
0	(2H)006	JUNCTION	1.62	18.34	1270.00	1	05:14
0	327 (2H)007	JUNCTION	1.44	16.73	1269.00	1	05:14
0	309 (2H)008	JUNCTION	0.43	1.27	1254.76	1	09:44
0	0 (2H)009	JUNCTION	0.44	1.30	1254.89	1	09:44
0	0 (2H)010	JUNCTION	0.44	1.30	1255.00	1	09:44
0	0 (2H)011	JUNCTION	0.49	1.60	1257.12	1	05:53
0	0 (2H)012	JUNCTION	1.15	13.83	1270.00	1	05 : 13
0	272 (2H)013	JUNCTION	0.77	16.91	1274.00	1	05 : 32
0	104 (2Н)014	JUNCTION	0.41	0.95	1258.68	1	08:01
0	0 (2H)015	JUNCTION	0.49	1.23	1259.69	1	08:00
0	0 (2H)016	JUNCTION	0.49	1.23	1260.23	1	07 : 56
0	0 (2H)017	JUNCTION	0.41	0.96	1260.52	1	08:00
0	0 (2H)017A	JUNCTION	0.42	0.99	1261.39	1	08:00
0	0 (2H)018	JUNCTION	0.42	0.99	1261.69	1	08:00
0	0 (2H)019	JUNCTION	0.42	1.00	1262.30	1	07 : 54
0	0 (2H)020	JUNCTION	0.42	1.00	1262.40	1	07 : 53
0	0 (2H)021	JUNCTION	0.40	0.93	1263.47	1	07 : 50
0	0 (2Н)022	JUNCTION	0.29	0.66	1265.88	1	10:06
0	0 (2Н)023	JUNCTION	0.30	0.70	1266.19	1	10:06
0	0 (2H)024	JUNCTION	0.42	1.22	1269.40	1	10:15
0	0 (2H)025	JUNCTION	0.90	9.26	1278.00	1	05:09
0	299 (2Н)026	JUNCTION	0.25	0.54	1265.48	1	08:03
0	0 (2H)027	JUNCTION	0.25	0.54	1266.66	1	08:02
0	0 (2H)028	JUNCTION	0.24	0.54	1267.82	1	08:01
0	0 (2H)029	JUNCTION	0.26	0.58	1269.06	1	08:00
0	0 (2H)030	JUNCTION	0.34	0.94	1270.34	1	11:53
0	0						

B A second se

1.

0	(2H)031	JUNCTION	0.82	7.20	1276.84	1	05:22
0	(2H) 032	JUNCTION	0.55	7.73	1277.46	1	05:26
0	(2H)033	JUNCTION	0.23	0.72	1271.53	1	06:30
0	0 (2H)034	JUNCTION	0.23	0.53	1272.36	1	08:00
0	0 (2H)036	JUNCTION	0.23	0.52	1273.34	1	07:00
0	0 (2H)037	JUNCTION	0.22	0.52	1274.54	1	11:33
0	0 (2H)038	JUNCTION	0.22	0,52	1275.74	1	11:32
0	0 (2H)039		0.25	0 60	1277 24	-	11.31
0	(2H) 040	TUNCTION	0.25	0.00	1070 14	1	11.20
0	0	JUNCTION	0.25	0.00	1270.14	1	11.00
0	(2H) 041 0	JUNCTION	0.23	0.52	12/8.9/	Ţ	11:28
0	(2H)042 0	JUNCTION	0.25	0.59	1280.46	1	11:27
0	(2H)043 0	JUNCTION	0.25	0.59	1281.41	1	11:26
0	(2H)044 0	JUNCTION	0.24	0.55	1282.19	1	11:25
0	(2H)045 0	JUNCTION	0.23	0.55	1282.89	1	11 : 25
0	(2H)046 0	JUNCTION	0.33	0.96	1283.97	1	11 : 30
0	(2H)047	JUNCTION	1.53	16.92	1300.17	1	05:08
0	(2H) 048	JUNCTION	0.26	0.92	1285.29	1	09:44
0	0 (2H)049	JUNCTION	0.86	12.17	1297.77	1	05:11
0	263 (2H)050	JUNCTION	0.25	0.58	1287.14	1	10:58
0	0 (2H)051	JUNCTION	0.25	0.58	1287.86	1	10:57
0	0 (2H)051A	JUNCTION	0.23	0.52	1288.58	1	10:57
0	0 (2H)052	JUNCTION	0.34	1.00	1290.23	1	11:04
0	0 (2H)053	JUNCTION	1.58	18.44	1307.98	1	05:02
0	355 (2H)054		0 18	18 9/	1308 99	1	06.42
0	10	TUNCETON	0.10	10.10	1210 00	1	00.42
0	50 50	JUNCTION	0.32	19.10	1000 75	T	05:30
0	(2H)055 0	JUNCTION	0.14	0.83	1292.75	T	05:21
0	(2H)055A 0	JUNCTION	0.14	0.83	1293.29	1	05:20
0	(2H)056 0	JUNCTION	0.14	0.83	1294.94	1	05:18
0	(2H)057 209	JUNCTION	0.71	14.53	1309.34	1	05:18
۔ م	(2H)058 209	JUNCTION	0.73	15.24	1310.52	1	05:17
0	(2H) 285	JUNCTION	0.22	0.83	1290.81	1	05 : 07

-

.

-1 , -

0	0						
0	(2H)286	JUNCTION	1.19	17.75	1308.37	1	05:06
0	(2H)287	JUNCTION	0.17	0.83	1292.52	1	05:39
0	(2H)288	JUNCTION	0.17	0.83	1293.92	1	05:35
0	0 (2H)289	JUNCTION	0.68	22.15	1316.58	1	05 : 33
0	(2H)290	JUNCTION	0.49	20.92	1315.98	1	05 : 32
0	(2I)001	JUNCTION	0.83	9.71	1279.00	1	05:08
0	275 (2I)001A	JUNCTION	1.00	10.90	1280.00	1	05:05
0	302 (2I)002	JUNCTION	0.31	1.14	1273.00	1	05:51
0	0 (2I)003	JUNCTION	0.69	8.80	1282.00	1	05:10
0	248 (2I)004	JUNCTION	0.70	9.30	1283.00	1	05 : 15
0	240 (2I)005	JUNCTION	0.70	9.46	1285.00	1	05:12
0	(2I)006	JUNCTION	0.18	1.25	1277.85	1	05:33
0	0 (2I)008	JUNCTION	0.49	12.00	1290.00	1	05 : 32
0	(2I)009	JUNCTION	0.14	0.97	1280.61	1	07 : 45
0	(2I)010	JUNCTION	0.14	0.95	1280.95	1	07 : 45
0	(2I)011	JUNCTION	0.14	0.95	1281.55	1	07:44
0	(2I)012	JUNCTION	0.13	0.96	1282.24	1	07:44
0	(2I)013	JUNCTION	0.14	1.14	1283.90	1	06:02
0	(2I)014	JUNCTION	0.34	8.61	1292.00	1	05:31
0	(2I)015	JUNCTION	0.00	0.00	1283.87	0	00:00
0	(21)016	JUNCTION	0.00	0.00	1284.40	0	00:00
0	(21)017	JUNCTION	0.00	0.00	1284.54	0	00:00
0	(2I)017A	JUNCTION	12.25	12.40	1297.00	0	01:00
0	(2I)018	JUNCTION	1.08	11.66	1297.00	1	05:05
0	(2I)019	JUNCTION	0.28	0.92	1287.07	1	10:54
0	(21)020	JUNCTION	1.36	16.52	1304.00	1	05:04
0	(2I)021	JUNCTION	0.94	15.44	1304.00	1	05 : 11
0	(2I)021A	JUNCTION	0.28	1.17	1290.03	1	05:30
0	(2I)021B	JUNCTION	0.73	14.54	1304.00	1	05:31
0	(2I) 021C	JUNCTION	1.21	14.45	1304.00	1	05:09
0	220						

o ka ola ja

and a second
•	(21)022	JUNCTION	0.26	0.98	1290.62	1	10:29
0	(21)023	JUNCTION	0.27	1.00	1291.72	1	05:08
0	(21)024	JUNCTION	0.27	11.20	1303.00	1	10:22
0	(21)025	JUNCTION	0.27	1.00	1293.88	1	05:03
0	0 (2I)025A	JUNCTION	0.79	9.38	1303.00	1	05:02
0	(21)026	JUNCTION	0.22	1.00	1294.96	1	09:05
0	0 (2I)027	JUNCTION	0.23	1.00	1295.94	1	05:13
0	(2I)028	JUNCTION	0.73	11.90	1306.99	1	05 : 13
0	232 (2I)029	JUNCTION	0.64	12.10	1307.39	1	05:15
0	221 (2I)044	JUNCTION	0.23	1.00	1277.65	1	05 : 13
0	(21)045	JUNCTION	0.23	10.43	1287.81	1	09:05
0	(21)046	JUNCTION	0.23	1.00	1282.61	1	05 : 11
0	(2I)047	JUNCTION	0.23	1.00	1286.58	1	05:09
0	(2I)048	JUNCTION	0.23	1.00	1290.53	1	05:08
0	(2I)049	JUNCTION	0.93	16.16	1307.00	1	05 : 08
0	(21)050	JUNCTION	0.26	1.00	1293.77	1	05 : 13
0	(21)051	JUNCTION	0.27	14.56	1307.80	1	05:16
0	(21)052	JUNCTION	0.24	1.00	1294.62	1	05 : 12
0	(21)053	JUNCTION	0.24	13.21	1308.20	1	09 : 15
0	(2I)054 242	JUNCTION	0.76	11.84	1308.00	1	05 : 09
0	(2I)055	JUNCTION	0.61	10.74	1307.80	1	05 : 20
0	(21)056	JUNCTION	0.20	9.55	1308.00	1	08:27
0	(21)057	JUNCTION	0.20	1.00	1300.11	1	05:13
0	(2I)058 1	JUNCTION	0.20	11.57	1312.00	1	08:31
0	(2I)059 198	JUNCTION	0.56	10.24	1312.50	1	05:10
0	(2J)001	JUNCTION	0.81	2.25	1241.61	1	11:12
0	(2J)002	JUNCTION	0.82	2.25	1241.98	1	05:45
0	(2J)003	JUNCTION	0.83	2.25	1242.06	1	05:44
0	(2J)004 258	JUNCTION	1.63	17.96	1258.00	1	05:48
0	(2J)005	JUNCTION	0.80	2.25	1242.34	1	11:08
U	(2J)006	JUNCTION	0.82	2.25	1242.82	1	05:40

. . .

-

ala a contra cara

\cap	0						
0	(2J)007	JUNCTION	1.62	19.90	1261.00	1	05:54
U	(2J)008	JUNCTION	1.79	22.37	1264.00	1	05 : 35
0	244 (2J)009	JUNCTION	0.68	1.50	1243.35	1	11:19
0	0 (2J)010	JUNCTION	0.93	1.49	1243.58	1	11:18
0	0 (2J)011	JUNCTION	0.68	1.83	1244.49	1	11:00
0	0 (2J)012	JUNCTION	0.71	2.00	1245.17	1	05:42
0	0 (2J)013	JUNCTION	0.73	21.86	1266.00	1	11:01
0	5 (2,T) 014	JUNCTION	0.66	2.00	1246 99	1	11:00
0	(2.T) 015		0 68	2.00	1217 91	1	05.41
0		TUNCTION	0.00	1 62	1040 44	1	09.41
0		JUNCTION	0.65	1.03	1240.44	1	11 00
0	(2J)UI/ 0	JUNCTION	0.65	1.63	1249.35	1	11:02
0	(2J)018 0	JUNCTION	0.65	1.63	1249.51	1	11:01
0	(2J)019 0	JUNCTION	0.72	1.63	1250.53	1	12:56
0	(2J)020 4977	JUNCTION	21.42	21.69	1264.00	0	01:04
0	(2J)021 0	JUNCTION	0.41	0.75	1246.95	1	21:27
ů 0	(2J)022 982	JUNCTION	3.72	17.63	1264.00	1	05:06
0	(2J) 023	JUNCTION	3.35	16.65	1264.00	1	05:02
0	(2J) 026	JUNCTION	1.43	16.79	1266.00	1	05:03
0	(2J)027	JUNCTION	0.07	0.83	1251.25	1	05:09
0	(2J)028	JUNCTION	1.12	18.94	1270.00	1	05:09
0	(2J) 029	JUNCTION	1.05	17.83	1270.00	1	05:06
0	(2J)030	JUNCTION	0.05	0.67	1254.53	1	05 : 25
0	(2J)031	JUNCTION	0.05	0.67	1256.10	1	05 : 10
0	0 (2J)032	JUNCTION	0.73	13.22	1270.00	1	05 : 07
0	271 (2J)033	JUNCTION	0.00	0.00	1258.11	0	00:00
0	0 (2J)040	JUNCTION	0.37	0.76	1249.71	1	13:14
0	0 (2J)041	JUNCTION	0.38	0.83	1250.20	1	05:21
0	0 (2J)042	JUNCTION	0.38	0.83	1252.57	1	05:13
0	0 (2J)043	JUNCTION	0.37	0.83	1252.90	1	12:47
0	0 (2J)044	JUNCTION	1.06	8.52	1261.21	1	05:16
0	448	001.01101	2.00	J.J.		-	

F - - - -

. I. .

· · · · · ·

0	(2J)045	JUNCTION	0.37	0.83	1253.95	1	05 : 11
0	(2J)045A	JUNCTION	1.06	8.47	1262.00	1	05:09
0	452 (2J)046	JUNCTION	0.37	0.83	1254.87	1	05:07
0	0 (2J)047	JUNCTION	1.26	11.04	1266.00	1	05:05
0	440 (2J)048	JUNCTION	0.31	0.54	1256.42	1	20:06
0	0 (2J)049	JUNCTION	0.29	0.51	1256.53	1	20:06
0	0 (2J)050	JUNCTION	0.29	0.52	1257.52	1	20:05
0	0 (2J) 051	JUNCTION	0.30	0.62	1258.16	1	20:05
0	(2.T) 052	TUNCTION	0 32	0 67	1258 85	- 1	05.10
0	(20)052	TINCTION	0.52	10.07	1071 01	1	05.10
0	896	JUNCTION	2.44	12.58	12/1.31	Ţ	05:10
0	(2J)054 860	JUNCTION	1.92	10.09	1270.28	1	05:08
0	(2J)055 817	JUNCTION	1.23	6.42	1267.53	1	05:08
0	(2J)056 819	JUNCTION	1.06	5.33	1267.07	1	05:05
0	(2J)057 0	JUNCTION	0.17	0.24	1262.54	0	08:00
0	(2J)060	JUNCTION	0.17	0.22	1263.64	0	07:00
Ŭ O	(2K)001	JUNCTION	2.49	21.95	1271.00	1	05:25
0	(2K) 002	JUNCTION	0.38	0.93	1255.70	1	08:00
0	(2K)003	JUNCTION	0.40	1.02	1257.08	1	10:02
U	(2K)004	JUNCTION	0.40	1.02	1258.16	1	10:02
0	0 (2K)005	JUNCTION	0.40	1.01	1259.23	1	09 : 57
0	0 (2K)006	JUNCTION	0.40	1.00	1260.48	1	09 : 57
0	0 (2K)007	JUNCTION	0.40	0.99	1262.12	1	09 : 56
0	0 (2K)008	JUNCTION	0.40	1.00	1263.27	1	09:57
0	0 (2K)009	JUNCTION	0.40	1.03	1264.44	1	09:56
0	(2K) 010	JUNCTION	0 43	1 16	1265 71	- 1	10.12
0	(2K) 010 0	TUNCETON	0.40	0.21	1274 00	1	05.12
0	289 (2K) 012	JUNCTION	0.04	0.51	12/4.00	1	05.15
0	(2K)012 0	JUNCTION	0.41	1.14	1267.97	T	05:54
0	(2K)013 270	JUNCTION	0.90	10.29	1278.00	1	05:11
0	(2K)014 279	JUNCTION	0.90	9.58	1278.00	1	05:09
0	(2K)015 414	JUNCTION	1.08	8.98	1278.00	1	05:12
-	(2K)016	JUNCTION	0.37	1.00	1271.08	1	10:19

·.../

- 44 - 44 - 4

÷

the second se

0	0						
0	(2K)017	JUNCTION	0.39	1.00	1271.60	1	05:14
0	(2K)018	JUNCTION	0.89	9.00	1280.60	1	05:10
0	(2K)018A	JUNCTION	0.82	8.12	1280.12	1	05:10
0	(2K)019	JUNCTION	0.68	6.80	1279.50	1	05:10
0	275 (2K)020	JUNCTION	0.40	1.00	1274.70	1	11:53
0	0 (2K)021	JUNCTION	0.90	7.17	1280.97	1	05:12
0	402 (2K)022	JUNCTION	0.35	0.89	1275.89	1	10:09
0	0 (2K)022A	JUNCTION	0.37	1.00	1276.40	1	05:12
0	0 (2K)023	JUNCTION	0.37	1.00	1277.20	1	05:10
0	0 (2K)024	JUNCTION	0.37	1.00	1278.00	1	10:07
0	0 (2K)024A	JUNCTION	0.85	9.00	1286.10	1	05:09
0	299 (2K)025	JUNCTION	0.79	9.18	1287.68	1	05:08
0	269 (2K)026	JUNCTION	0.33	0.77	1280.59	1	11:41
0	0 (2K)027	JUNCTION	0.37	0.93	1285.13	1	11:41
0	0 (2K)028	JUNCTION	0.38	1.00	1286.03	1	05:08
0	0 (2K)029	JUNCTION	1.07	10.00	1296.00	1	05:04
0	386 (2K)030	JUNCTION	0.33	1.00	1287.96	1	05:26
0	(2K) 031	JUNCTION	0.33	12.90	1301.00	-	10:58
0	(2K) 032	TUNCTION	0 32	1 00	1290 21	-	05.16
0	(2K) 033	JUNCTION	1 17	13 70	1304 00	1	05.13
0	336 (2K) 033A	JUNCTION	1 92	11 23	1302 19	1	05.41
0	300	TUNCTION	0.92	0.70	1201 00	1	05.41
0	291	UNCTION	0.01	1.00	1202 40	1	05.40
0	(2K) 035 0	JUNCTION	0.31	1.00	1293.49	1	05:52
0	(2K) 036 0	JUNCTION	0.31	1.00	1294.59	1	05:25
0	(2K)037 307	JUNCTION	0.94	11.29	1306.00	Ţ	05:22
0	(2K)038 0	JUNCTION	0.21	1.00	1296.09	Ţ	05:20
0	(2K)039 0	JUNCTION	0.21	1.00	1296.96	1	05:17
0	(2K)040 0	JUNCTION	0.21	1.00	1297.66	1	05:13
0	(2K)041 1	JUNCTION	0.21	11.99	1309.50	1	10:11
0	(2K)042 297	JUNCTION	0.87	12.18	1310.20	1	05:09

÷ F T

- ----

0	(2K)043	JUNCTION	0.19	1.00	1299.87	1	05:33
U	(2K)044	JUNCTION	0.20	12.28	1312.00	1	09:24
0	(2K)045	JUNCTION	0.19	1.00	1301.58	1	05 : 25
0	0 (2K)046	JUNCTION	0.20	1.00	1302.43	1	05:22
0	0 (2K)047	JUNCTION	0.20	11.72	1314.00	1	09:13
0	1 (2K)048	JUNCTION	0.20	1.00	1304.14	1	05:14
0	0 (2K)049	JUNCTION	0.20	11.21	1315.20	1	09:05
0	1 (2K)050	JUNCTION	0.20	1.00	1305.68	1	05:07
0	0 (2K)051	JUNCTION	0.19	1.00	1306.36	1	05:04
0	0 (2K)052	JUNCTION	0.62	10.35	1316.40	1	05:02
0	231 (2K)314	JUNCTION	0.19	0.76	1251.40	-	06:31
0	0 (2K)315	JUNCTION	2.12	17.08	1268.60	-	05:12
0	595 (2K) 316	JUNCTION	0 19	0.83	1253 23	- 1	05.12
0	(2K) 317	JUNCTION	1 68	14 67	1267 43	1	05.12
0	545 ForcedMain	JUNCTION	9 88	10 00	1158 50		01.00
0	4981 (PLANT)	OUTEAL	9.00	10.00	1145 00	0	01.00
0	(1C) 026	DIVIDED	0.00	0.00	1145.00	0	10.40
0	(10)026	DIVIDER	0.16	0.77	1227.64	L	10:46
0	(IF)012 0	DIVIDER	0.11	0.15	1202.45	0	08:01
0	(1G)019 0	DIVIDER	0.42	0.76	1225.85	1	05 : 35
0	(2A)048 0	DIVIDER	2.23	2.41	1193.06	1	07:00
0	(2C)009 202	DIVIDER	0.88	9.83	1220.49	1	05:11
0	(2D)244 0	DIVIDER	1.62	1.72	1218.89	1	06:51
0	(1M)012 0	DIVIDER	0.46	0.79	1222.23	1	07 : 59
0	(2J)025 337	DIVIDER	5.06	17.72	1266.00	1	05 : 34
0	(1C)001B	DIVIDER	1.09	1.20	1194.70	1	07:00
0 0	(1M) 020	DIVIDER	4.07	4.15	1232.20	1	07 : 59
0	(1A) STOR	STORAGE	0.00	0.00	1100.00	0	00:00
0	(1A) DIV	STORAGE	0.00	0.00	1147.99	0	00:00
0	(2A)000	STORAGE	13.58	29.00	1159.00	1	06:14
0	NorthEnidStorage	STORAGE	0.00	0.00	1239.83	0	00:00
U	4981 (10)304C	STORAGE	2.90	9.39	1249.22	1	17:16

and the second second

ţ

n na a state a

0	0						
	LiftStation	STORAGE	7.18	22.00	1146.35	1	05:29
0	528						
	(10)304	STORAGE	0.25	3.45	1242.26	1	08:00
0	0						
	(1C)Storage	STORAGE	0.13	0.27	1191.57	1	09:05
0	0						
	PlantStorage	STORAGE	1.26	2.20	1154.20	3	00:31
Ο	0						

***** Node Flow Summary ********

(1A)022

Maximum Maximum Maximum Total Time of Max Lateral Flooding Time of Max Inflow Inflow Occurrence Overflow Occurrence Node Туре GPM GPM days hr:min GPM days hr:min _____ 307:090.00307:080.00007:300.00107:003419.17 0.00 3540.94 0.00 3541.00 0.00 3541.08 (1A)000 JUNCTION (1A)000A JUNCTION (1A)000B JUNCTION 1.95 6953.57 (1A)001 JUNCTION 1 07:00 (1A)002 JUNCTION 0.00 7160.28 1 07:05 193.80 1 07:05 1 07:04 1 07:02 1 07:01 1 07:00 1 07:00 (1A)003 JUNCTION 0.00 7162.46 0.00 (1A)004 JUNCTION 5.24 7165.45 0.00 (1A)005 JUNCTION 0.00 7164.18 0.00 (1A)006 JUNCTION 0.00 7168.40 0.00 (1A)007 JUNCTION 2442.83 7173.75 0.00 1 17:13 1 17:12 1 07:09 1 07:10 (1A)008 JUNCTION 0.00 4746.70 0.00 0.00 (1A)009 JUNCTION 0.00 4734.81 (1A)010 JUNCTION 0.00 4730.92 0.00 (1A)011 JUNCTION 0.00 5228.20 497.28 1 07:10 (1A)012 JUNCTION 0.00 9957.57 1 06:56 4729.37

0.00

1 06:57 (1A)013 JUNCTION 0.00 12163.88 1 06:37 2206.30 1 06:38 (1A)014 JUNCTION 10488.93 15016.99 1 07:00 2821.16 1 07:00 6.424532.59110:130.000.004531.70110:110.000.004549.71110:090.000.003778.87100:200.000.005126.58020:411354.88 1 10:13 (1A)015 JUNCTION 6.42 4532.59 (1A)016 JUNCTION (1A)017 JUNCTION (1A)018 JUNCTION 0.00 3778.87 (1A)019 JUNCTION 0 20:41 2 08:25 208:250.00220:060.00221:450.00 (1A)020 JUNCTION 0.00 5129.30 0.00 5127.07 (1A)021 JUNCTION

0.00 5133.80

JUNCTION

1A) 024 JUNCTION 0.00 5128.17 2 20:04 C.00 1 06:38 JUNCTION 0.00 1468.04 1 06:38 6346.76 1 07:19 JUNCTION 0.00 1068.26 1 06:38 0.00 1 A) 027 JUNCTION 7721.96 12033.11 1 07:00 592.40 1 A) 023 JUNCTION 0.00 4316.47 3 08:23 0.00 1A) 023 JUNCTION 0.00 4316.47 3 08:21 0.00 1A) 031 JUNCTION 0.00 4316.47 3 08:23 0.00 1A) 032 JUNCTION 0.00 4316.79 3 08:19 0.00 1A) 033 JUNCTION 0.00 4316.29 3 08:17 0.00 1A) 033 JUNCTION 0.00 4322.08 2 0.00 1A10.33 0.00 1A10.33 0.00 1A10.33 0.00 1A10.33 0.00 1A10.35 0.00 1A10.35 </th <th></th> <th>(1A)023</th> <th>JUNCTION</th> <th>0.15</th> <th>5133.46</th> <th>2</th> <th>21:44</th> <th>0.00</th>		(1A)023	JUNCTION	0.15	5133.46	2	21:44	0.00
(1A)024A JUNCTION 0.00 11468.04 1 06:38 6346.76 (1A)025 JUNCTION 0.00 10068.26 1 06:38 0.00 (1A)025 JUNCTION 9.30 11452.53 1 07:19 1395.53 1 07:10 JUNCTION 7721.96 12035.11 1 07:00 592.40 1 141028 JUNCTION 7721.96 12035.11 1 07:00 592.40 1(1A)023 JUNCTION 0.00 4316.51 3 08:23 0.00 1(1A)031 JUNCTION 0.00 4316.797 3 08:19 0.00 1(1A)033 JUNCTION 0.00 4321.09 2 22.66 0.00 1(1A)035 JUNCTION 0.00 4321.97 2 22.33 0.00 1(1A)035 JUNCTION 0.00 4329.79 2 22.33 0.00 1(1A)035 JUNCTION 0.00 6781.11 06:14 0.00		(1A)024	JUNCTION	0.00	5128.17	2	20:04	0.00
1 06:38 (IA)025 JUNCTION 0.00 10068.26 1 06:38 0.00 (IA)026 JUNCTION 9.30 11452.53 1 07:19 1395.53 1 07:10 JUNCTION 7721.96 12033.11 1 07:00 592.40 1 07:10 JUNCTION 0.00 4316.47 3 08:23 0.00 (IA)028 JUNCTION 0.00 4316.51 3 08:23 0.00 (IA)031 JUNCTION 0.00 4316.97 3 08:19 0.00 (IA)032 JUNCTION 0.00 4316.99 2 2:36 0.00 (IA)034 JUNCTION 0.00 4318.99 2 2:36 0.00 (IA)035 JUNCTION 0.00 4329.97 2 2:33 0.00 (IA)035 JUNCTION 0.00 6781.11 1 06:14 0.00 (IA)037 JUNCTION 0.00 6781.11 1		(1A)024A	JUNCTION	0.00	11468.04	1	06:38	6346.76
(1A) 025 JUNCTION 0.00 10068.26 1 067:19 107:19 1395.53 107:19 JUNCTION 9.30 11452.53 1 07:19 1395.53 107:10 JUNCTION 9.30 11452.53 1 07:10 1395.53 (1A) 025 JUNCTION 0.00 4316.51 3 08:23 0.00 (1A) 030 JUNCTION 0.00 4316.76 3 08:19 0.00 (1A) 031 JUNCTION 0.00 4317.20 3 08:17 0.00 (1A) 033 JUNCTION 0.00 4332.67 3 08:13 0.00 (1A) 033 JUNCTION 0.00 4322.60 3 08:35 0.00 (1A) 036 JUNCTION 0.00 4329.49 0 08:35 0.00 (1A) 037 JUNCTION 0.00 4319.39 0 08:01 0.00 (1A) 039 JUNCTION 0.00 1251.23 1 07:10 4407.2 <tr< td=""><td>1</td><td>06:38</td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	1	06:38						
(1A) 026 JUNCTION 9.30 1452.53 1 07:19 1395.53 1 07:10 JUNCTION 7721.96 12033.11 1 07:00 592.40 1 07:00 JUNCTION 0.00 4316.51 3 08:24 0.00 (1A) 028 JUNCTION 0.00 4316.51 3 08:24 0.00 (1A) 030 JUNCTION 0.00 4316.76 3 08:19 0.00 (1A) 031 JUNCTION 0.00 4316.97 3 08:19 0.00 (1A) 033 JUNCTION 0.00 4322.60 3 08:53 0.00 (1A) 035 JUNCTION 0.00 4329.97 2 22:33 0.00 (1A) 035 JUNCTION 0.00 67:10 0.00 819.34 1 07:00 4607.95 (1A) 037 JUNCTION 0.00 6781.11 1 06:14 0.00 (1A) 043 JUNCTION 0.00 12512.32 1		(1A)025	JUNCTION	0.00	10068.26	1	06:38	0.00
1 07.15 0.001100 1.00110100 1.00100 (1A)027 JUNCTION 7721.9612033.11 1 07:00 (1A)028 JUNCTION 0.00 4316.47 3 08:24 0.00 (1A)029 JUNCTION 0.00 4316.51 3 08:23 0.00 (1A)030 JUNCTION 0.00 4316.57 3 08:19 0.00 (1A)032 JUNCTION 0.00 4317.20 3 08:17 0.00 (1A)033 JUNCTION 0.00 4322.60 3 08:53 0.00 (1A)035 JUNCTION 0.00 4323.08 2 91:7 0.00 (1A)035 JUNCTION 0.00 4329.39 0 08:53 0.00 (1A)036 JUNCTION 0.00 4319.39 0 08:19 0.00 (1A)040 JUNCTION 0.00 178:41 0.551 297.73 05:52 07:00 1 07:01 07:42 314.03 <		(1A)026	TUNCTION	9 30	11452 53	1	07.19	1395 53
101027 JUNCTION 7721.96 12033.11 1 07:00 592.40 1 07:00 JUNCTION 0.00 4316.47 3 08:24 0.00 1A) 029 JUNCTION 0.00 4316.51 3 08:24 0.00 1A) 030 JUNCTION 0.00 4316.76 3 08:12 0.00 (1A) 031 JUNCTION 0.00 4317.20 3 08:13 0.00 (1A) 033 JUNCTION 0.00 4318.09 2 22:33 0.00 (1A) 035 JUNCTION 0.00 4320.49 0 08:53 0.00 (1A) 036 JUNCTION 0.00 4321.93 0 08:09 0.00 (1A) 037 JUNCTION 0.00 6781.11 1 06:14 0.00 (1A) 038 JUNCTION 0.00 122.32 1 09:11 5418.72 (1A) 042 JUNCTION 0.00 1202.64.9 1 07:42 341.03 <	1	07.19	001/01 101/	5.50	11492.99	T	07.10	1000.00
1 (1) (2) (7/1.36) (2/3.31) 1 (7/1.36) (2/3.31) (1A) 029 JUNCTION 0.00 4316.51 3 08:23 0.00 (1A) 030 JUNCTION 0.00 4316.51 3 08:12 0.00 (1A) 031 JUNCTION 0.00 4316.67 3 08:17 0.00 (1A) 032 JUNCTION 0.00 4318.09 2 22:36 0.00 (1A) 035 JUNCTION 0.00 4323.08 2 09:17 0.00 (1A) 035 JUNCTION 0.00 4323.08 2 09:17 0.00 (1A) 035 JUNCTION 0.00 4323.08 2 09:10 0.00 (1A) 035 JUNCTION 0.00 4319.39 0.86:09 0.00 (1A) 037 JUNCTION 0.00 67:61 1 0.51 297.73 05:52 IUNCTION 0.00 12512.32 1 09:11 5418.72 107:42 IUNCTION 0	1	(17)027	TINCTION	7721 06	10000 11	1	07.00	502 40
1 0.0100 (1A)028 JUNCTION 0.00 4316.47 (1A)029 3 08:24 0.00 (1A)029 JUNCTION 0.00 4316.56 3 08:23 0.00 (1A)030 JUNCTION 0.00 4316.76 3 08:21 0.00 (1A)031 JUNCTION 0.00 4316.77 3 08:19 0.00 (1A)032 JUNCTION 0.00 4316.97 3 08:19 0.00 (1A)033 JUNCTION 0.00 4322.60 3 0.8:53 0.00 (1A)035A JUNCTION 0.00 4320.49 0 08:53 0.00 (1A)036 JUNCTION 0.00 4329.97 2 2:33 0.00 (1A)038 JUNCTION 0.00 6781.11 1 06:14 0.00 (1A)041 JUNCTION 0.00 7078.84 1 05:51 297.73 1 07:02 JUNCTION 0.00 1401.21 1 14:49 0.00	1	(IA) 027	JUNCIION	//21.90	12033.11	T	07:00	592.40
LAN 028 JUNCTION 0.00 4316.47 3 05:24 0.00 [LA] 030 JUNCTION 0.00 4316.76 3 08:23 0.00 [LA] 031 JUNCTION 0.00 4316.76 3 08:19 0.00 [LA] 032 JUNCTION 0.00 4317.20 3 08:17 0.00 [LA] 033 JUNCTION 0.00 4322.60 3 08:53 0.00 [LA] 035 JUNCTION 0.00 4323.08 2 05:17 0.00 [LA] 035 JUNCTION 0.00 4329.37 2 22:33 0.00 [LA] 037 JUNCTION 0.00 4329.37 2 22:33 0.00 [LA] 033 JUNCTION 0.00 6731.11 1 06:14 0.00 [LA] 039 JUNCTION 0.00 12512.32 1 07:14 3418.72 [D9:09	T	(17)000		0 00	1016 17	2	00 04	0 00
LAND29 JUNCTION 0.00 4316.51 3 06:23 0.00 (LA)030 JUNCTION 0.00 4316.97 3 06:21 0.00 (LA)031 JUNCTION 0.00 4316.97 3 06:19 0.00 (LA)032 JUNCTION 0.00 4318.09 2 22:35 0.000 (LA)034 JUNCTION 0.00 4323.08 2 0:53 0.000 (LA)035 JUNCTION 0.00 4320.49 0 06:35 0.000 (LA)036 JUNCTION 0.00 4319.39 0 06:09 0.001 (LA)038 JUNCTION 0.00 6781.11 06:14 0.00 (LA)040 JUNCTION 0.00 12512.32 1 07:42 341.03 1 07:42 JUNCTION 0.00 1400.27 1 4:49 0.00 (LA)041 JUNCTION 0.00 1400.27 1 4:49 0.00 (LB)010 JUNCTI		(1A) 028	JUNCTION	0.00	4316.47	3	08:24	0.00
(1A)030 JUNCTION 0.00 4316.76 3 08:12 0.00 (1A)032 JUNCTION 0.00 4317.20 3 08:19 0.00 (1A)033 JUNCTION 0.00 4317.20 3 08:17 0.00 (1A)033 JUNCTION 0.00 4322.60 3 08:53 0.00 (1A)035 JUNCTION 0.00 4323.08 2 0:53 0.00 (1A)036 JUNCTION 0.00 4329.57 2 22:33 0.00 (1A)037 JUNCTION 0.00 4329.57 2 22:33 0.00 (1A)037 JUNCTION 0.00 6781.11 1 06:14 0.00 (1A)039 JUNCTION 0.00 7078.84 1 07:00 4418.72 0.9:09 JUNCTION 0.00 12512.32 1 09:11 5418.72 1 0.42 JUNCTION 0.00 1401.21 14:49 0.00 105:10 JUNCTI		(IA)029	JUNCTION	0.00	4316.51	3	08:23	0.00
(1A)031 JUNCTION 0.00 4316.97 3 08:19 0.00 (1A)032 JUNCTION 0.00 4318.09 2 22:36 0.00 (1A)033 JUNCTION 0.00 4322.60 3 08:53 0.00 (1A)035 JUNCTION 0.00 4323.08 2 09:17 0.00 (1A)036 JUNCTION 0.00 4320.49 0 08:53 0.00 (1A)036 JUNCTION 0.00 4319.39 0 08:09 0.00 (1A)037 JUNCTION 0.00 6781.11 1 0f:10 4607.95 1 07:00 1007:00 0.00 7078.84 1 05:51 297.73 1 05:52 1007:42 JUNCTION 0.00 1401.21 14:49 0.00 (1A)041 JUNCTION 0.00 1401.22 1 07:42 341.03 1 07:12 JUNCTION 0.00 1400.27 1 14:49 0.00		(IA)030	JUNCTION	0.00	4316.76	3	08:21	0.00
(1A) 032 JUNCTION 0.00 4317.20 3 08:17 0.00 (1A) 033 JUNCTION 0.00 4318.09 2 22:36 0.00 (1A) 035 JUNCTION 0.00 4322.66 3 08:53 0.00 (1A) 035 JUNCTION 0.00 4323.08 2 09:17 0.00 (1A) 036 JUNCTION 0.00 4320.49 0 08:55 0.00 (1A) 037 JUNCTION 0.00 4329.97 2 22:33 0.00 (1A) 037 JUNCTION 0.00 8919.34 1 07:00 4607.35 (1A) 040 JUNCTION 0.00 77:84 1 05:51 297.73 (1A) 041 JUNCTION 0.00 12512.32 1 09:11 5418.72 (1A) 042 JUNCTION 0.00 1401.12 1 14:49 0.00 (1B) 001 JUNCTION 0.00 1401.27 1 14:49 0.00 (1B) 003		(1A)031	JUNCTION	0.00	4316.97	3	08:19	0.00
(1A)033 JUNCTION 0.00 4318.09 2 2.2:36 0.00 (1A)035 JUNCTION 0.00 4322.60 3 0.8:53 0.00 (1A)035 JUNCTION 0.00 4320.49 0 0.8:55 0.00 (1A)036 JUNCTION 0.00 4329.97 2 2:33 0.00 (1A)037 JUNCTION 0.00 4319.39 0 0.8:09 0.00 (1A)038 JUNCTION 0.00 6781.11 1 06:14 0.00 (1A)040 JUNCTION 0.00 12512.32 1 09:11 5418.72 (1A)041 JUNCTION 0.00 12512.32 1 07:42 341.03 (1B)001 JUNCTION 0.00 1401.22 1 14:49 0.00 (1B)002 JUNCTION 0.00 1401.22 1 14:49 0.00 (1B)003 JUNCTION 0.00 1399.16 1 15:10 0.00 (1B)004 <		(1A)032	JUNCTION	0.00	4317.20	3	08 : 17	0.00
(1A) 034 JUNCTION 0.00 4322.60 3 0.8:53 0.00 (1A) 035 JUNCTION 0.00 4323.08 2 09:17 0.00 (1A) 036 JUNCTION 0.00 4323.08 2 08:35 0.00 (1A) 037 JUNCTION 0.00 4329.77 2 22:33 0.00 (1A) 037 JUNCTION 0.00 8919.34 1 07:00 4607.95 (1A) 039 JUNCTION 0.00 6781.11 1 06:14 0.00 (1A) 040 JUNCTION 0.00 7078.84 1 05:51 297.73 1 09:09 (1A) 042 JUNCTION 0.00 12212.32 1 09:11 5418.72 1 09:09 (1A) 042 JUNCTION 0.00 1401.22 1 47:42 341.03 1 07:42 JUNCTION 0.00 1400.27 1 41:49 0.00 (1B) 001 JUNCTION 0.00 1399.16		(1A)033	JUNCTION	0.00	4318.09	2	22 : 36	0.00
(1A) 035 JUNCTION 0.00 4322.08 2 0.917 0.00 (1A) 036 JUNCTION 0.00 4320.49 0 08:35 0.00 (1A) 036 JUNCTION 0.00 4320.49 0 08:09 0.00 (1A) 037 JUNCTION 0.00 6319.39 0 08:09 0.00 (1A) 038 JUNCTION 0.00 6781.11 1 06:14 0.00 (1A) 040 JUNCTION 0.00 7078.84 1 05:51 297.73 1 05:52 JUNCTION 0.00 12512.32 1 09:11 5418.72 1 07:42 JUNCTION 0.00 1401.12 1 14:49 0.00 (1B) 001 JUNCTION 0.00 1400.27 1 14:49 0.00 (1B) 003 JUNCTION 0.00 1399.16 1 15:10 0.00 (1B) 004 JUNCTION 0.00 787.08 1 07:00 0.00 <		(1A)034	JUNCTION	0.00	4322.60	3	08:53	0.00
(1A)035A JUNCTION 0.00 4320.49 0 08:35 0.00 (1A)036 JUNCTION 0.00 4329.97 2 22:33 0.00 (1A)037 JUNCTION 0.00 8919.34 1 07:00 4607.95 (1A)039 JUNCTION 0.00 6781.11 1 06:14 0.00 (1A)040 JUNCTION 0.00 7078.84 1 05:51 297.73 1 05:52		(1A)035	JUNCTION	0.00	4323.08	2	09:17	0.00
(1A)036 JUNCTION 0.00 4319.39 0.00 (1A)037 JUNCTION 0.00 4319.39 0.00 08:09 0.00 (1A)038 JUNCTION 0.00 8919.34 1 07:00 4607.95 1 07:00 JUNCTION 0.00 7078.84 1 05:51 297.73 1 05:52 JUNCTION 0.00 12512.32 1 09:11 5418.72 1 05:52 JUNCTION 0.00 12512.32 1 07:42 341.03 1 07:72 JUNCTION 0.00 1401.27 1 14:49 0.00 (1B)001 JUNCTION 0.00 1399.16 1 15:10 0.00 (1B)003 JUNCTION 0.00 7387.08 1 05:35 5988.69 (1B)005 JUNCTION 0.00 5090.50 1 05:43 123.70 1 07:00 JUNCTION 0.00 5090.50 1 07:00 284.69 <td></td> <td>(1A)035A</td> <td>JUNCTION</td> <td>0.00</td> <td>4320.49</td> <td>0</td> <td>08:35</td> <td>0.00</td>		(1A)035A	JUNCTION	0.00	4320.49	0	08:35	0.00
(1A)037 JUNCTION 0.00 4319.39 0 08:09 0.00 (1A)038 JUNCTION 0.00 8919.34 1 07:00 4607.95 (1A)039 JUNCTION 0.00 6781.11 1 06:14 0.00 (1A)040 JUNCTION 0.00 7078.84 1 05:51 297.73 1 05:52		(1A)036	JUNCTION	0.00	4329.97	2	22:33	0.00
(1A) 038 JUNCTION 0.00 0319.34 1 07:00 4607.95 1 07:00 JUNCTION 0.00 681.11 1 06:14 0.00 (1A) 039 JUNCTION 0.00 7078.84 1 05:51 297.73 1 05:52 (1A) 041 JUNCTION 0.00 12512.32 1 09:11 5418.72 1 07:42 JUNCTION 5.50 12026.49 1 07:42 341.03 1 07:42 JUNCTION 0.00 1401.12 1 14:49 0.00 (1B) 001 JUNCTION 0.00 1399.16 1 15:10 0.00 (1B) 003 JUNCTION 0.00 1399.16 1 15:10 0.00 (1B) 005 JUNCTION 0.00 590.50 1 05:35 1 07:00 0.00 (1B) 006 JUNCTION 0.00 5090.50 1 05:43 123.70 1 07:00 JUNCTION		(1A)037	JUNCTION	0.00	4319.39	0	08:09	0.00
1 07:00 0.00 0		(1A) 038	JUNCTION	0.00	8919.34	1	07:00	4607.95
(1A)039 JUNCTION 0.00 6781.11 1 06:14 0.00 (1A)040 JUNCTION 0.00 7078.84 1 05:51 297.73 1 05:52 (1A)041 JUNCTION 0.00 12512.32 1 09:11 5418.72 1 09:09 (1A)042 JUNCTION 5.50 12026.49 1 07:42 341.03 1 07:42 JUNCTION 0.00 1401.12 1 14:49 0.00 (1B)001 JUNCTION 0.00 1399.16 1 15:10 0.00 (1B)003 JUNCTION 0.00 7387.08 1 05:35 5988.69 1 05:55 JUNCTION 0.00 590.50 1 05:43 123.70 1 05:44 JUNCTION 0.00 5090.50 1 05:43 123.70 1 07:00 JUNCTION 64.01 8490.47 1 07:00 298.69 1 01:05 J	1	07:00	001101201	0.00	0929.01	-		100.000
(1A)040 JUNCTION 0.00 7078.81 1 05:51 297.73 1 05:52 JUNCTION 0.00 12512.32 1 09:11 5418.72 1 09:09 JUNCTION 0.00 12512.32 1 09:11 5418.72 1 09:09 JUNCTION 5.50 12026.49 1 07:42 (1B)001 JUNCTION 0.00 1401.22 1 14:49 0.00 (1B)002 JUNCTION 0.00 1400.27 1 14:49 0.00 (1B)003 JUNCTION 0.00 7387.08 1 05:35 5988.69 1 05:35 JUNCTION 0.00 5090.50 1 05:43 123.70 1 05:44 JUNCTION 3649.08 8490.47 1 07:00 3386.65 1 07:00 JUNCTION 0.00 5090.05 1 10:50 298.69 1 01:50 JUNCTION 0.00 5085.72	-	(14)039	TUNCTION	0 00	6781 11	1	06.14	0 00
(11,10,10) (11,10,		(1A)000	TINCTION	0.00	7078 84	1	05.51	297 73
(1A)041 JUNCTION 0.00 12512.32 1 09:11 5418.72 1 09:09 JUNCTION 5.50 12026.49 1 07:42 341.03 (1B)001 JUNCTION 0.00 1401.12 1 14:49 0.00 (1B)002 JUNCTION 0.00 1400.27 1 14:49 0.00 (1B)003 JUNCTION 0.00 1399.16 1 15:10 0.00 (1B)004 JUNCTION 0.00 7387.08 1 05:35 5988.69 1 05:35 JUNCTION 8474.22 13441.02 1 07:00 6022.42 1 07:00 JUNCTION 8474.22 13441.02 1 07:00 6022.42 1 07:00 JUNCTION 6649.08 8490.47 1 07:00 208.65 1 07:00 JUNCTION 67.01 4856.20 1 07:00 298.69 1 10:50 JUNCTION 25358.09 30682.39 1 07:00 2548.52 1 07:00 JUNCTION </td <td>1</td> <td>05.52</td> <td>OUNCIION</td> <td>0.00</td> <td>1010.04</td> <td>T</td> <td>03.51</td> <td>201.10</td>	1	05.52	OUNCIION	0.00	1010.04	T	03.51	201.10
101:01 JUNCTION 0.00 12312.32 1 03111 3416.72 (1A) 042 JUNCTION 5.50 12026.49 1 07:42 341.03 1 07:42 JUNCTION 0.00 1401.12 1 14:49 0.00 (1B) 001 JUNCTION 0.00 1400.27 1 14:49 0.00 (1B) 003 JUNCTION 0.00 1399.16 1 15:10 0.00 (1B) 004 JUNCTION 0.00 7387.08 1 05:35 5988.69 1 05:35 JUNCTION 8474.22 13441.02 1 07:00 6022.42 (1B) 005 JUNCTION 8474.22 13441.02 1 07:00 6022.42 (1B) 006 JUNCTION 0.00 5090.50 1 05:43 123.70 1 05:44 JUNCTION 0.00 5090.05 1 07:00 298.69 1 10:50 JUNCTION 0.00 5090.05 1 10:50 298.69 1 10:50 JUNCTION 0.00 5	Т	$(1\pi)041$	TINCTTON	0 00	10510 00	1	00.11	5110 70
1 093.09 JUNCTION 5.50 12026.49 1 07:42 341.03 1 07:42 JUNCTION 0.00 1401.12 1 14:49 0.00 (1B)001 JUNCTION 0.00 1400.27 1 14:49 0.00 (1B)003 JUNCTION 0.00 1399.16 1 15:10 0.00 (1B)004 JUNCTION 0.00 7387.08 1 05:35 5988.69 1 05:35 JUNCTION 8474.22 13441.02 1 07:00 6022.42 1 07:00 JUNCTION 8474.22 13441.02 1 07:00 6022.42 1 07:00 JUNCTION 3649.08 8490.47 1 07:00 3386.65 1 07:00 JUNCTION 0.00 5090.55 1 10:50 298.69 1 0.1050 JUNCTION 0.00 5085.72 1 05:57 0.00 1B)013 JUNCTION 0.00	1	(1A)041	JUNCIION	0.00	12312.32	T	09:11	J410.72
1 07:42 341.03 1 07:42 JUNCTION 0.00 1401.12 1 14:49 0.00 (1B)001 JUNCTION 0.00 1400.27 1 14:49 0.00 (1B)003 JUNCTION 0.00 1399.16 1 15:10 0.00 (1B)004 JUNCTION 0.00 7387.08 1 05:35 5988.69 1 05:35 JUNCTION 8474.22 13441.02 1 07:00 6022.42 1 07:00 JUNCTION 8474.22 13441.02 1 07:00 6022.42 1 07:00 JUNCTION 3649.08 8490.47 1 07:00 3386.65 1 07:00 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)010 JUNCTION 0.00 5090.05 1 10:50 298.69 1 07:00 JUNCTION 0.00 5085.72 1 07:00 25548.52 1 07:01 JUNCTION 7.71 6599.14 1 07:59 126	T	(1)) 040	TINGETON		10006 40	1	07 40	241 02
1 07:42 (1B)001 JUNCTION 0.00 1401.12 1 14:49 0.00 (1B)003 JUNCTION 0.00 1399.16 1 15:10 0.00 (1B)004 JUNCTION 0.00 7387.08 1 05:35 5988.69 1 05:35 JUNCTION 0.00 5090.50 1 07:00 6022.42 1 07:00 JUNCTION 0.00 5090.50 1 05:43 123.70 1 05:44 JUNCTION 0.00 5090.50 1 07:00 3386.65 1 07:00 JUNCTION 3649.08 8490.47 1 07:00 3386.65 1 07:00 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)013 JUNCTION 0.00 5085.72 1 05:57 0.00 (1B)014 JUNCTION 25358.09 30682.39 1 07:00 2548.52 1 07:00 JUNCTION 7.71 6599.14 07:59 1264.07 1 07	-	(IA)042	JUNCIION	5.50	12026.49	T	0/:42	341.03
(1B)001 JUNCTION 0.00 1401.22 1 14:49 0.00 (1B)002 JUNCTION 0.00 1400.27 1 14:49 0.00 (1B)003 JUNCTION 0.00 1399.16 1 15:10 0.00 (1B)004 JUNCTION 0.00 7387.08 1 05:35 5988.69 1 05:35 JUNCTION 8474.22 13441.02 1 07:00 6022.42 1 07:00 JUNCTION 8474.22 13441.02 1 07:00 6022.42 1 07:00 JUNCTION 6.00 5090.50 1 05:43 123.70 1 05:44 (1B)009 JUNCTION 3649.08 8490.47 1 07:00 3886.65 1 07:00 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)013 JUNCTION 0.00 5085.72 1 05:57 0.00 (1C)001A JUNCTION 7.71 659	Ţ	07:42				_		
(1B)002 JUNCTION 0.00 1400.27 1 14:49 0.00 (1B)003 JUNCTION 0.00 1399.16 1 15:10 0.00 (1B)004 JUNCTION 0.00 7387.08 1 05:35 5988.69 1 05:35 JUNCTION 8474.22 13441.02 1 07:00 6022.42 1 07:00 JUNCTION 0.00 5090.50 1 05:43 123.70 1 05:44 JUNCTION 3649.08 8490.47 1 07:00 3386.65 1 07:00 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)010 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)013 JUNCTION 0.00 5090.05 1 10:50 298.69 1 07:00 JUNCTION 25358.09 30682.39 1 07:00 2546.52 1 07:00 JUNCTION 7.71 6599.14 1 07:59 1264.07 1 07:00 JUNCTION		(1B)001	JUNCTION	0.00	1401.12	1	14:49	0.00
(1B) 003 JUNCTION 0.00 1399.16 1 15:10 0.00 (1B) 004 JUNCTION 0.00 7387.08 1 05:35 5988.69 (1B) 005 JUNCTION 8474.22 13441.02 1 07:00 6022.42 (1B) 006 JUNCTION 0.00 5090.50 1 05:43 123.70 (1B) 006 JUNCTION 3649.08 8490.47 1 07:00 3386.65 1 07:00 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B) 010 JUNCTION 0.00 5090.05 1 10:50 298.69 1 10:50 JUNCTION 0.00 5085.72 1 05:57 0.00 (1B) 013 JUNCTION 25358.09 30682.39 1 07:00 2548.52 1 07:00 JUNCTION 7.71 6599.14 1 07:59 1264.07 1 07:00 JUNCTION 0.00 4757.27 1		(1B)002	JUNCTION	0.00	1400.27	1	14:49	0.00
(1B)004 JUNCTION 0.00 7387.08 1 05:35 (1B)005 JUNCTION 8474.22 13441.02 1 07:00 (1B)006 JUNCTION 0.00 5090.50 1 05:43 123.70 1 05:44 JUNCTION 3649.08 8490.47 1 07:00 3386.65 1 07:00 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)010 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)011 JUNCTION 0.00 5090.05 1 10:50 298.69 1 10:50 JUNCTION 0.00 5085.72 1 05:57 0.00 (1B)013 JUNCTION 25358.09 30682.39 1 07:00 25548.52 1 07:00 JUNCTION 7.71 6599.14 1 07:59 1264.07 (1C)001A JUNCTION 1.2567.90 17139.93 1 07:00 12143.67 1 07:00 JUNCTION 0.00 4757.27 1 <		(1B)003	JUNCTION	0.00	1399.16	1	15 : 10	0.00
1 05:35 (1B)005 JUNCTION 8474.22 13441.02 1 07:00 (1B)006 JUNCTION 0.00 5090.50 1 05:43 123.70 1 05:44 JUNCTION 3649.08 8490.47 1 07:00 3386.65 1 07:00 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)010 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)013 JUNCTION 0.00 5085.72 1 05:57 0.00 (1B)014 JUNCTION 25358.09 30682.39 1 07:00 25548.52 1 07:59 JUNCTION 7.71 6599.14 1 07:59 1264.07 1 07:59 JUNCTION 12567.90 17139.93 1 07:00 12143.67 1 07:00 JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION<		(1B)004	JUNCTION	0.00	7387.08	1	05 : 35	5988.69
(1B)005 JUNCTION 8474.22 13441.02 1 07:00 6022.42 1 07:00 JUNCTION 0.00 5090.50 1 05:43 123.70 (1B)006 JUNCTION 3649.08 8490.47 1 07:00 3386.65 1 07:00 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)010 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)011 JUNCTION 0.00 5090.05 1 10:50 298.69 1 10:50 JUNCTION 0.00 5085.72 1 05:57 0.00 (1B)013 JUNCTION 0.00 5085.72 1 07:00 25548.52 1 07:00 JUNCTION 7.71 6599.14 1 07:59 1264.07 1 07:00 JUNCTION 1.2567.90 17139.93 1 07:00 1243.67 1 07:00 JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION <td>1</td> <td>05:35</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	05 : 35						
1 07:00 (1B)006 JUNCTION 0.00 5090.50 1 05:43 123.70 1 05:44 JUNCTION 3649.08 8490.47 1 07:00 3386.65 1 07:00 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)010 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)011 JUNCTION 0.00 5090.05 1 10:50 298.69 1 0:50 JUNCTION 0.00 5085.72 1 05:57 0.00 (1B)013 JUNCTION 25358.09 30682.39 1 07:00 25548.52 1 07:00 JUNCTION 7.71 6599.14 1 07:59 1264.07 (1C)001A JUNCTION 12567.90 17139.93 1 07:00 12143.67 1 07:59 JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION 0.00 5778.58 1 05:45 0.00		(1B)005	JUNCTION	8474.22	13441.02	1	07:00	6022.42
(1B)006 JUNCTION 0.00 5090.50 1 05:43 123.70 1 05:44 JUNCTION 3649.08 8490.47 1 07:00 3386.65 1 07:00 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)010 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)011 JUNCTION 0.00 5090.05 1 10:50 298.69 1 10:50 JUNCTION 0.00 5085.72 1 05:57 0.00 (1B)014 JUNCTION 25358.09 30682.39 1 07:00 25548.52 1 07:00 JUNCTION 7.71 6599.14 1 07:59 1264.07 1 07:59 JUNCTION 12567.90 17139.93 1 07:00 12143.67 1 07:00 JUNCTION 0.00 4757.27 1 06:09 0.00 (1C)001C JUNCTION 0.00 5778.58 1 05:46 1021.31 1 05:46 JUNCTION	1	07:00						
1 05:44 (1B)009 JUNCTION 3649.08 8490.47 1 07:00 3386.65 1 07:00 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)010 JUNCTION 0.00 5090.05 1 10:50 298.69 1 0:50 JUNCTION 0.00 5085.72 1 05:57 0.00 (1B)014 JUNCTION 25358.09 30682.39 1 07:00 25548.52 1 07:00 JUNCTION 7.71 6599.14 1 07:00 1264.07 1 07:00 JUNCTION 7.71 6599.14 1 07:00 12143.67 1 07:00 JUNCTION 12567.90 17139.93 1 07:00 12143.67 1 07:00 JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION 0.00 5779.01 1 05:45 0.00 (1C)001E JUNCTION 0.00 5778.58 1 05:45 0.00 <td></td> <td>(1B)006</td> <td>JUNCTION</td> <td>0.00</td> <td>5090.50</td> <td>1</td> <td>05:43</td> <td>123.70</td>		(1B)006	JUNCTION	0.00	5090.50	1	05:43	123.70
(1B)009 JUNCTION 3649.08 8490.47 1 07:00 3386.65 1 07:00 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)010 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)011 JUNCTION 0.00 5090.05 1 10:50 298.69 1 10:50 JUNCTION 0.00 5085.72 1 05:57 0.00 (1B)013 JUNCTION 25358.09 30682.39 1 07:00 25548.52 1 07:00 JUNCTION 7.71 6599.14 1 07:59 1264.07 (1C)001A JUNCTION 7.71 6599.14 1 07:00 12143.67 1 07:00 JUNCTION 0.00 4757.27 1 06:09 0.00 (1C)001C JUNCTION 0.00 5778.58 1 05:46 1021.31 1 05:46 JUNCTION 0.00 5779.01 <td< td=""><td>1</td><td>05:44</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1	05:44						
1 07:00 1 07:00 0.00 0.00 1 07:00 0.00 (1B)010 JUNCTION 0.00 5090.05 1 07:00 0.00 (1B)013 JUNCTION 0.00 5085.72 1 05:57 0.00 (1B)014 JUNCTION 25358.09 30682.39 1 07:00 25548.52 1 07:00 1 07:00 25354.09 30682.39 1 07:00 25548.52 1 07:00 JUNCTION 7.71 6599.14 1 07:59 1264.07 1 07:59 JUNCTION 12567.90 17139.93 1 07:00 12143.67 1 07:00 JUNCTION 12567.90 17139.93 1 07:00 12143.67 1 07:00 JUNCTION 0.00 4757.27 1 06:09 0.00 (1C)001C JUNCTION 0.00 5778.58 1 05:45 0.00 (1C)001F JUNCTION 0.00 5779.01 1 05:44 0.00 (1C)001G <t< td=""><td></td><td>(1B)009</td><td>JUNCTION</td><td>3649.08</td><td>8490.47</td><td>1</td><td>07:00</td><td>3386.65</td></t<>		(1B)009	JUNCTION	3649.08	8490.47	1	07:00	3386.65
(1B)010 JUNCTION 67.01 4856.20 1 07:00 0.00 (1B)011 JUNCTION 0.00 5090.05 1 10:50 298.69 1 10:50 (1B)013 JUNCTION 0.00 5085.72 1 05:57 0.00 (1B)014 JUNCTION 25358.09 30682.39 1 07:00 25548.52 1 07:00 JUNCTION 7.71 6599.14 1 07:59 1264.07 (1C)001A JUNCTION 7.71 6599.14 1 07:00 12143.67 1 07:00 JUNCTION 12567.90 17139.93 1 07:00 12143.67 1 07:00 JUNCTION 0.00 4757.27 1 06:09 0.00 (1C)001C JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION 0.00 5779.01 1 05:44 0.00 (1C)001F JUNCTION 0.00 195.69 1 07:09 0.00 (1C)001G JUNCTION <td< td=""><td>1</td><td>07:00</td><td></td><td></td><td>010011</td><td>-</td><td></td><td></td></td<>	1	07:00			010011	-		
(1B)011 JUNCTION 0.00 509.05 1 01.50 298.69 1 10:50 JUNCTION 0.00 5085.72 1 05:57 0.00 (1B)013 JUNCTION 25358.09 30682.39 1 07:00 25548.52 1 07:00 JUNCTION 7.71 6599.14 1 07:59 1264.07 (1C)001A JUNCTION 7.71 6599.14 1 07:00 12143.67 1 07:00 JUNCTION 12567.90 17139.93 1 07:00 12143.67 1 07:00 JUNCTION 0.00 4757.27 1 06:09 0.00 (1C)001C JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION 0.00 5779.01 1 05:45 0.00 (1C)001F JUNCTION 0.00 5779.01 1 05:45 0.00 (1C)001G JUNCTION 0.00 195.69 1 07:09 0.00 (1C)002 JUNCTION 12.18 140	-	(1B)010	TINCTION	67 01	4856 20	1	07.00	0 00
1 10:50 1 0:51 1 0:51 1 0:51 1 0:51 1 0:51 1 0:51 1 0:51 1 0:51		(1B)011	JUNCTION	0,001	5090.20	1	10.50	298 69
10:00 JUNCTION 0.00 5085.72 1 05:57 0.00 (1B)014 JUNCTION 25358.09 30682.39 1 07:00 25548.52 1 07:00 JUNCTION 7.71 6599.14 1 07:59 1264.07 1 07:59 JUNCTION 7.71 6599.14 1 07:00 12143.67 1 07:00 JUNCTION 12567.90 17139.93 1 07:00 12143.67 1 07:00 JUNCTION 0.00 4757.27 1 06:09 0.00 (1C)001C JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION 0.00 5778.58 1 05:45 0.00 (1C)001E JUNCTION 0.00 5779.01 1 05:44 0.00 (1C)001G JUNCTION 0.00 195.69 1 07:09 0.00 (1C)002 JUNCTION 12.18 1409.27 1 07:59 0.00 (1C)003 JUNCTION 13.41 35.45<	1	10.50	SONOTION	0.00	5050.05	-	10.00	290.09
(1B)013 JUNCTION 25358.09 30682.39 1 07:00 25548.52 1 07:00 JUNCTION 7.71 6599.14 1 07:59 1264.07 1 07:00 JUNCTION 7.71 6599.14 1 07:00 12143.67 1 07:00 JUNCTION 12567.90 17139.93 1 07:00 12143.67 1 07:00 JUNCTION 0.00 4757.27 1 06:09 0.00 (1C)001C JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION 0.00 5778.58 1 05:45 0.00 (1C)001E JUNCTION 0.00 5779.01 1 05:44 0.00 (1C)001F JUNCTION 0.00 195.69 1 07:09 0.00 (1C)001G JUNCTION 12.18 1409.27 1 07:59 0.00 (1C)003 JUNCTION 13.41 35.45 0 20:36 0.00 (1C)004 JUNCTION 4.63 22.04	Т	(18)013		0 00	5085 72	1	05.57	0 00
1 07:00 1 07:00 23330.09 3002.39 1 07:00 23340.32 1 07:01 JUNCTION 7.71 6599.14 1 07:59 1264.07 1 07:59 JUNCTION 12567.90 17139.93 1 07:00 12143.67 1 07:00 JUNCTION 0.00 4757.27 1 06:09 0.00 (1C)001D JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION 0.00 5778.58 1 05:45 0.00 (1C)001F JUNCTION 0.00 5779.01 1 05:44 0.00 (1C)001G JUNCTION 0.00 195.69 1 07:09 0.00 (1C)002 JUNCTION 12.18 1409.27 1 07:59 0.00 (1C)003 JUNCTION 13.41 35.45 0 20:38 0.00 (1C)004 JUNCTION 4.63 22.04 0 20:36 0.00 (1C)005 JUNCTION 1.95 <td< td=""><td></td><td>(1B) 013</td><td>TINCTION</td><td>25358 09</td><td>30682 39</td><td>1</td><td>03.37</td><td>25548 52</td></td<>		(1B) 013	TINCTION	25358 09	30682 39	1	03.37	25548 52
(1C)001 JUNCTION 7.71 6599.14 1 07:59 (1C)001A JUNCTION 12567.90 17139.93 1 07:00 (1C)001C JUNCTION 0.00 4757.27 1 06:09 0.00 (1C)001D JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION 0.00 5778.58 1 05:45 0.00 (1C)001F JUNCTION 0.00 5779.01 1 05:44 0.00 (1C)001G JUNCTION 0.00 195.69 1 07:09 0.00 (1C)001G JUNCTION 12.18 1409.27 1 07:59 0.00 (1C)003 JUNCTION 13.41 35.45 0 20:38 0.00 (1C)004 JUNCTION 4.63 22.04 0 20:36 0.00 (1C)005 JUNCTION 0.00 17.69 0 08:01 0.00 (1C)005 JUNCTION 1.95 17.60 0 21:00 0.00	1	07,00	OONCIION	25550.05	50002.59	T	07.00	23340.32
(10)001 JUNCTION 7.71 6399.14 1 07:39 1264.07 1 07:59 JUNCTION 12567.90 17139.93 1 07:00 12143.67 1 07:00 JUNCTION 0.00 4757.27 1 06:09 0.00 (1C)001D JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION 0.00 5778.58 1 05:45 0.00 (1C)001F JUNCTION 0.00 5779.01 1 05:44 0.00 (1C)001G JUNCTION 0.00 195.69 1 07:09 0.00 (1C)002 JUNCTION 12.18 1409.27 1 07:59 0.00 (1C)003 JUNCTION 13.41 35.45 0 20:38 0.00 (1C)004 JUNCTION 4.63 22.04 0 20:36 0.00 (1C)005 JUNCTION 1.95 17.60 0 21:00 0.00	Т	(10)001	TINCETON	7 71	6500 14	1	07.50	1264 07
1 07:59 (1C)001A JUNCTION 12567.90 17139.93 1 07:00 1 07:00 JUNCTION 0.00 4757.27 1 06:09 0.00 (1C)001D JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION 0.00 5778.58 1 05:45 0.00 (1C)001F JUNCTION 0.00 5779.01 1 05:44 0.00 (1C)001G JUNCTION 0.00 195.69 1 07:09 0.00 (1C)002 JUNCTION 12.18 1409.27 1 07:59 0.00 (1C)003 JUNCTION 13.41 35.45 0 20:38 0.00 (1C)004 JUNCTION 4.63 22.04 0 20:36 0.00 (1C)005 JUNCTION 0.00 17.69 0 08:01 0.00 (1C)006 JUNCTION 1.95 17.60 0 21:00 0.00	1	(10)001	JUNCTION	/./1	0599.14	T	07:59	1204.07
(1C)001A JUNCTION 12567.90 17139.93 1 07:00 (1C)001C JUNCTION 0.00 4757.27 1 06:09 0.00 (1C)001D JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION 0.00 5778.58 1 05:45 0.00 (1C)001F JUNCTION 0.00 5779.01 1 05:44 0.00 (1C)001G JUNCTION 0.00 195.69 1 07:09 0.00 (1C)002 JUNCTION 12.18 1409.27 1 07:59 0.00 (1C)003 JUNCTION 13.41 35.45 0 20:38 0.00 (1C)004 JUNCTION 4.63 22.04 0 20:36 0.00 (1C)005 JUNCTION 0.00 17.69 0 08:01 0.00 (1C)006 JUNCTION 1.95 17.60 0 21:00 0.00	T	07:59	TUNIORITON	10567 00	17120 02	1	07 00	10140 67
1 07:00 (1C)001C JUNCTION 0.00 4757.27 1 06:09 0.00 (1C)001D JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION 0.00 5778.58 1 05:45 0.00 (1C)001F JUNCTION 0.00 5779.01 1 05:44 0.00 (1C)001G JUNCTION 0.00 195.69 1 07:09 0.00 (1C)002 JUNCTION 12.18 1409.27 1 07:59 0.00 (1C)003 JUNCTION 13.41 35.45 0 20:38 0.00 (1C)004 JUNCTION 4.63 22.04 0 20:36 0.00 (1C)005 JUNCTION 1.95 17.60 0 21:00 0.00	-	(IC) UUIA	JUNCTION	12567.90	1/139.93	T	07:00	12143.67
(1C)001C JUNCTION 0.00 4757.27 1 06:09 0.00 (1C)001D JUNCTION 0.00 5778.59 1 05:46 1021.31 1 05:46 JUNCTION 0.00 5778.58 1 05:45 0.00 (1C)001E JUNCTION 0.00 5779.01 1 05:44 0.00 (1C)001G JUNCTION 0.00 195.69 1 07:09 0.00 (1C)002 JUNCTION 12.18 1409.27 1 07:59 0.00 (1C)003 JUNCTION 13.41 35.45 0 20:38 0.00 (1C)004 JUNCTION 4.63 22.04 0 20:36 0.00 (1C)005 JUNCTION 1.95 17.60 0 21:00 0.00	T	07:00				_		
(1C)001DJUNCTION0.005778.59105:461021.31105:46(1C)001EJUNCTION0.005778.58105:450.00(1C)001FJUNCTION0.005779.01105:440.00(1C)001GJUNCTION0.00195.69107:090.00(1C)002JUNCTION12.181409.27107:590.00(1C)003JUNCTION13.4135.45020:380.00(1C)004JUNCTION4.6322.04020:360.00(1C)005JUNCTION0.0017.69008:010.00(1C)006JUNCTION1.9517.60021:000.00		(1C)001C	JUNCTION	0.00	4757.27	1	06:09	0.00
1 05:46 (1C)001E JUNCTION 0.00 5778.58 1 05:45 0.00 (1C)001F JUNCTION 0.00 5779.01 1 05:44 0.00 (1C)001G JUNCTION 0.00 195.69 1 07:09 0.00 (1C)002 JUNCTION 12.18 1409.27 1 07:59 0.00 (1C)003 JUNCTION 13.41 35.45 0 20:38 0.00 (1C)004 JUNCTION 4.63 22.04 0 20:36 0.00 (1C)005 JUNCTION 0.00 17.69 0 08:01 0.00 (1C)006 JUNCTION 1.95 17.60 0 21:00 0.00		(1C)001D	JUNCTION	0.00	5778.59	1	05:46	1021.31
(1C)001EJUNCTION0.005778.58105:450.00(1C)001FJUNCTION0.005779.01105:440.00(1C)001GJUNCTION0.00195.69107:090.00(1C)002JUNCTION12.181409.27107:590.00(1C)003JUNCTION13.4135.45020:380.00(1C)004JUNCTION4.6322.04020:360.00(1C)005JUNCTION0.0017.69008:010.00(1C)006JUNCTION1.9517.60021:000.00	1	05:46						
(1C)001FJUNCTION0.005779.01105:440.00(1C)001GJUNCTION0.00195.69107:090.00(1C)002JUNCTION12.181409.27107:590.00(1C)003JUNCTION13.4135.45020:380.00(1C)004JUNCTION4.6322.04020:360.00(1C)005JUNCTION0.0017.69008:010.00(1C)006JUNCTION1.9517.60021:000.00		(1C)001E	JUNCTION	0.00	5778.58	1	05:45	0.00
(1C)001GJUNCTION0.00195.69107:090.00(1C)002JUNCTION12.181409.27107:590.00(1C)003JUNCTION13.4135.45020:380.00(1C)004JUNCTION4.6322.04020:360.00(1C)005JUNCTION0.0017.69008:010.00(1C)006JUNCTION1.9517.60021:000.00		(1C)001F	JUNCTION	0.00	5779.01	1	05:44	0.00
(1C)002JUNCTION12.181409.27107:590.00(1C)003JUNCTION13.4135.45020:380.00(1C)004JUNCTION4.6322.04020:360.00(1C)005JUNCTION0.0017.69008:010.00(1C)006JUNCTION1.9517.60021:000.00		(1C)001G	JUNCTION	0.00	195.69	1	07:09	0.00
(1C)003JUNCTION13.4135.45020:380.00(1C)004JUNCTION4.6322.04020:360.00(1C)005JUNCTION0.0017.69008:010.00(1C)006JUNCTION1.9517.60021:000.00		(1C)002	JUNCTION	12.18	1409.27	1	07:59	0.00
(1C)004JUNCTION4.6322.04020:360.00(1C)005JUNCTION0.0017.69008:010.00(1C)006JUNCTION1.9517.60021:000.00		(1C)003	JUNCTION	13.41	35.45	0	20:38	0.00
(1C)005JUNCTION0.0017.69008:010.00(1C)006JUNCTION1.9517.60021:000.00		(1C)004	JUNCTION	4.63	22.04	0	20:36	0.00
(1C)006 JUNCTION 1.95 17.60 0 21:00 0.00		(1C)005	JUNCTION	0.00	17.69	0	08:01	0.00
		(1C)006	JUNCTION	1.95	17.60	0	21:00	0.00

the star of

and $\mathbb{E}_{\mathbb{P}}$, is a second contract of the matrix of \mathbb{P} -matrix of the matrix of the matrix of the second contract of the secon

. ••

	(1C)006A	JUNCTION	0.00	15.47	0	20:31	0.00
	(1C)007	JUNCTION	9.30	15.47	Ő	20:32	0.00
	(1C)009	JUNCTION	0.00	5786 41	1	05.42	0.00
	(1C) 010	UNCTION	0.00	5700.41	1	05.42	0.00
	(10)010	JUNCTION	0.00	5796.76	1	05:42	0.00
		JUNCTION	0.00	5//8.58	T	05:41	0.00
	(1C)012	JUNCTION	0.00	0.00	0	00:00	0.00
	(1C)015A	JUNCTION	29.14	6369.69	1	07:00	579.43
1	07:00						
	(1C)015B	JUNCTION	0.00	6340.56	1	06:05	0.00
	(1C)015C	TUNCTION	0 00	6340 56	1	06.04	0 00
	(10)0150	TINCTION	0736 36	14260 16	1	07.00	0011 04
1	07.00	OUNCIION	0/50.50	14309.10	T	07:00	0011.04
T	07:00						
	(1C)016	JUNCTION	3.08	5635.62	1	07 : 59	0.00
	(1C)016A	JUNCTION	1.54	5657.50	1	08:08	0.00
	(1C)016B	JUNCTION	0.00	5620.21	1	06:11	0.00
	(1C)016C	JUNCTION	0.00	7561 21	1	06.11	1941.00
1	06.12	0011011	0.00	,001,21	-	00.11	1911.00
-	(10) 17	TINCUTON	0 00	11 45	0	00.04	0 00
		JUNCTION	0.00	11.45	0	08:04	0.00
	(1C)018	JUNCTION	0.00	11.24	0	10:80	0.00
	(1C)019	JUNCTION	3.08	11.41	0	08:00	0.00
	(1C)020	JUNCTION	7.71	7.71	0	07:00	0.00
	(1C)021	JUNCTION	10613.58	12714.28	1	07:00	5144.38
1	07.00				_		
-	$(1C) 021\lambda$	TIMCTTON	0 00	2501 00	1	06.03	753 03
1	(1C)021A	00NCTION	0.00	2004.09	T	00:03	105.05
T	06:03						
	(1C)021B	JUNCTION	9473.29	9551.42	1	07:00	7028.94
1	07:00						
	(1C)021C	JUNCTION	0.00	78.51	1	08:00	0.00
	(1C)021D	TUNCTION	0 00	78 42	1	08.00	0 00
	(10)022	TUNCTION	6.00	252 11	1	07.53	0.00
	(10)022	JUNCTION	0.94	JJZ.II	1	07:55	0.00
	(10)023	JUNCTION	0.00	346.08	T	08:00	0.00
	(1C)024	JUNCTION	9.30	345.17	1	07:00	0.00
	(1C)025	JUNCTION	0.00	434.44	1	08:00	97.42
1	08:00						
	(1C)027	JUNCTION	6.94	498.97	1	07:00	4.05
1	07.00	- -			-		
-	(1C)028		6300 70	6300 70	1	07.00	5000 60
1	(10)020	OUNCIION	0300.79	0500.79	Ť	07.00	3009.09
T	07:00						
	(IC)041	JUNCTION	6.17	6.17	0	07:00	0.00
	(1C)176	JUNCTION	4.37	1364.22	1	08:00	0.00
	(1C)177	JUNCTION	7.24	1361.93	1	07:00	1.92
1	07:00						
	(1C)178	TUNCTION	10096 40	11458 78	1	07.00	10094 10
1	07.00	00001100	10000.10	TT100.70	±	07.00	10001.10
Ŧ	(10)170	TINCETON	0146 60	10000 66	1	07 00	0061 00
-	(10)1/9	JUNCTION	9146.69	10230.66	T	0/:00	8861.23
T	07:00						
	(1C)179A	JUNCTION	0.00	1358.90	1	08:51	267.82
1	07:31						
	(1C)180	JUNCTION	4.37	1362.45	1	08:45	2,28
1	08.46			1000110	-	00.10	
-	(1C) 1900	TINCTION	1 27	1254 00	1	00.40	0 00
	(1C)180A	JUNCTION	4.37	1354.08	1	08:48	0.00
	(10)181	JUNCTION	4.3/	1345.25	1	07:00	0.00
	(1C)182	JUNCTION	8951.35	8951.35	1	07:00	7599.83
1	07:00						
	(1D)001	JUNCTION	3.49	790.17	1	10:09	0.00
	(1D) 002	JUNCTION	0 00	748 18	1	05.44	0 00
	(10)003	TUNCTION	0.00	7/0 10	1	05.10	0.00
	(10)000	TUNCETON	0.00	740.10 740.10	1	05:40	0.00
	(10)004	JUNCTION	0.00	/48.18	1	05:42	0.00
	(ID)005	JUNCTION	4827.11	5367.60	1	07:00	4614.89
1	07:00						
	(1D)006	JUNCTION	0.00	540.73	1	11:35	0.00

. .

.

.

	(1D)007	JUNCTION	0,00	540.75	1	11:34	0.00
	(1D)008	JUNCTION	0.00	547.32	1	13:11	0.00
	(1D)009	JUNCTION	0.00	540.49	1	05:45	0.00
	(1D)010	JUNCTION	0,00	574 58	1	10.59	33,53
1	10.59	00001100	0.00	0,1.00	-	10.02	00.00
-	(10)011	TUNCTION	0 00	573 90	1	11.00	0 00
	(10)012	TINCTION	19 96	624 92	1	07.00	52 07
٦	07,00	JONCITON	10.90	024.92	T	07:00	52.07
T	07:00		0 00		1		0 00
	(ID)0I3	JUNCTION	0.00	605.96	1	05:56	0.00
-	(10)014	JUNCTION	6455.43	6925.33	1	07:00	6316.07
1	07:00						
	(1D)015	JUNCTION	6.06	471.53	1	07:00	0.00
	(1D)016	JUNCTION	8.12	468.98	1	07:00	2.68
1	07:00						
	(1D)017	JUNCTION	10.79	476.84	1	07:00	15.97
1	07:00						
-	(10) 018	TUNCTION	14882 85	15354 31	1	07.00	14873 02
1	07.00	OONCITON	14002.00	10004.01	T	07.00	14075.02
Т	(1D) 010		0 00	170 07	1	11.10	0 00
	(1D)019	JUNCTION	0.00	4/2.2/	1	11:40	0.00
-	(ID)020	JUNCTION	25.79	499.94	T	07:00	28.49
T	0/:00						
	(1D)021	JUNCTION	17.88	488.33	1	07:00	14.18
1	07:00						
	(1D)022	JUNCTION	6.06	476.34	1	07:00	5.89
1	07:00						
	(1D)023	JUNCTION	10889.86	10889.86	1	07:00	10407.72
1	07:00						
	(1E)001	TUNCTION	0 00	804 18	1	09.10	0 00
	(1E)002	TUNCTION	0.00	797 91	1	05.10	0.00
	(1E)002	TINCTION	0.00	101.91	1	00.33	14 02
1	(IE)003	JUNCIION	0.00	802.73	T	06:23	14.83
T	06:23				-		1 60 6 61
	(IE)003A	JUNCTION	1651.96	2434.79	1	07:00	1626.61
1	07:00						
	(1E)005	JUNCTION	2.31	805.13	1	08:45	9.25
1	08:45						
	(1E)006	JUNCTION	0.00	802.86	1	08:38	0.00
	(1E)007	JUNCTION	0.00	780.91	1	06:46	0.00
	(1E)008	JUNCTION	0.00	836.74	1	08:33	54.42
1	05:56			000001	-		
-	(1F)009		6901 30	6901 30	1	07.00	6061 23
1	07.00	00001100	0901.90	0,01.00	-	07.00	0001.25
Ŧ	(15)001		17 70	2706 11	1	07.12	56 12
1	(12)001	JUNCIION	1/./0	2790.41	T	07:13	50.45
T	07:13	TINIOT TON	7 0 4	0770 60	-	07 00	0.00
	(IF)003	JUNCTION	1.24	2778.63	T	07:00	0.00
	(1F)004	JUNCTION	16711.14	18207.24	1	07:00	15423.39
1	07:00						
	(1F)005	JUNCTION	0.00	1744.78	1	07:21	247.95
1	07:22						
	(1F)006	JUNCTION	19.06	1748.93	1	07:21	0.00
	(1F)008	JUNCTION	1.75	1720.11	1	07:00	0.00
	(1F)008A	JUNCTION	0.00	2040.67	1	07:00	322.28
1	07:01		0.00	2010.07	-		
-	(1) (1) (1)		2 31	2010 63	1	07.00	0 00
	(11)000		2.51	2040.05	1	07.00	1175 20
1	07,00	OUNCIION	JZI0.4/	5220.54	T	07:00	TT10.09
T		TIMOTTO	0 00	0 00	~	07 00	0.00
	(IE)UII (1E)0107	JUNCTION	2.98	2.98	U	0/:00	0.00
	(IF) 012A	JUNCTION	0.00	39.01	0	08:00	0.00
	(IF)013	JUNCTION	14.28	36.53	0	20:42	0.00
	(1F)014	JUNCTION	0.00	24.28	0	08:01	0.00
	(1F)015	JUNCTION	0.00	26.07	0	08:00	0.00
	(1F)016	JUNCTION	22.25	22.25	0	07:00	0.00

.

. . . .

-

Service of the servic

	(1F)017	JUNCTION	0.00	11916.31	1	05:42	0.00
	(1F)017A	JUNCTION	9798.33	19147.32	1	07:00	7200.91
1	07:00						
	(1F)017B	JUNCTION	0.00	9350.81	1	07:08	0.00
	(1F)017C	JUNCTION	10.23	9350.81	1	07:00	0.00
	(1F) 0 17D	JUNCTION	0 00	11873 94	1	05.57	2327 39
1	05.57	000011000	0.00	110/3.94	1	03.07	2527.55
T	(15)0175		0 00	11630 60	1	07.04	0 00
	(1)0175	TINCTION	0.00	E00 65	1	12.26	0.00
	(1E) 017C	JUNCTION	1 24	509.05 E04 11	1	12:50	0.00
	(1F)01/G	JUNCTION	1.34	594.11	1	12:30	0.00
	(1F) 010	JUNCTION	1.08	602.09	1	12:35	0.00
	(1F)019	JUNCTION	0.00	609.62	1	12:31	0.00
	(1F) 020	JUNCTION	0.00	567.63	T	06:12	0.00
	(IF) 021	JUNCTION	14076.91	14508.11	Ţ	0/:00	13932.41
1	07:00						
	(1F)022	JUNCTION	0.00	439.69	1	08:00	0.00
	(1F)023	JUNCTION	0.00	439.71	1	08:00	0.00
	(1F)024	JUNCTION	0.00	24.94	0	08:00	0.00
	(1F)025	JUNCTION	2.72	24.56	0	20:42	0.00
	(1F)026	JUNCTION	0.00	22.72	0	08:00	0.00
	(1F)026A	JUNCTION	5.50	21.84	0	20:37	0.00
	(1F)027	JUNCTION	2.21	16.34	0	20:32	0.00
	(1F)028	JUNCTION	2.21	14.13	0	20:29	0.00
	(1F)029	JUNCTION	0.00	12.79	0	08:01	0.00
	(1F) 029A	JUNCTION	0.00	14.10	Ő	08:00	0.00
	(1F) 030	JUNCTION	11 92	11 92	Ň	07.00	0 00
	(1G) 001	JUNCTION	2 06	11988 21	1	07.00	919 55
1	07.00	00001100	2.00	11900.21	Ŧ	07.00	919.00
-	$(1_{C}) 0 0 1_{A}$	TUNCTION	0 00	12122 64	1	07.54	99 47
1	07.55	OUNCITON	0.00	12122.01	Ŧ	01.01	55.47
T	(10)002	TUNCTION	6006 22	15531 03	1	07.00	3/11 1/
1	07,00	OONCIION	0990.22	10001.00	-	07.00	J411.14
T	(10)002	TUNCETON	20602 60	2000 62	1	07.00	10006 60
1	(IG)003	JUNCITON	20002.00	20000.03	T	07:00	10200.09
T	07:00	TUNGETON	0 00	6004 00	-	07 11	0 00
	(1G)004	JUNCTION	0.00	6204.93	1	07:11	0.00
	(1G) 005	JUNCTION	4.63	6204.93	1	0/:00	0.00
-	(1G)006	JUNCTION	0.00	10/28.55	T	08:26	4512.44
1	07:33						
	(1G)007	JUNCTION	0.00	10874.41	1	08:24	0.00
	(1G)008A	JUNCTION	0.87	10712.75	1	07:00	0.00
	(1G)008B	JUNCTION	0.00	10711.88	1	06:07	0.00
	(1G)008C	JUNCTION	5.14	12279.05	1	07:00	1567.17
1	07:00						
	(1G)009A	JUNCTION	4.52	12325.59	1	05 : 46	25.03
1	05:46						
	(1G)009B	JUNCTION	13981.58	24822.53	1	07:00	12487.28
1	07:00						
	(1G)009C	JUNCTION	3.08	10888.19	1	06:20	0.00
	(1G)009D	JUNCTION	0.00	10743.59	1	06:19	0.00
	(1G)009E	JUNCTION	0.00	12547.92	1	07:10	1575.96
1	07:10						
	(1G)010	JUNCTION	3.85	11972.07	1	07:09	0.00
	(1G)011	JUNCTION	0.00	11887.47	- 1	07:08	0.00
	(1G) 012	JUNCTION	5,50	11618 08	1	07:07	0.00
	(1G)013	TUNCTION	0 00	11461 19	1	07.03	0 00
	(1G) 014	TINCTION	1 95	106 20	⊥ 1	20.01	0.00
	(1C)01/A	TUNCTION	T . 20	106.20	⊥ 1	08.004	
	(10)015	TINCTION	0.00	106.04	⊥ 1	00.00	0.00
	(10)016	TINCTION		104 25	1	07.44	0.00
	(10)010	JUNCTION	10.50 0 00	104.25	1	01:44	0.00
	(1G)UI/ (1G)010	JUNCTION	0.00	92.56	1	00:80	0.00
	(IG)018	JUNCTION	39.93	87.75	1	07:00	0.00

· • • · · · ·

. .

	(1G)018A	JUNCTION	0.00	47.95	1	21:01	0.00
	(1G)020	JUNCTION	17034.00	17567.32	1	07:00	17021.82
1	07:00						
	(1G)045	JUNCTION	15.47	536.28	1	07:00	0.00
	(1G)046	JUNCTION	15856.39	16169.85	1	07:00	15617.46
1	07:00						
	(1G)047	JUNCTION	111 45	334 56	1	07.00	0 00
	(1G) 048	TUNCTION	0 00	223 57	1	06.31	0.00
	(10)040	TUNCTION	0.00	223.57	⊥ 1	06.30	0.00
	(1G) 049	TUNCTION	0.00	223.00	1	00:30	0.00
	(16)050	JUNCIION	0.00	223.62	1	06:30	0.00
	(1G)051	JUNCTION	0.00	223.53	1	06:29	0.00
	(IG)052	JUNCTION	0.00	223.85	1	16:45	0.16
1	16:45						
	(1G)053	JUNCTION	18221.38	18444.91	1	07:00	18195.89
1	07:00						
	(1G)054	JUNCTION	0.00	223.63	1	13:09	0.05
1	13:09						
	(1G)055	JUNCTION	0.00	223.53	1	07:04	0.00
	(1G) 056	JUNCTION	0.00	337.50	1	06:20	113.54
1	06.21	0011012011	0.00	557.00	1	00.20	113.01
-	(1C)057	TUNCTTON	0 00	336 71	1	12.06	0 00
	(10)058	TUNCTION	0.00	336 63	1	12.00	0.00
	(10)050	TINCTION	0.00	220.02	1	00:55	0.00
	(10)009	JUNCTION	0.00	336.30	1	00:20	0.00
	(IG)060	JUNCTION	0.00	336.98	1	0/:15	0.00
	(IG)061	JUNCTION	0.00	369.61	1	05:33	31.42
1	07:17						
	(1G)062	JUNCTION	0.00	368.40	1	06:24	0.00
	(1G)063	JUNCTION	0.00	369.15	1	06:33	0.00
	(1G)064	JUNCTION	0.00	369.15	1	06:29	0.00
	(1G)065	JUNCTION	0.00	369.15	1	06:26	0.00
	(1G)066	JUNCTION	0.00	369.15	1	06:25	0.00
	(1G)067	JUNCTION	0.00	369.15	1	06:24	0.00
	(1G) 068	TUNCTION	0 00	369 32	1	11.43	0.09
1	11.43	0.011011	0.00	505.52	-	TT • 10	0.09
-	(1G)069	TUNCTION	0 00	369 30	1	11.39	0 08
1	11.39	OCHCITCH	0.00	202.20	Ŧ	TT.JJ	0.00
T	(10)070	TINCTTON	0 00	260 15	1	05.54	0 00
	(10)071	TINCTION	0.00	009.10	1	03:54	0.00
1		JUNCIION	9318.33	9318.33	T	07:00	8940.03
T	07:00	TINIOTTON		0 00	0	~~ ~~	0 00
	(1G) 146	JUNCTION	0.00	0.00	0	00:00	0.00
	(IG) 146A	JUNCTION	0.00	0.00	0	00:00	0.00
	(IG) 162	JUNCTION	5.03	503.19	1	21 : 07	11.15
1	21:08						
	(1G)162A	JUNCTION	0.00	501.86	1	21:05	1.63
1	21:05						
	(1G)162B	JUNCTION	0.00	493.85	1	21:03	0.00
	(1G)162C	JUNCTION	0.00	468.73	1	05:36	0.00
	(1G)162D	JUNCTION	0.00	488.46	1	21:13	0.00
	(1G)243	JUNCTION	0.00	0.00	0	00:00	0.00
	(1H)001	JUNCTION	10.33	414.72	1	07:13	0.00
	(1H)004	JUNCTION	0 00	71 85	<u> </u>	22.14	0 00
	(1H)005	JUNCTION	0.00	157 16	1	16.37	385 57
1	08.02	CONCITON	0.00	40	T	TO'7/	JUJ.J/
т	(14)006	TINOUTON	0 00	157 25	1	16-20	0 00
		JUNCTION	0.00	45/.35	1	10:30	0.00
		JUNCTION	0.00	45/.5/	1	10:35	0.00
	(1H)008	JUNCTION	0.00	457.25	1	0/:00	0.00
	(1H)009	JUNCTION	1.29	457.23	1	07:00	0.00
	(1H)010	JUNCTION	0.00	1171.03	1	05:33	715.08
1	05:33						
	(1H)011	JUNCTION	15338.07	15338.07	1	07:00	14130.05
1	07.00						

. . . .

The second state of the se

	(1H)038	JUNCTION	6.58	404.39	1	07:00	0.00
	(1H)039	JUNCTION	0.00	397.82	1	06:06	0.00
	(1H)040	JUNCTION	0.00	397.82	1	06:06	0.00
	(1H)041	JUNCTION	0.00	685.90	1	05:29	288.08
1	05:29	0000011000	0.00	000.90	-	00.25	200700
-	(1H) 042	JUNCTION	0 00	685 90	1	05.19	0.00
	(14)043	TINCTION	19581 73	19632 50	1	03.15	18906 63
1	07-00	JUNCIION	19301.73	19032.30	T	07:00	10900.00
T		TINOTITON	0 01	67 00	^	~~ ~~	0 00
	(1H) 044	JUNCTION	2.21	67.83	0	08:00	0.00
	(IH)045	JUNCTION	60.12	60.12	0	0/:00	0.00
	(1J)001	JUNCTION	0.00	12021.59	1	08:03	0.00
	(1J)002	JUNCTION	0.00	12021.81	1	08:02	0.00
	(1J)003	JUNCTION	0.77	9282.11	1	08:01	0.00
	(1J)004	JUNCTION	0.00	9282.42	1	08:00	0.00
	(1J)005	JUNCTION	0.00	9282.80	1	08:00	0.00
	(1J)006	JUNCTION	27.59	9280.24	1	07:00	0.00
	(1,T) 007	JUNCTION	0 00	9257 01	1	10.58	0.00
	(1.7) 0.08	JUNCTION	0.00	926/ 07	1	10.58	0.00
	(10)000	TINCTION	0.00	0250 75	1	10.50	0.00
	(10)009	JUNCTION	0.00	9230.75	1		0.00
		JUNCTION	10504 00	9252.65	1	05:56	10.00
	(13)011	JUNCTION	10524.93	21882.46	T	07:00	12621.55
T	07:00						
	(1J)012	JUNCTION	0.00	11917.35	1	06:05	589.25
1	06:06						
	(1J)013	JUNCTION	0.00	12906.85	1	08:08	843.16
1	08:03						
	(1J)014	JUNCTION	0.00	12772.46	1	08:07	0.00
	(1, j) 0, 4, 1	JUNCTION	0.00	849.76	1	08:02	0.00
	(1,T) 0.4.2	TUNCTION	0 00	853 00	1	08.01	0 00
	(1.T) 0.12	TUNCTION	0.00	856 10	1	00.01	0,00
	(10)042A	TUNCTION	0.00	000.10	1	00.01	0.00
	(10)042B	JUNCTION	0.00	070 06	1	00:00	0.00
	(10)043	JUNCTION	0.00	8/8.86	1	00:00	0.00
	(1J) 044	JUNCTION	225.22	838.32	1	20:02	0.00
	(1J)045	JUNCTION	0.00	616.93	1	08:00	0.00
	(1J)046	JUNCTION	58.06	613.10	1	19:35	0.00
	(1J)047	JUNCTION	0.00	560.08	1	08:00	0.00
	(1J)048	JUNCTION	0.00	564.74	1	08:00	0.00
	(1J)050	JUNCTION	113.46	555.04	1	19:00	0.00
	(1J)050A	JUNCTION	0.00	371.40	1	22:45	0.00
	(1J) 051	JUNCTION	0.00	370.22	1	23:25	0.00
	(1,T) 0.52	JUNCTION	0.00	1069.13	1	05:23	699.27
1	05.24	00001100	0.00	1000.10	-	00.20	0,
-	(1.T) 053		18139 36	18882 64	1	07.00	17777 95
1	07.00	OONCITON	10457.50	10002.04	T	07.00	11111.55
Т	(1 + 1) = 0	TEINICHTON	0 00	112 00	1	07.00	0 00
	(10)004	JUNCTION	0.00	443.28	1	12 20	0.00
	(1J) 054A	JUNCTION	0.00	444.05	1	13:39	0.00
	(1))055	JUNCTION	0.00	640.69	T	11:25	197.40
1	11:25						
	(1J)056	JUNCTION	0.00	641.09	1	11:23	0.00
	(1J)057	JUNCTION	0.00	641.87	1	11:22	0.00
	(1J)058	JUNCTION	0.00	643.97	1	11:21	0.00
	(1J)059	JUNCTION	0.00	640.08	1	11:36	0.00
	(1J)060	JUNCTION	0.00	3780.44	1	05:49	3140.81
1	05:50						
-	(1K) 001	JUNCTION	6352 82	6962 94	1	07.00	3170.08
1	07.00	0.011014		~~~~~~~~~	т Т	57.00	01/0.00
1	(18)002	TINCUTON	0 00	610 02	1	07.00	0 00
	(14)002	TINCTION	0.00	610 70	1	07:00	0.00
		JUNCTION	9.30	010./0	1	11 04	0.00
	(1K) UU 3	JUNCTION	0.00	6U1.5/	1	11:04	0.00
-	(1K)004	JUNCTION	8010.08	8838.13	1	0/:00	8227.93
1	07:00						

14 ann - 1

t a sa sa kat

. . .

	(1K)005	JUNCTION	12.95	231.96	2	07:10	0.00
	(1K)006	JUNCTION	4.63	679.45	1	12.08	456.22
1	12:09	0011011	1.00	079.10	-	12.00	100.22
1	(1K) 007	TINCTTON	1 75	660 11	1	07.00	0 00
	(1K) 000	JUNCTION	I.75	6009.11	1	07:00	
	(1K)008	JUNCTION	5938.22	6466.07	Ţ	07:00	5/94.56
1	07:00						
	(1K)008A	JUNCTION	10.43	529.58	1	07:00	0.00
	(1K)009	JUNCTION	6.94	656.20	1	07:59	137.05
1	07.59				_		
-	(1K) 010		1 62	700 20	1	09.00	15 20
-		JUNCIION	4.03	/00.30	T	00:00	45.20
T	0/:40						
	(1K)011	JUNCTION	208.98	689.92	1	07 : 29	0.00
	(1K)012	JUNCTION	0.00	481.79	1	13:05	0.00
	(1K)013	JUNCTION	0 00	599 00	1	06.09	118 07
1	06.09	00001100	0.00	333.00	-	00.05	110.01
T		TUNOTTON	17142 00	17142 00	1	07 00	16504 64
	(1K)014	JUNCTION	1/143.86	1/143.86	T	0/:00	16524.64
1	07:00						
	(1M)000	JUNCTION	0.00	11481.16	1	07:02	0.00
	(1M)001	JUNCTION	0.00	11499.67	1	07:01	0.00
	(1M)001A	JUNCTION	0 00	11490 19	1	07.01	0 00
	(1M) 001P	TUNCTION	0.00	11401 72	1	07.02	0.00
		JUNCTION	0.00	11401.73	1	07:02	0.00
	(IM) UU2	JUNCTION	0.00	11202.8/	T	0/:00	0.00
	(1M)003	JUNCTION	5499.77	11526.41	1	07:00	0.00
	(1M)010	JUNCTION	0.00	690.40	1	06:26	0.00
	(1M) 011	JUNCTION	0.00	1032 63	1	07.59	342.22
1	07.59	0011011011	0.00	1002.00	-	01.00	012.22
Ŧ	(1)() 012	TINOTTON	0.00	600 40	1	00 00	0 00
	(IM)013	JUNCTION	0.00	608.40	T	08:08	0.00
	(IM)014	JUNCTION	0.00	609.06	1	08:06	0.00
	(1M)015	JUNCTION	0.00	610.06	1	08:03	0.00
	(1M)016	JUNCTION	0.00	609.49	1	08:02	0.00
	(1M) 017	TINCTION	0 00	609 55	1	08.02	0 00
	(1M) 010	TUNCTION	0.00	610 70	1	00.02	0.00
	(1M) 010	JUNCTION	0.00	610.70	1	00:01	0.00
	(IM) UI 9	JUNCTION	0.00	613.30	T	08:00	0.00
	(1M)021	JUNCTION	0.00	288.56	0	19:18	0.00
	(1M)022	JUNCTION	5.81	288.74	0	19:17	0.00
	(1M)023	JUNCTION	0.00	283.02	0	19:16	0.00
	(1M) 024	TUNCTION	0 00	283 26	0	19.14	0 00
	(1M) 025	TUNCTION	0.00	203.20	Ő	10.12	0.00
	(1M) 026	JUNCTION	0.00	203.09	0	19.13	0.00
	(IM) UZ6	JUNCTION	0.00	284.25	U	19:11	0.00
	(1M)027	JUNCTION	0.00	284.89	0	19:09	0.00
	(1M)028	JUNCTION	0.00	285.17	0	07:06	0.00
	(1M)035	JUNCTION	2.72	85.18	1	07:59	0.00
	(1M) 036	JUNCTION	0 00	82 78	1	08.00	0 00
	(1M) 037	TUNCTION	3 10	Q2 17	1	07.50	0.00
		JUNCTION	5.49	02.47	1	07:59	0.00
	(IM)038	JUNCTION	0.00	79.02	T	08:00	0.00
	(1M)039	JUNCTION	7.71	504.68	1	07:00	0.00
	(1M)040	JUNCTION	0.00	497.90	1	13:26	0.00
	(1M)041	JUNCTION	23.69	515.29	1	07:00	18.32
1	07.00		20100	010115	-		
Ŧ	(1M) 002	TUNCTION	10 10	E 0 1 0 E	- 1	07.00	20 16
_	(1M)092	JUNCIION	12.49	521.05	T	07:00	29.10
1	07:01						
	(1M)093	JUNCTION	23.69	508.19	1	07:00	0.00
	(1M)094	JUNCTION	10983.21	11477.92	1	07:00	10975.76
1	07.00						
-	(1M)116	TUNCTION	0 00	510 70	1	10.40	0 00
	(1M) 117	TINCTION	0.00	JIU./J	1	10:40	0.00
	(1M) 11 /	JUNCTION	0.00	514.82	\perp	10:4/	0.00
	(IM)118	JUNCTION	0.00	504.41	1	10:53	0.00
	(1M)119	JUNCTION	1.18	496.15	1	10:43	0.00
	(1M)120	JUNCTION	0.00	494 65	1	10:43	0.00
	(1M) 121	TUNCTION	0.00	520 57	1	05.35	26 Q1
1		O ONCI TON	0.00	JZU.J/	T	00:00	20.01
T	00100			,			

<u>____</u>

10 mm - 1

A second s

	(1M)122	JUNCTION	11688.18	11785.55	1	07:00	11255.71
1	07:00						
	(1M)123	JUNCTION	2.31	106.86	1	07 : 59	0.00
	(1M)124	JUNCTION	0.00	40.04	0	08:04	0.00
	(1M)125	JUNCTION	0.00	40.24	1	08:02	0.00
	(1M)126	JUNCTION	0.00	40.36	0	08:01	0.00
	(1M)127	JUNCTION	0.00	40.28	1	08:00	0.00
	(1M)128	JUNCTION	6.68	43.34	0	08:09	0.00
	(1M)129	JUNCTION	3.49	33.04	0	20:29	0.00
	(1M) 130	JUNCTION	0.00	30.32	0	08:00	0.00
	(1M) 131	JUNCTION	7 55	29 54	Õ	20.31	0.00
	(1M) 132	JUNCTION	8 12	21.99	Õ	20.25	0,00
	(1M) 133	JUNCTION	13 87	13 87	Ň	07.00	0.00
	(111)155 (1M)161	TINCTION	13.07	336 00	1	07.00	0.00
	(1M)162	TINCTION	10720 02	11076 10	1	00.03	10721 66
1		JUNCIION	10/39.83	110/0.18	T	07:00	10/31.00
T	07:00	TINOTTON	0 00		1	14 50	0 0 0
1	(1M) 103	JUNCIION	0.00	337.45	T	14:59	0.23
T	14:59	TINIOTTON	0 00	226.00	4	0 0 1 0	0 00
	(IM) 164	JUNCTION	0.00	336.98	1	06:10	0.00
	(IM)165	JUNCTION	11576.09	11576.09	1	07:00	11226.22
1	07:00						
	(1M)278	JUNCTION	11.61	6031.25	1	07 : 56	0.00
	(1M)279	JUNCTION	0.00	6019.64	1	07 : 56	0.00
	(1M)279B	JUNCTION	0.00	6019.65	1	07 : 56	0.00
	(1M)281	JUNCTION	0.00	6019.65	1	07 : 56	0.00
	(1M)281B	JUNCTION	6117.92	9816.50	1	07:00	3857.93
1	07:00						
	(1M)282	JUNCTION	0.00	5473.49	1	08:39	1683.32
1	08:46						
	(1M)283	JUNCTION	1.75	4575.26	1	08:41	0.00
	(1M) 284	JUNCTION	0.00	4382.93	1	08:17	122.56
1	08:17			1001190	-	0011	10000
-	(1M) 285	JUNCTION	0.00	4261.39	1	08:15	0.00
	(1M) 285A	JUNCTION	0.00	4170 12	1	06.11	0 00
	(1M) 286	JUNCTION	0.00	41,0.12	1	06.10	495 31
1	06.10	00101101	0.00	4005.42	T	00.10	400.01
Т	(1M) 286A	TUNCTION	10602 34	115/5 30	1	07.00	6871 77
1	07.00	OUNCIION	10002.34	11545.50	T	07:00	00/4.//
Т	(1M) 297	TINCTION	0 00	007 20	1	00.11	0 00
	(1M) 200	JUNCTION	0.00	907.29	1	00:14	0.00
	(IM) 200	JUNCTION	0.00	987.51	1	08:12	0.00
	(IM) 288A	JUNCTION	0.00	998.31	1	08:12	0.00
	(1M) 288B	JUNCTION	0.00	1007.72	1	08:11	0.00
	(1M) 288C	JUNCTION	0.00	1047.73	1	08:10	0.00
	(1N)004	JUNCTION	5.81	4619.97	1	08:39	38.33
1	07:00						
	(1N)005	JUNCTION	6.58	4744.32	1	07:00	136.55
1	07:00						
	(1N)006	JUNCTION	9.04	4788.14	1	07:00	50.39
1	07:00						
	(1N)007	JUNCTION	2.88	5211.06	1	08:30	427.03
1	08:16						
	(1N)007D	JUNCTION	0.00	506.74	1	17:13	0.00
	(1N)007E	JUNCTION	0.00	497.21	1	06:05	0.00
	(1N)008	JUNCTION	4.26	512.62	- 1	14:04	8.66
1	14:05				-		
-	(1N)009	JUNCTION	7.71	501 10	1	07:00	0.00
	(1N)011	JUNCTION	12 38	508 45	1	07.00	15 06
1	07:00	5 01,0 1 1 0 M	12.00	500.45	1	57.00	10.00
-	(1N) 013	TUNCTION	10570 40	11062 50	1	07.00	10556 31
1	07.00	0 0 INC I TOIN	100/0.40	TTOOS.73	Ť	07.00	T0000.0T
Ŧ	$(3N) \cap 14$	TINCTION	10 07	501 71	1	12.10	22 00
	(エロ / しエヨ	0 0 INC I TON	TO.0/	JZI•/1	1	TOTIO	66.23

nak na s

. .

a ser alla a ser

and the second sec
1	13.11						
-	(1N) 015	JUNCTION	2.57	500.28	1	07:00	0.00
	(1N)016	JUNCTION	0.00	498.37	1	13:03	0.44
1	13:03				_		
	(1N)017	JUNCTION	0.00	518.54	1	12:52	20.80
1	12:52				_		
	(1N)018	JUNCTION	103.33	561.29	1	07:00	43.25
1	07:00				_		
	(1N)019	JUNCTION	0.00	531.82	1	12:30	68.04
1	12:31		0.00	001101	. –		
_	(1N) 020	JUNCTION	4.11	500.58	1	07:00	0.00
	(1N)021	JUNCTION	8.48	504.78	1	07:00	8.31
1	07:00	0 0 1 0 1 1 0 1	0000	0010.0	-		
	(1N)022	JUNCTION	9443.63	9934.64	1	07:00	9427.22
1	07:00	00001200	5110.00	<i>JJJJJJJJJJJJJ</i>	-	0,000	5127122
_	(1N) 023	JUNCTION	0.00	494.74	1	11:25	0.00
	(1N) 024	JUNCTION	0.00	491.91	1	11:20	0.00
	(1N) 025	JUNCTION	7467.44	7467.44	1	07:00	6953.62
1	07:00	00001100	, 10, . 11	, 10, 111	-	0,.00	0900.02
-	(1N)045	JUNCTION	0.00	519.65	1	17:11	0.00
	(1N)046	JUNCTION	0.00	501.22	1	05:55	0.00
	(1N)047	JUNCTION	35521.17	35521.17	1	07:00	34949.56
1	07:00	001.01101	00021011	0002101	-	0,100	0 10 10 100
-	(1N)109A	JUNCTION	0.00	4230.15	1	08:15	17.18
1	08:15	0 0 0 0 0 1 1 0 1	0.00	12000120	-	00.10	_ / •
_	(1N)110	JUNCTION	3.91	4280,21	1	08:26	0.00
	(1N)111A	JUNCTION	0.00	4418.00	1	08:19	100.08
1	08:15						
	(1N)112A	JUNCTION	0.00	4194.69	1	08:18	0.00
	(1N)112B	JUNCTION	0.00	4204.38	1	08:17	0.00
	(10)001	JUNCTION	7,71	285.70	0	07:05	0.00
	(10)001A	JUNCTION	0.00	278.09	Ő	07:04	0.00
	(10)002	JUNCTION	8.12	278.81	Õ	07:04	0.00
	(10)002A	JUNCTION	0.00	270.74	0	07:04	0.00
	(10)003	JUNCTION	0.00	271.13	0	07:03	0.00
	(10)004	JUNCTION	7.97	271.89	0	07:02	0.00
	(10)005A	JUNCTION	24.92	264.09	0	07:02	0.00
	(10)005B	JUNCTION	0.00	241.15	2	18:13	0.00
	(10)005C	JUNCTION	0.00	242.30	2	18:13	0.00
	(10)005D	JUNCTION	0.00	243.59	0	19:02	0.00
	(10)005E	JUNCTION	0.00	0.00	0	00:00	0.00
	(10)010	JUNCTION	0.00	0.00	0	00:00	0.00
	(10)011	JUNCTION	0.00	0.00	0	00:00	0.00
	(10)012	JUNCTION	0.00	0.00	0	00:00	0.00
	(10)013	JUNCTION	0.00	0.00	0	00:00	0.00
	(10)014	JUNCTION	0.00	0.00	0	00:00	0.00
	(10)015	JUNCTION	0.00	0.00	0	00:00	0.00
	(10)016	JUNCTION	0.00	0.00	0	00:00	0.00
	(10)017	JUNCTION	0.00	0.00	0	00:00	0.00
	(10)018	JUNCTION	0.00	0.00	0	00:00	0.00
	(10)019	JUNCTION	0.00	0.00	0	00:00	0.00
	(10)020	JUNCTION	0.00	0.00	0	00:00	0.00
	(10)021	JUNCTION	0.00	0.00	0	00:00	0.00
	(10)072	JUNCTION	16.86	1876.45	1	08:03	0.00
	(10)157	JUNCTION	21903.13	21903.13	1	07:00	17257.78
1	07:00						
	(10)300	JUNCTION	16.75	1101.57	1	08:10	0.00
	(10)301	JUNCTION	0.00	1157.91	1	08:06	0.00
	(10)302	JUNCTION	14.70	1131.91	1	08:05	0.00
	(10)303	JUNCTION	2.72	1471.86	1	08:03	0.00
	(10)304A	JUNCTION	0.00	1863.50	1	08:29	0.00

<u>____</u>

	(10)304B	JUNCTION	0.00	1296.81	1	08:33	399.63
1	08:24						
	(10)305	JUNCTION	26578.39	31253.17	1	07:00	30031.09
1	07:00						
	(10)305A	JUNCTION	69.57	1252.48	1	07:13	0.00
	(10)306	JUNCTION	17.78	4694.94	1	10:05	4.07
1	10:05						
	(10)306A	JUNCTION	2.36	4660.06	1	07:00	0.00
	(10)307	JUNCTION	0.00	4657.70	1	05:47	0.00
	(10)308	JUNCTION	8128.32	16987.12	1	07:00	12314.03
1	07:00						
	(10)308A	JUNCTION	0.00	4608.07	1	05:40	0.00
	(10)309	JUNCTION	14748.80	14748.80	1	07:00	10212.28
1	07:00						
	(1P)002	JUNCTION	0.00	1630.85	1	05:11	0.00
	(1P)003	JUNCTION	0.00	1656.42	1	11:49	22.15
1	11:49						
	(1P)004	JUNCTION	0.00	1161.48	0	21:05	87.42
0	21:05				-		
Ť	(1P)005	JUNCTION	0.00	1159 35	0	21:03	0.00
	(1P)006	JUNCTION	0.00	1232 06	1	21.00	67.78
1	13:59	00001101	0.00	1202.00	-		0.0
-	(1P)007	JUNCTION	0.00	1224 73	0	08:00	0.00
	(1P)008	JUNCTION	412 26	2453 91	1	07.00	1230 87
1	07.00	00001100	412.20	2400.01	-	07.00	1200.07
Т	(1P)008A		0 00	2041 64	1	05.14	0 00
	(1P)000A		17556 38	18199 92	1	07.00	16124 45
1	07.00	OGNETION	1/330.30	101),)2	1	07.00	10124.40
т	(10)010		0 00	809 19	Ο	08.07	0 00
	(12)010	TUNCTION	5 14	009.49	0	00.07	0.00
	(10)012	TUNCTION	0.00	011.23	0	00:00	0.00
	(10)012		0.00	017 20	0	00.04	0.00
	(1P)013 (1D)014	JUNCTION	0.00	01/.20	0	00:03	0.00
	(1P) 014 (1D) 015	JUNCTION	0.00	022.99	0	00:02	0.00
	(1P) 015	JUNCTION	0.00	832.23	0	00:01	0.00
	(1P) U10	JUNCTION	0.00	827.86	0	08:01	0.00
	(1P)016A	JUNCTION	0.00	833.91	0	00:00	0.00
	(1P)U1/	JUNCTION	9.04	8/9.//	0	00:80	0.00
	(1P)018 (1P)024	JUNCTION	/21.50	/21.50	0	07:00	0.00
	(1P) 024	JUNCTION	51.54	51.54	0	0/:00	0.00
	(1P)042	JUNCTION	0.00	583.99	1	11:48	0.00
-	(1P)042A	JUNCTION	0.00	591.43	1	11:56	8.06
T	06:12						
-	(IP)043	JUNCTION	14239.20	14246.23	T	07:00	13636.03
T	07:00					~ ~ ~ ~	0 00
	(1P)044 (1P)065	JUNCTION	0.00	0.00	0	00:00	0.00
	(1P)065	JUNCTION	10.33	10.33	0	07:00	0.00
	(1P)073	JUNCTION	6.27	6.27	0	07:00	0.00
	(1P)079	JUNCTION	5.70	5.70	0	07:00	0.00
	(2A)001	JUNCTION	0.00	9981.89	1	08:50	331.88
1	08:50						
	(2A)002	JUNCTION	0.00	9834.10	1	08:50	0.00
	(2A)003	JUNCTION	0.00	9841.85	1	08:50	0.00
	(2A)004	JUNCTION	0.00	9867.21	1	08:51	0.00
	(2A)005	JUNCTION	0.00	9826.94	1	06:37	0.00
	(2A)006	JUNCTION	0.00	10453.43	1	08:52	529.08
1	09:01						
	(2A)007	JUNCTION	0.00	10395.05	1	09:00	0.00
	(2A)008	JUNCTION	0.00	10324.72	1	08:58	0.00
	(2A)009	JUNCTION	0.00	10299.21	1	08:55	0.00
	(2A)010	JUNCTION	0.00	10021.88	1	08:49	0.00
	(2A)011	JUNCTION	0.00	10205.11	1	08:47	93.93

-

ь Н

1	08:47						
	(2A)012	JUNCTION	0.00	9937.19	1	06:29	0.00
	(2A)013	JUNCTION	0.00	12017.61	1	07:02	2067.70
1	07:02						
	(2A)014	JUNCTION	1084.57	12238.85	1	05 : 44	165.55
1	07:00						
	(2A)015	JUNCTION	8.68	11089.80	1	07:00	0.00
	(2A)016	JUNCTION	0.00	11871.40	1	06:11	767.89
1	06:11						
	(2A)017	JUNCTION	8995.11	20063.76	1	07:00	8185.08
1	07:00						
	(2A)018	JUNCTION	0.00	11068.65	1	06:34	0.00
	(2A)019	JUNCTION	0.00	11085.53	1	08 : 16	0.00
	(2A)020	JUNCTION	26543.41	30726.97	1	07 : 00	19620.16
1	07:00						
	(2A)021	JUNCTION	0.00	4249.39	1	07:26	0.00
	(2A) 022	JUNCTION	0.00	4250.10	1	07:24	0.00
	(2A) 023	JUNCTION	0.00	4250.37	1	07:24	0.00
	(2A)024	JUNCTION	0.00	4250.38	1	07:24	0.00
	(2A) 025	JUNCTION	0.00	4250.36	1	07:23	0.00
	(ZA) UZ6	JUNCTION	0.00	4250.51	1	07:23	0.00
	(ZA) UZ /	JUNCTION	0.00	4251.84	T	07:22	0.00
	(ZA) UZ8	JUNCTION	0.00	4252.42	Ţ	07:21	0.00
	(2A) 029	JUNCTION	0.00	4252.99	1	07:20	0.00
	(2A) 030	JUNCTION	0.00	4253.53	1	07:19	0.00
	(2A) USI	JUNCTION	0.00	4255.02	1	07:18	0.00
	(2A) 032	JUNCTION	0.00	4200.30	1	07.17	0.00
	(2A)033	TINCTION	1 02	4200.70	1	07.16	0.00
	(2A)034	TINCTION	1.03	4200.01	1	07:10	0.00
	(2A)035	TINCTION	0.00	4250.10	⊥ 1	07:13	0.00
	(2A)030	JUNCTION	0.00	4257.99	⊥ 1	07:14	0.00
	$(2\Lambda) 038$	JUNCTION	0.00	4259.99	1	07.12	0.00
	(2A)039	JUNCTION	0.00	4264 25	1	07.10	0.00
	(2A)040	JUNCTION	0.00	4263 48	1	07.10	0.00
	(2A)041	JUNCTION	0.00	4262.12	1	07:07	0.00
	(2A)042	JUNCTION	0.00	4263.83	1	07:06	0.00
	(2A)043	JUNCTION	0.00	4266.23	1	07:05	0.00
	(2A)044	JUNCTION	0.00	4270.63	1	07:04	0.00
	(2A)045	JUNCTION	0.00	4271.35	1	07:03	0.00
	(2A)046	JUNCTION	0.00	4271.71	1	07:02	0.00
	(2A)047	JUNCTION	0.00	4275.09	1	07:00	0.00
	(2A)049	JUNCTION	0.00	5557.50	1	07:15	0.00
	(2A)050	JUNCTION	0.00	5557.61	1	07:13	0.00
	(2A)051	JUNCTION	0.00	5557.68	1	07:12	0.00
	(2A)052	JUNCTION	0.00	5557.76	1	07:11	0.00
	(2A)053	JUNCTION	0.00	5557.83	1	07:10	0.00
	(2A)054	JUNCTION	0.00	5557.87	1	07:09	0.00
	(2A)055	JUNCTION	0.00	5558.13	1	07:08	0.00
	(2A)056	JUNCTION	0.00	5558.48	1	07:07	0.00
	(2A)057	JUNCTION	0.00	5558.18	1	07:05	0.00
	(2A)058	JUNCTION	0.00	5009.27	1	07:03	0.00
	(2A)059	JUNCTION	0.00	5009.35	1	07:02	0.00
	(2A)060	JUNCTION	0.00	5009.54	1	07:01	0.00
	(2A)061	JUNCTION	0.00	5009.55	1	07:00	0.00
	(2A)062	JUNCTION	0.00	5009.43	1	07:00	0.00
	(2A)063	JUNCTION	0.00	9170.41	1	07:00	4289.59
1	07:01						_
	(2A)064	JUNCTION	2358.02	7504.05	1	07:00	0.00
	(2A)065	JUNCTION	0.00	5146.39	1	09:00	0.00
	(ZA)U66	JUNCTION	0.00	5146.53	1	U8:59	υ.00

and the second
	(2A)067	JUNCTION	0.00	5148.56	1	08:59	0.00
	(2A)068	JUNCTION	0.00	5146.03	1	06:44	0 00
	(2A)069	JUNCTION	0 00	550 03	1	09.52	0 00
	(2C)001	JUNCTION	0.00	556 44	1	05.48	7 45
1	05.49	00001100	0.00	550.11	1	03.40	1.45
-	(20)002	TUNCTION	0 00		1	00.27	102 17
1	06:00	UDICITON	0.00	000.00	T	09:37	103.17
T		TINIORTON		0.740 -0			
	(20)003	JUNCTION	8080.93	8/12.58	1	0/:00	8046.24
T	07:00						
	(2C)004	JUNCTION	0.00	643.63	1	08:43	0.00
	(2C)005	JUNCTION	0.00	632.87	1	08:43	0.00
	(2C)006	JUNCTION	0.00	668.60	1	08:45	33.21
1	06:17						
	(2C)007	JUNCTION	0.00	677.95	1	08:38	5.04
1	08:39				-	00.00	0.01
-	(2C)008		0 00	665 99	1	08.10	0 00
		TINCTION	0.00	466.22	1	00.40	0.00
	(2D) 001	JUNCIION	0.00	400.33	1	00:55	0.00
1	(2D)001A	JUNCIION	0.00	895.98	T	08:18	428.85
T	07:47						
	(2D)002	JUNCTION	0.00	908.95	1	07:47	13.77
1	07:48						
	(2D)003	JUNCTION	457.05	968.07	1	07:00	56.11
1	07:00						
	(2D)004	JUNCTION	0.00	311.87	1	08:01	0.00
	(2D)005	JUNCTION	0.00	313.14	1	08:00	0.00
	(2D)006	JUNCTION	21 27	310 53	1	07.59	0 00
	(2D)007	JUNCTION	0 00	280.82	1	07.00	0.00
	(2D) 008	TINCTION	0.00	200.02	1	00.00	0.00
	(2D)000	TINCTION	0.00	209.73	1	00:00	0.00
	(2D) 010	JUNCTION	0.68	289.26	1	07:00	0.00
-	(2D)010	JUNCTION	0.00	313.00	T	05:22	30.43
T	05:22						
T	(2D)011	JUNCTION	39388.45	39514.51	1	07:00	39169.05
1 1	05:22 (2D)011 07:00	JUNCTION	39388.45	39514.51	1	07:00	39169.05
1	05:22 (2D)011 07:00 (2D)012	JUNCTION JUNCTION	39388.45 0.26	39514.51 167.39	1 0	07:00 08:00	39169.05 0.00
1	05:22 (2D)011 07:00 (2D)012 (2D)013	JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74	39514.51 167.39 153.74	1 0 0	07:00 08:00 07:00	39169.05 0.00 0.00
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014	JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00	39514.51 167.39 153.74 0.00	1 0 0 0	07:00 08:00 07:00 00:00	39169.05 0.00 0.00 0.00
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00	39514.51 167.39 153.74 0.00 0.00	1 0 0 0 0	07:00 08:00 07:00 00:00 00:00	39169.05 0.00 0.00 0.00 0.00
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00	39514.51 167.39 153.74 0.00 0.00	1 0 0 0 0	07:00 08:00 07:00 00:00 00:00	39169.05 0.00 0.00 0.00 0.00
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00	39514.51 167.39 153.74 0.00 0.00 0.00 0.00	1 0 0 0 0 0	07:00 08:00 07:00 00:00 00:00 00:00	39169.05 0.00 0.00 0.00 0.00 0.00
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00 0.00	39514.51 167.39 153.74 0.00 0.00 0.00 0.00 0.00	1 0 0 0 0 0 0	07:00 08:00 07:00 00:00 00:00 00:00 00:00	39169.05 0.00 0.00 0.00 0.00 0.00 0.00
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00 0.00 0.00	39514.51 167.39 153.74 0.00 0.00 0.00 0.00 0.00 0.00	1 0 0 0 0 0 0 0	07:00 08:00 07:00 00:00 00:00 00:00 00:00 00:00	39169.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00	39514.51 167.39 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00:00 00:00 00:00 00:00 00:00	39169.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	39514.51 167.39 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	1 0 0 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00:00 00:00 00:00 00:00 00:00 00:00	39169.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	39514.51 167.39 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	1 0 0 0 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	39169.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	39514.51 167.39 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	39169.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1	(2D) 011 07:00 (2D) 012 (2D) 013 (2D) 014 (2D) 015 (2D) 016 (2D) 017 (2D) 018 (2D) 019 (2D) 020 (2D) 021 (2D) 022 (2D) 023	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	$\begin{array}{c} 39514.51 \\ 167.39 \\ 153.74 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	39169.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)023 (2D)024	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	$\begin{array}{c} 39514.51 \\ 167.39 \\ 153.74 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	39169.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)022 (2D)023 (2D)024 (2D)025	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	39514.51 167.39 153.74 0.00	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	39169.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)022 (2D)023 (2D)024 (2D)025 (2D)039	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00	39514.51 167.39 153.74 0.00	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1	07:00 08:00 07:00 00	39169.05 0.00 0.
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)022 (2D)023 (2D)024 (2D)025 (2D)039 (2D)040	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	$\begin{array}{c} 39514.51\\ 167.39\\ 153.74\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 541.60\end{array}$	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1	07:00 08:00 07:00 00	39169.05 0.00 0.
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)022 (2D)023 (2D)023 (2D)024 (2D)025 (2D)039 (2D)040 08:17	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00	$\begin{array}{c} 39514.51\\ 167.39\\ 153.74\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 541.60\end{array}$	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1	07:00 08:00 07:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	$\begin{array}{c} 39169.05\\ 0.00\\ 0$
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)022 (2D)023 (2D)023 (2D)024 (2D)025 (2D)039 (2D)040 08:17 (2D)041	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	39514.51 167.39 153.74 0.00	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00	39169.05 0.00 0.
1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)022 (2D)023 (2D)024 (2D)025 (2D)025 (2D)039 (2D)040 08:17 (2D)041 (2D)042	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	39514.51 167.39 153.74 0.00	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1	07:00 08:00 07:00 00	39169.05 0.00 0.
1 1 1 1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)022 (2D)023 (2D)024 (2D)025 (2D)025 (2D)039 (2D)040 08:17 (2D)041 (2D)042 08:09	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	$\begin{array}{c} 39514.51\\ 167.39\\ 153.74\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 541.60\\ 533.99\\ 541.31\end{array}$	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1	07:00 08:00 07:00 00	39169.05 0.00 0.
1 1 1 1 1 1 1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)022 (2D)023 (2D)024 (2D)025 (2D)023 (2D)024 (2D)025 (2D)039 (2D)040 08:17 (2D)041 (2D)042 08:09 (2D)043	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00	39514.51 167.39 153.74 0.00	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1	07:00 08:00 07:00 00	39169.05 0.00 0.
1 1 1 1 1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)022 (2D)023 (2D)024 (2D)025 (2D)023 (2D)024 (2D)025 (2D)039 (2D)040 08:17 (2D)041 (2D)042 08:09 (2D)043	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00	39514.51 167.39 153.74 0.00	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00	39169.05 0.00 0.
1 1 1 1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)022 (2D)023 (2D)024 (2D)025 (2D)023 (2D)024 (2D)025 (2D)039 (2D)040 08:17 (2D)041 (2D)042 08:09 (2D)043 (2D)045	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00	39514.51 167.39 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 541.60 533.99 541.31 539.62 504.41 539.62 504.41	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00	39169.05 0.00 0.
1 1 1 1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)022 (2D)023 (2D)024 (2D)025 (2D)023 (2D)024 (2D)025 (2D)039 (2D)040 08:17 (2D)041 (2D)042 08:09 (2D)043 (2D)045	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00	39514.51 167.39 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 206.30 541.60 533.99 541.31 539.62 504.41 503.56	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00	39169.05 0.00 0.
1 1 1 1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)023 (2D)024 (2D)025 (2D)023 (2D)024 (2D)025 (2D)039 (2D)040 08:17 (2D)041 (2D)042 08:09 (2D)043 (2D)045 (2D)045A	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00	$\begin{array}{c} 39514.51\\ 167.39\\ 153.74\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 206.30\\ 541.60\\ 533.99\\ 541.31\\ 539.62\\ 504.41\\ 503.56\\ 12691.51\end{array}$	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00	39169.05 0.00 0.
1 1 1 1 1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)023 (2D)024 (2D)025 (2D)023 (2D)024 (2D)025 (2D)039 (2D)040 08:17 (2D)041 (2D)042 08:09 (2D)043 (2D)044 (2D)045 (2D)045A 07:00	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	$\begin{array}{c} 39388.45\\ 0.26\\ 153.74\\ 0.00\\ 0.14\\ 12173.05\end{array}$	$\begin{array}{c} 39514.51\\ 167.39\\ 153.74\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 541.60\\ 533.99\\ 541.31\\ 539.62\\ 504.41\\ 503.56\\ 12691.51\\ \end{array}$	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00	39169.05 0.00 0.
1 1 1 1 1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)023 (2D)024 (2D)025 (2D)023 (2D)024 (2D)025 (2D)023 (2D)024 (2D)025 (2D)039 (2D)040 08:17 (2D)041 (2D)042 08:09 (2D)043 (2D)043 (2D)044 (2D)045 (2D)045A 07:00 (2D)046	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	39388.45 0.26 153.74 0.00	39514.51 167.39 153.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 206.30 541.60 533.99 541.31 539.62 504.41 503.56 12691.51 518.84	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00	39169.05 0.00 0.
1 1 1 1 1	05:22 (2D)011 07:00 (2D)012 (2D)013 (2D)014 (2D)015 (2D)016 (2D)017 (2D)018 (2D)019 (2D)020 (2D)021 (2D)022 (2D)023 (2D)024 (2D)023 (2D)024 (2D)025 (2D)023 (2D)024 (2D)025 (2D)039 (2D)040 08:17 (2D)041 (2D)042 08:09 (2D)043 (2D)043 (2D)044 (2D)045 (2D)045 (2D)046 (2D)046	JUNCTION JUNCTION	39388.45 0.26 153.74 0.00	$\begin{array}{c} 39514.51\\ 167.39\\ 153.74\\ 0.00\\ 0.0$	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07:00 08:00 07:00 00	39169.05 0.00 0.

· · · · · · · · · · · · ·

. . . .

	(2D)241	JUNCTION	0.00	1691.78	1	07:13	0.00
	(2D)242	JUNCTION	0.00	1681.76	1	07:12	0.00
	(2D)243	JUNCTION	0.00	1676.52	1	07:10	0.00
	(2D) 245	JUNCTION	0.00	1804.26	1	07:06	259.12
1	07:06			2001000	-		2051
_	(2D) 246	JUNCTION	0.00	1812 58	1	07.05	0.00
	(20)247	JUNCTION	0.00	1820 28	1	07.03	0 00
	(2D) 248	JUNCTION	0.00	1827 66	1	07.02	0.00
	(2D) 240	TUNCTION	0.00	1025.00	1	07.02	0.00
	(2D) 249	JUNCTION	0.00	1033.07	1	07:01	0.00
	(2D) 250	JUNCTION	0.00	1849.42	1	07:00	0.00
	(2D)251	JUNCTION	1649.98	1847.60	T	07:00	0.00
	(2D)252	JUNCTION	0.00	246.22	1	08:13	0.00
	(2D)253	JUNCTION	0.00	246.34	1	08:12	0.00
	(2D)254	JUNCTION	0.00	246.20	1	08:11	0.00
	(2D)255	JUNCTION	0.00	246.07	1	08:08	0.00
	(2D)256	JUNCTION	0.00	246.03	1	08:07	0.00
	(2D) 257	JUNCTION	0.00	246.32	1	08:06	0.00
	(2D) 258	JUNCTION	0.00	246.51	1	08:05	0.00
	(2D) 259	JUNCTION	0 00	247 08	1	08.04	0 00
	(21) 260	JUNCTION	0 00	247 08	1	08.03	0 00
	(20) 261	TUNCTION	0.00	247.00	1	00.00	0.00
	(20) 262	TUNCTION	0.00	247.55	1	00.02	0.00
	(20) 262	TINCETON	10.00	247.03	L D	00.00	0.00
	(2D) 263	JUNCIION	18.04	247.85	0	08:04	0.00
	(2D) 264	JUNCTION	0.00	240.36	0	08:02	0.00
	(2D) 265	JUNCTION	0.00	247.65	0	08:01	0.00
	(2D)266	JUNCTION	0.00	265.93	0	08:00	0.00
	(2D)267	JUNCTION	227.38	227.38	0	07 : 00	0.00
	(2E)001	JUNCTION	0.00	6560.14	1	08:29	1409.82
1	06:38						
	(2E)002	JUNCTION	0.00	11022.88	1	05:51	4467.04
1	05:52						
	(2E)003	JUNCTION	14480.31	18013.98	1	07:00	6952.04
1	07:00				_		
-	(2E) 004	JUNCTION	0 00	3604 29	1	14.56	0 00
	(2E) 005	JUNCTION	0.00	3536 36	1	11.50	0.00
	(2E) 006	TUNCTION	0.00	6276 52	1	14.52	2650 68
1	00.55	00001100	0.00	0270.52	T	09.33	2000.00
T	(25)007		0 00		1	00.50	0 00
		JUNCTION	0.00	5963.78	1	09:52	0.00
	(2E)008	JUNCTION	0.00	5975.27	1	09:51	0.00
	(2E)009	JUNCTION	0.00	6126.92	1	09:50	0.00
	(2E)010	JUNCTION	0.00	6063.07	1	09:57	0.00
	(2E)011	JUNCTION	0.00	6037.05	1	09:41	0.00
	(2E)012	JUNCTION	0.00	5931.28	1	09 : 57	0.00
	(2E)013	JUNCTION	0.00	5937.41	1	06:25	17.13
1	06:25						
	(2E)014	JUNCTION	10677.67	16517.65	1	07:00	10573.00
1	07:00						
	(2E)043	JUNCTION	133.34	133.34	0	07:00	0.00
	(2F)001	JUNCTION	0.00	5818.48	1	08:11	37.65
1	08:11						
	(2F)002	JUNCTION	0.00	5838.51	1	08:03	11.68
1	08:03		0.00	0000.01	-	00.00	
-	(2F)003	JUNCTION	0 00	5751 88	1	06.09	0 00
	(2E) 003	TUNCTION	3806 74	8169 56	1	06.30	2717 11
1	06.30	0 ONCITON	5000.74	0-00.00	T	00.50	~ / ± / • ± ±
Т		TINOTION	1 / 7 1 7	1601 45	1	07.00	0 00
	(21)005	TINCTION	14/.1/	4091.45	1	10.00	0.00
		JUNCTION	0.00	4591./6	1	12:20	0.00
	(2E) UU /	JUNCTION	0.00	4546.15	1	12:19	0.00
	(ZE)008	JUNCTION	0.00	4544.29	1	05:32	0.00
	(2F)009	JUNCTION	0.00	10323.81	1	05 : 57	5768.11
1	05+57						

;

a diservation of the second
	(2F)010	JUNCTION	16817.97	18850.34	1	07:00	12648.29
1	07:00						
	(2F)011	JUNCTION	2298.31	3754.62	1	07:00	1714.60
1	07:00						
	(2F)012	JUNCTION	0 00	1459 98	1	08.07	0.00
	(2F) 013	JUNCTION	0.00	1460 10	1	08.04	0 00
	(2r)013	TINCTION	0.00	1460.20	1	08.03	0.00
	(20)014	UNCTION	0.00	1400.29	1	00.03	0.00
	(2E)015	JUNCTION	0.00	1460.72	1	08:01	0.00
	(2F)016	JUNCTION	0.00	1461.91	1	08:00	0.00
	(2F)017	JUNCTION	15.83	1459.37	1	07:00	0.00
	(2F)018	JUNCTION	0.00	1445.82	1	08:43	0.00
	(2F)019	JUNCTION	0.00	1445.04	1	08:37	0.00
	(2F)020	JUNCTION	0.00	1447.22	1	08:37	0.00
	(2F) 021	TUNCTION	0.00	1447 14	1	08:36	0.00
	(2F) 022	JUNCTION	0.00	11/3 55	1	06.35	0.00
	(2E) 022	TINCTION	E202 12	144J.JJ	1	00.33	1011 01
-	(2E)023	JUNCTION	5282,13	5492.52	T	06:30	4841.04
T	06:30						
	(2F)024	JUNCTION	0.00	210.70	1	11:35	0.00
	(2F)025	JUNCTION	7730.84	7774.80	1	07:00	7562.16
1	07:00						
	(2F)026	JUNCTION	0.00	87.97	0	21:46	0.00
	(2F)027	JUNCTION	0.00	88.37	0	21:36	0.00
	(2F) 028	JUNCTION	0 00	88 73	Õ	21.29	0 00
	(25)020	TUNCTION	0.00	00.15	0	09.21	0.00
	(21)029	JUNCTION	0.00	90.10	1	00.21	0.00
	(2F) 030	JUNCTION	0.00	93.68	1	08:00	0.00
	(2F)031	JUNCTION	0.00	95.54	1	08:05	0.00
	(2F)032	JUNCTION	0.00	107.82	1	08:00	0.00
	(2F)033	JUNCTION	86.94	86.94	0	07:00	0.00
	(2G)001	JUNCTION	0.00	795.54	0	21:06	0.00
	(2G) 002	JUNCTION	9733.36	10540.03	1	07:00	9740.82
1	07:00	0011012011	3700.00	10010.00	-	0.00	5.10.01
-	(20)0027	TINCTION	0 00	1625 50	1	08.00	816 97
1	00.01	SONCIION	0.00	1023.30	1	00.00	010.01
T	08:01	TUNIOR TON	0 00		1	00 00	0 00
	(ZG)003	JUNCTION	0.00	640.69	T	08:00	0.00
	(2G)004	JUNCTION	55.65	639.23	1	07:01	0.00
	(2G)005	JUNCTION	0.00	612.25	1	08:01	0.00
	(2G)006	JUNCTION	14.90	603.05	1	08:00	0.00
	(2G)007	JUNCTION	47.02	560.62	1	07:00	0.00
	(2G) 008	JUNCTION	0.00	638.01	1	05:25	123.37
1	05.25				_		
-	(20)009	TINCTTON	17620 41	18000 18	1	07.00	17351 55
1	07.00	OUNCIION	1/020.41	10000.10	T	07.00	1/001.00
Т	07:00	TUNCETON	0 00	100 17	2	07 05	0 00
	(ZG) UIU	JUNCTION	0.00	406.1/	5	0/:25	0.00
	(2G)011	JUNCTION	9.66	408.78	0	19:18	0.00
	(2G)012	JUNCTION	0.00	378.25	2	19:21	0.00
	(2G)012A	JUNCTION	0.00	378.48	0	19:16	0.00
	(2G)013	JUNCTION	0.00	379.00	0	19:16	0.00
	(2G)013A	JUNCTION	28.36	381.13	0	19:16	0.00
	(2G) 014	TUNCTION	0 00	349 17	Õ	07.09	0 00
	(20)019	TINCTION	10 07	300 80	2	07.32	19 90
2	(20)015	DONCTION	10.07	399.00	2	01.52	49.90
2	07:32		100.00	454 10	-		05 10
	(2G)016	JUNCTION	108.22	474.19	1	07:00	82.18
1	07:00						
	(2G)016A	JUNCTION	0.00	393.83	1	05:44	27.86
1	05:45						
	(2G)018	JUNCTION	27.85	411.34	1	07:00	17.51
1	07:00	0 01,01 2011	2,.00		÷		
Ŧ	(20)019	TUNCTION	22212 06	22626 22	1	07.00	22222 27
1	07.00	JUNCIION	23242.30	23020.32	T	07:00	23222.21
T	07:00	TIMOTION	0.05	200 15	-	07 00	7 05
-	(ZG) UZU	JUNCTION	3.85	390.41	T	07:00	1.05
	$(1 / \cdot (1))$						

.

	(2G)021	JUNCTION	3.85	390.19	1	07:00	3.64
1	07:00						
	(2G)022	JUNCTION	6.17	392.40	1	07:00	6.06
1	07:00						
-	(2G)023	JUNCTION	5.81	390.00	1	07:00	3.77
T	07:00						
-	(2G) 024	JUNCTION	0.00	605.28	1	05:03	221.09
T	05:04	TINIGETON	0 00	1050 00	-	0.0.05	
1	(2G)025	JUNCTION	0.00	1258.22	T	06:25	651./1
T	06:25	TINCUTON	10500 45	10500 45	1	07.00	11607 01
1	(2G)026	JUNCTION	12520.45	12520.45	T	07:00	1103/.01
T	(20)040	TINCUTON	26750 00	20052 10	1	07.00	25020 02
1	07.00	JUNCIION	36750.02	36952.19	T	07:00	33920.02
Т	(2C)041		0 00	262 20	0	00.13	0 00
	(2G)041	JUNCTION	0.00	263 81	1	00.13	0.00
	(2G) 042	JUNCTION	0.00	265.85		00.00	0.00
	(2C)043	TUNCTION	0.00	205.05	1	00.04	0.00
	(2G)043A	TUNCTION	0.00	271.09	1	00:02	0.00
	(20)044		250 45	290.00		00.00	0.00
	(2G) 045		200.40	250.45	1	07:00	14242 05
1	07.00	JUNCIION	14040.10	14040.10	T	07:00	14243.03
T	(24)001		0 00	2520 20	1	11.00	0 00
	(24)001		12 51	2030.30	1	07.00	0.00
	(21)002		13.51	2403.90	1	10.50	
1	10.52	JUNCIION	0.00	2507.52	T	10:52	34.00
T	10:52	TINCUTON	0 00	2501 10	1	10.40	0 00
	(21)005	TUNCTION	0.00	2301,10	1	10:40	
1	05.59	JUNCIION	0.00	2/00.03	T	05:50	200.21
T	(24)007	TINCTTON	1100 73	7206 05	1	07.00	1522 23
1	07.00	JUNCIION	4400.73	/300.95	T	07:00	4000.20
T	(24)008	TINCTTON	0 00	2010 04	1	00.11	0 00
	(21)000	TUNCTION	0.00	2910.04	1	09.44	0.00
	(24) 010	TUNCTION	0.00	2911.93	1	09:44	0.00
	(24)010	TUNCTION	0.00	2910.42	1	09:44	0.00
	(24)012	TUNCTION	21000 02	2900.23	1	07.00	24650 26
1	07.00	00NCI 10N	24090.92	2/3//.10	T	07.00	24030.20
т	(24)013		3530 23	1983 65	1	06.00	2303 25
1	06.00	UDINCITON	5550.25	4909.05	T	00.00	2303.23
Т	(2H) 014	TINCTION	2 7 2	1/65 88	1	07.59	0 00
	(2H) 015	TINCTION	0.00	1463 50	1	08.00	0.00
	(2H) 016	JUNCTION	3 08	1463 16	1	00.00	0.00
	(2H) 017	JUNCTION	0.00	1460 67	1	08.00	0.00
	(2H) 017A		6 17	1460 08	⊥ 1	07.55	
	(2H) 018	TINCTION	0.00	1450.00	1	08.00	0.00
	(2H) 019	TUNCTION	3 85	1/53 91	1	07.54	0.00
	(28) 020	TUNCTION	1 18	1450.06	1	07.54	0.00
	(2H) 020	JUNCTION	1 18	140.00	1	07.50	0.00
	(2H) 022	JUNCTION		1008 67	1	10.06	0.00
	(2H) 022	JUNCTION	0.00	1010 19	1	10.00	0.00
	(2H) 023	TUNCTION	0.00	1010.10	1	10.00	0.00
	(24)024	TUNCTION	0.00	1017 06	1	10.10	0.00
1	05.50	JONCI TON	0.00	TOT/.00	T	±♥•±∠	
Ŧ	(2H)026		1 05	441 22	1	07.10	0 00
	(2H)027		T.90	179 79 179 79	⊥ 1	08.00	
	(2H) 028	TINCTION		130 00	⊥ 1	08.02	0.00
	(24)029	TUNCTION	0.00	433.33	1 1	00.01	0.00
	(211)020	JUNCTION	11 61	440.24 130 30	⊥ 1	00.00	0.00
	(21)030	TUNCTION	TT.01	5/1 70	1	07.00	11/ 02
1	05.27	CONCITON	0.00	J41.19	1.	00.20	T74.05
Ŧ	(28)032	TINOTION	ור ר	2112 20	٦	06.30	1600 35
	1211/022	CONCTTON	/ • / ⊥	2140.00	1	00.00	TOOOTJO

t ar

. .

a subset of the second s

1	06:30						
-	(2H) 033	JUNCTION	1717.73	2137.22	1	06:30	0.00
	(2H) 034	JUNCTION	0.00	420 45	1	08.00	0.00
	(20)034	TINCTION	3 24	420.43	1	07.00	0.00
			0.00	420.12	1	11.22	0.00
	(2H) 037	JUNCTION	0.00	417.20	1	11.00	0.00
	(ZH)038	JUNCTION	0.00	417.24	1	11:32	0.00
	(2H)039	JUNCTION	0.00	417.25	1	11:31	0.00
	(2H)040	JUNCTION	0.00	417.27	1	11:29	0.00
	(2H)041	JUNCTION	0.00	417.33	1	11:28	0.00
	(2H)042	JUNCTION	0.00	417.59	1	11:27	0.00
	(2H)043	JUNCTION	0.00	417.40	1	11:26	0.00
	(2H) 044	JUNCTION	0 00	417 49	1	11.25	0.00
	(211) 044	TINCTION	0.00	417.10	1	11.25	0.00
	(211)045		0.00	417.74	1	11.21	0.00
	(ZH) 046	JUNCTION	0.00	417.10	1	11:21	
	(2H)04/	JUNCTION	0.00	/39.15	T	06:26	322.26
1	06:26						
	(2H)048	JUNCTION	0.00	740.13	1	09:44	0.00
	(2H)049	JUNCTION	7117.06	7477.05	1	07:00	6731.04
1	07:00						
	(2H)050	JUNCTION	0.00	360.54	1	10:58	0.00
	(2H) 051	JUNCTION	0.00	361 36	1	10.57	0 00
	(211)051	UNCTION	0.00	261 52	1	10.57	0.00
	(2H) 051A	JUNCTION	0.00	361.52	1	11 00	0.00
	(ZH)05Z	JUNCTION	0.00	360.24	1	11:09	0.00
	(2H)053	JUNCTION	0.00	1058.09	1	07:53	697.58
1	07 : 53						
	(2H)054	JUNCTION	0.00	553.84	1	06:42	0.17
1	06:42						
	(2H)054A	JUNCTION	3.85	556.99	1	05:42	3.00
1	05.42						
Ŧ	(24)055		0 00	554 64	1	05.42	0 00
	(211)055	UNCTION	0.00	554.04	1	05.42	0.00
	(ZH) 055A	JUNCTION	0.00	554.64	1	05:42	0.00
	(2H)056	JUNCTION	0.00	554.64	1	05:45	0.00
	(2H)057	JUNCTION	4.63	558.14	1	07:00	3.51
1	07:00						
	(2H)058	JUNCTION	4802.74	4802.74	1	07:00	4241.89
1	07:00						
	(2H)285	JUNCTION	8.12	504.51	1	07:00	0.00
	(2H) 286	JUNCTION	10430 50	10924 51	1	07.00	10420.87
1	07.00	000001100	10150.50	10921.91	-	0,.00	10120.07
Ŧ	(211) 207	TINGUTON	0 00	105 27	1	07.42	0 00
	(2H)287	JUNCTION	0.00	495.27	1	07:42	0.00
	(2H)288	JUNCTION	0.00	494.18	T	07:39	0.00
	(2H)289	JUNCTION	50.25	548.68	1	07 : 31	53.93
1	07:00						
	(2H)290	JUNCTION	1296.96	1296.96	1	07:00	798.43
1	07:00						
	(2T)001	JUNCTION	3960.63	5597.15	1	07:00	4166.61
1	07.00	00001100	0,000.00	0007.10	-	0.000	
T	(2T) 001 A	TINCUTON	0 00	1/10 61	1	05.09	103 31
-	(21)001A	JONCITON	0.00	1419.01	T	05.09	403.31
T	05:09		10 11	1 6 9 9 9 9	1	07 00	0 00
	(21)002	JUNCTION	13.41	1639.08	T	07:00	0.00
	(2I)003	JUNCTION	4992.11	6559.07	1	07:00	4930.87
1	07:00						
	(2I)004	JUNCTION	0.00	1633.82	1	09:14	62.04
1	09:08						
	(2T)005		0 00	2953 72	1	08.02	1299.00
1	08.00	0011011011	0.00	2733.12	-	00.02	1200.00
Ŧ		TINGUTON	0 00	1600 05	1	00.00	0 00
	(21)006	JUNCTION	0.00	1020.05	Ţ	00:00	0.00
	(21)008	JUNCTION	1501.81	2895.66	1	0/:00	T208.82
1	07:00						
	(2I)009	JUNCTION	3.49	1396.68	1	07:45	0.00
	(21)010	JUNCTION	0.00	1394.25	1	07:45	0.00

; ;; ,

i F

·

. 6 . .

	(21)011	JUNCTION	6.58	1395.18	1	07:44	0.00
	(21)012	JUNCTION	0.00	1391.66	1	07:44	0.00
	(2I)013	JUNCTION	0.00	1385.97	1	06:02	0.00
	(2I)014	JUNCTION	4838.60	4838.60	1	07:00	3447.53
1	07:00						
	(2I)015	JUNCTION	0.00	0.00	0	00:00	0.00
	(2I)016	JUNCTION	0.00	0.00	0	00:00	0.00
	(2I)017	JUNCTION	0.00	0.00	0	00:00	0.00
	(2I)017A	JUNCTION	6.17	710.19	1	07:00	0.00
	(21)018	JUNCTION	0.00	863.46	1	10:49	158.58
1	10:49						
_	(2T)019	JUNCTION	0.00	862.71	1	10:54	0.00
	(2T)020	JUNCTION	11371 51	12140 27	1	07.00	11268.26
1	07:00	00001100	110/1.01	12110.27	-	0,.00	11200.20
T	(2T) 021		0 00	1139 34	1	05.35	370 29
1	05.35	OUNCIION	0.00	1100.04	T	00.00	570.25
т	(21) 0217	TUNCTION	0 00	11/1 61	1	06.02	0 00
	(21)021A (21)021B	TUNCTION	2101 02	2800 61	1	00.02	1652 00
1	07.00	JUNCIION	2101.03	2000.01	T	07:00	1003.00
Ŧ	(21) 0210	TUNCETON	0 00	7 (0 10	1	10.20	142 00
1	10.20	JUNCIION	0.00	/08.19	T	10:30	143.08
Т	10:30	TINGETON	0 00		-1	10 20	0 00
	(21)022	JUNCTION	0.00	765.33	1	10:30	0.00
	(21)023	JUNCTION	0.00	/64.11	1	10:26	0.00
	(21)024	JUNCTION	0.00	/65.04	T	10:22	0.81
T	10:23						
	(21)025	JUNCTION	0.00	759.11	1	05:44	0.00
	(2I)025A	JUNCTION	17154.00	17882.13	1	07:00	17111.19
1	07:00						
	(2I)026	JUNCTION	0.00	768.03	1	09:05	0.00
	(2I)027	JUNCTION	0.00	728.13	1	05:14	0.00
	(2I)028	JUNCTION	56.42	847.58	1	07:00	117.98
1	07:00						
	(2I)029	JUNCTION	7850.55	7850.55	1	07:00	7048.08
1	07:00						
	(21)044	JUNCTION	0.00	1392.70	1	08:54	0.00
	(2I)045	JUNCTION	0.00	1403.65	1	09:05	0.22
1	09:05						
	(2I)046	JUNCTION	0.00	1401.75	1	08:55	0.00
	(2I)047	JUNCTION	0.00	1400.38	1	05:44	0.00
	(21)048	JUNCTION	0.00	1400.38	1	05:09	0.00
	(21)049	JUNCTION	12425.06	13264.83	1	06:30	11859.17
1	06:30						
	(21)050	JUNCTION	0.00	885.68	1	05:16	0.00
	(21)051	JUNCTION	22.40	892.95	1	05:16	3.99
1	05:16						
	(21)052	JUNCTION	0.00	887.47	1	06:01	0.00
	(21)053	JUNCTION	0.00	889.05	1	09:15	0.79
1	09:15	001.01201.			-		
-	(2T)054	JUNCTION	7931.13	8818.59	1	07:00	7928.65
1	07.00	00001100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0010.00	-	0,.00	, , , , , , , , , , , , , , , , , , , ,
-	(21)055	TUNCTION	36 07	921 75	1	07.00	34 28
1	07:00	00001100	00.07	JZ1.75	T	07.00	51.20
-	(21)056		0 00	887 67	1	08.27	0 10
1	08.27	OONCITON	0.00	007.07	T	00.27	0.10
т	(2T)057	TUNCTION	0 00	887 17	1	06.15	0 00
	(21)058	TUNCTION	0.00	007.47 000 51	⊥ 1	00.13	0.00
1	08.32	JUNCITON	0.00	000.JI	T	00.51	0.52
Т	(2T) 050	ΤΓΙΝΙΟΤΙΛΝ	10160 43	10160 43	1	06.20	9270 10
1	(21)039	JUNCIION	10100.43	10100.43	Ţ	00:30	9210.19
Т		TEINORTON	0 00	1177 00	1	11.00	0 00
	(2J)UUI	JUNCTION	0.00	41/1.86	1	10 00	0.00
	(20)002	JUNCTION	0.00	4130.08	T	TO:OS	0.00

the second second second

1	(2J)003 (2J)004 11:29	JU JU	NCTION NCTION	0.00 0.00	4153.24 4259.24	1 1	10:01 11:28	0.00 84.84
Ţ	(2J)005 (2J)006	JU JU	NCTION	0.00	4248.52 4208.91	1	11:28 11:25	0.00
1	(2J)007 11:05 (2J)008	υU	NCTION	0.00	4207.00	1	07:00	0.32
1	07:00			0 00	1012 13	1	11.19	0 00
	(2J)010 (2J)011 (2J)011	JU JU	NCTION NCTION	0.00	4037.72	1	11:19 11:18 11:00	0.00
1	(2J)012 (2J)013 11:03	JU	NCTION	0.00	4071.35	1	11:15	116.19
	(2J)014 (2J)015 (2J)016 (2J)017	טע סע סע	NCTION NCTION NCTION NCTION	0.00 0.00 0.00 0.00	3901.93 3697.82 3697.80 3699.77	1 1 1 1	11:00 08:03 08:02 11:02	0.00 0.00 0.00 0.00
	(2J)018	JU	NCTION	0.00	3701.83	1	11:01 12:56	0.00
1	(2J)020 07:17	JU	NCTION	27.59	391.24	1	07:17	308.11
1	(2J)021 (2J)022 18:03	JU JU	NCTION NCTION	6.11	363.65 390.91	1 1	07:00 18:03	0.00 32.64
1	(2J)023 05:34	JU	NCTION	0.00	831.44	1	05:34	441.27
1	(2J)026 07:00	JU	NCTION	9999.67	10477.98	1	07:00	9980.04
1	(2J)027 (2J)028	JU JU	NCTION NCTION	0.00 0.00	479.02 492.72	1 1	09:59 06:06	0.00 14.41
1	(2J)029	JU	NCTION	7656.49	7959.90	1	07:00	7462.23
T	(2J) 030	JU	NCTION	0.00	316.96	1	09:42	0.00
1	(2J)032 07:00	JU	NCTION	5342.10	5342.10	1	00:05	5033.06
-	(2J)033 (2J)040	טע טע	NCTION NCTION	0.00 6.83	0.00 491.28	0 1	00:00 13:14	0.00 0.00
	(2J)041 (2J)042	JU JU	NCTION NCTION	0.00	479.90 475.08	1 1	13:10 07:12	0.00 0.00
_	(2J)043 (2J)044	JU JU	NCTION NCTION	7.71 7.61	475.08 492.12	1 1	07:00 12:37	0.00 17.50
1	12:38 (2J)045 (2J)045A	JU	NCTION	4.26	464.51	1	07:00 12:57	0.00
1	07:32 (2J)046	JU	NCTION	5.81	475.86	1	07:00	0.00
1	(2J)047 07:00	JU	NCTION	12051.33	12371.70	1	07:00	11891.07
	(2J)048 (2J)049 (2J)050 (2J)051 (2J)052 (2J)052	20 20 20 20 20 20 20 20 20 20 20 20 20 2	NCTION NCTION NCTION NCTION NCTION	14.28 0.00 5.40 0.00 0.00	328.48 314.61 319.83 316.99 305.55	1 1 1 1	20:06 20:06 20:05 20:05 20:08	$\begin{array}{c} 0.00\\$
1	07:00	JU	NCTION	14.28	325.09	Ţ	07:00	19.72
1	(2J)054 07:00	JU	NCTION	10.43	324.06	1	07:00	13.26

- - - - -

	(2J)055	JUNCTION	0.00	314.46	1	05:31	0.82
1	05:31						
	(2J)056	JUNCTION	23268.99	23322.20	1	07:00	22964.18
1	07:00						
	(2J)057	JUNCTION	0.00	76.07	0	08:00	0.00
	(2J)060	JUNCTION	64.95	64.95	0	07:00	0.00
	(2K)001	JUNCTION	54.11	1780.01	1	07:31	568.41
1	07:32						
	(2K)002	JUNCTION	38.64	1309.89	1	07:30	0.00
	(2K)003	JUNCTION	2.31	1271.25	1	07:00	0.00
	(2K)004	JUNCTION	0.00	1269.34	1	10:02	0.00
	(2K)005	JUNCTION	0.00	1269.74	1	09:57	0.00
	(2K)006	JUNCTION	0.00	1270.09	1	09:57	0.00
	(2K)007	JUNCTION	0.00	1269.70	1	09:56	0.00
	(2K)008	JUNCTION	0.00	1273.65	1	09:57	0.00
	(2K)009	JUNCTION	0.00	1275.74	1	09:56	0.00
	(2K) 010	JUNCTION	0.00	1270.94	1	09:57	0.00
	(2K)011	JUNCTION	3.24	1376.03	1	09:40	104.52
1	09.40	0011011	0.01	1010.00	-	0.0.1.0	
-	(2K)012	TUNCTION	0 00	1368.91	1	05:54	0.00
	(2K)013	JUNCTION	6708 72	7637 93	1	07:00	6261.88
1	07.00	0010011014	0700.72	1031.99	-	01.00	0201.00
Т	(2K) 014		6094 12	6790 49	1	07.00	5854,44
1	07.00	00001100	0004.12	0750.45	-	01.00	5051.11
Т	(2K) 015		0 00	860 24	1	10.19	160 23
1	10.20	OUNCIION	0.00	000.24	Ŧ	10.19	100.25
1	10.20	TUNCTION	2 31	963 53	1	10.19	0 00
	(2K)010	TINCTION	2.JI 1 5/	003.JJ 921 60	1	07.00	0.00
	(2K)017	TINCTION	1.J4 2.31	021.00	⊥ 1	07.00	46 30
1	07.00	JONCIION	2.51	000.50	T	07.00	40.50
Ŧ	(212) 01 0N	TINCUTON	0 00	015 21	1	05.31	79 55
1	(ZK/010A	JUNCIION	0.00	940.04	T	00.01	19.00
Т	(212) 010	TINCTION	1020 75	1752 01	1	07.00	3902 61
1	(2K)019	JUNCIION	4039.73	4/33.91	Т	07.00	5002.04
T	07:00	TINCTION	0 00	714 16	1	05.12	0 00
	(2K) 020	JUNCTION	2.40	714.10	1	10.10	1/9 25
1	(2K)021	JUNCIION	5.49	000.00	T	10:10	140.20
T	10:10	TINCUTON	2 00	076 75	1	10.00	0 00
	(2K) 022	JUNCTION	3.08	8/6./5	1	10:09	0.00
	(2K) 022A	JUNCTION	0.00	860.25	1	10:08	0.00
	(2K) 023	JUNCIION	0.00	842.01	1	TO:07	0.00
	(2K) 024	JUNCTION	0.00	840.34	1	05:09	0.00
1	(ZR) UZ4A	JUNCIION	24.12	930.09	T	07:00	90.04
T	07:00	TINGUTON	7701 76	0444 24	1	07.00	7526 02
1	(ZK)025	JUNCTION	//91./6	8444.34	T	07:00	1526.03
T	07:00	TINGUTON	0 00	CCC 70	1	11.11	0 00
	(2K) 026	JUNCTION	0.00	666.72	1	11.41	0.00
	(2K) 027	JUNCTION	0.77	663.43	1	11:41	0.00
	(2K) 028	JUNCTION	0.00	652.UI	1	06:31	15702 01
-	(ZK) UZ9	JUNCTION	15/08.43	16364.02	Ţ	07:00	15/03.91
T	07:00		0 00	655 11	1	11 05	0 00
	(2K) 030	JUNCTION	0.00	657.11	1	11:05	0.00
-	(2K)031	JUNCTION	0.00	662.86	Ţ	TO:28	5.27
1	10:58		~ ~ ~	65 G I I	-	07 00	0 00
	(2K)032	JUNCTION	2.88	656.14	1	07:00	0.00
_	(2K)033	JUNCTION	4951.75	5587.18	1	0/:00	4931.26
1	0/:00			<u></u>	-	10 20	
-	(2K)033A	JUNCTION	1.95	646.71	1	T0:33	11.19
1	10:34				-	10 05	00.15
_	(2K)034	JUNCTION	0.00	678.05	1	T0:33	30.17
1	10:34				-	10 05	0.00
	(2K)035	JUNCTION	0.00	663.19	1	10:32	0.00

· • • •

. -

.

 \mathbf{x}_{0} , $\mathbf{1}_{0}$, $\mathbf{1}_{0}$, \mathbf{x}_{0} , $\mathbf{x$

	(2K)036	JUNCTION	0.00	648.37	1	10:22	0.00
	(2K)037	JUNCTION	78.31	725.14	1	07:00	77.19
1	07:00						
	(2K) 038	JUNCTION	0.00	648.06	1	05:47	0.00
	(2K) 039	JUNCTION	0.00	648.06	1	05:4/	0.00
	(2K) 04U	JUNCTION	0.00	648.06	1	10.11	0.00
1	(ZK) U4 I	JUNCTION	0.00	649.12	T	10:11	0.55
T	10:11	τινιάταν	6127 99	7072 12	1	07.00	6412 11
1	07.00	JUNCIION	0427.09	1012.12	Т	07.00	0412.11
Т	(2K) 0 4 3	TUNCTION	0 00	648 02	1	05.59	0 00
	(2K) 044	JUNCTION	0.00	648.56	1	09:24	0.25
1	09:24	00001100	0.00	010.00	-	0,121	0.20
-	(2K)045	JUNCTION	0.00	648.06	1	05:56	0.00
	(2K) 046	JUNCTION	0.00	648.06	1	05:54	0.00
	(2K)047	JUNCTION	0.00	648.18	1	09:13	0.06
1	09:13						
	(2K)048	JUNCTION	0.00	648.06	1	05:54	0.00
	(2K)049	JUNCTION	0.00	648.82	1	09:05	0.38
1	09:05						
	(2K)050	JUNCTION	0.00	648.06	1	05:54	0.00
	(2K)051	JUNCTION	0.00	648.06	1	06:05	0.00
	(2K)052	JUNCTION	12943.14	12943.14	1	06:30	12292.43
1	06:30						
	(2K)314	JUNCTION	0.00	416.01	1	06:31	0.00
	(2K)315	JUNCTION	0.00	503.62	1	14 : 31	83.01
1	14:31						
	(2K)316	JUNCTION	0.00	497.63	1	05:31	0.00
	(2K) 317	JUNCTION	10619.73	10619.73	1	07:00	10106.27
1	07:00	TINIGHTON	0 00	1000 00	1		1051 00
1	ForcedMain	JUNCTION	0.00	1200.00	T	05:08	1051.22
T			0 00		1	06.02	0 00
	(PLANI)	DIVIDED	15 47	510 39	⊥ 1	00:03	0.00
	(1C)020 (1F)012	DIVIDER	15.47	38 25		07:00	0.00
	(1C)012	DIVIDER	0.00	516 56	1	00.01	0.00
	(23)019	DIVIDER	857 12	6410 82	1	07.00	0.00
	(2C)009	DIVIDER	2907 20	3373 53	1	07:00	2564.31
1	07:00	DIVIDUR	2507.20	0010.00	-	01.00	2001001
-	(2D) 244	DIVIDER	0.00	1879.55	1	06:51	0.00
	(1M)012	DIVIDER	0.00	1111.60	1	07:59	0.00
	(2J)025	DIVIDER	0.00	963.21	1	07:59	7.63
1	07:59						
	(1C)001B	DIVIDER	11.61	4768.88	1	07:00	0.00
	(1M)020	DIVIDER	54.26	671.77	1	07 : 59	0.00
	(1A)STOR	STORAGE	0.00	0.00	0	00:00	0.00
	(1A)DIV	STORAGE	0.00	0.00	0	00:00	0.00
	(2A)000	STORAGE	0.00	13199.01	1	08:57	3198.27
1	08:57						
	NorthEnidStorage	STORAGE	0.00	1780.84	1	17:16	925.01
1	05:17						
	(10)304C	STORAGE	0.00	715.04	1	08:03	0.00
-	LiftStation	STORAGE	0.00	1632.03	1	05 : 12	430.87
1	12:03		0 0 0	1050 00	-	07 00	0 00
	(10) 304	STORAGE	0.00	105 .33	1	07:00	0.00
	(IC)Storage	STORAGE	0.00	195.69	1	07:09	0.00
	riantstorage	SIUKAGE	0.00	4000.00	T	00:03	0.00

н 2

÷

, F 2

the second contraction of the second s

Storage Volume Summary

of Max Maximum	Average	Avg	Maximum	Max	Time
	Volume	Pcnt	Volume	Pcnt	
Occurrence Outflow Storage Unit hr:min GPM	1000 ft3	Full	1000 ft3	Full	days
(1A) STOR	0.000	0	0.000	0	0
00:00 0.00 (1A)DIV	0.000	0	0.000	0	0
(2A) 000 (2A) 000	1.092	12	9.032	100	1
NorthEnidStorage 00:00 0.00	0.000	0	0.000	0	0
(10)304C 17:16 2006.84	0.031	12	0.112	43	1
LiftStation 05:29 1200.00	0.568	31	1.828	100	1
(10)304 08:00 3727.00	0.002	1	0.037	15	1
(1C)Storage 09:05 195.56	0.342	1	0.964	2	1
PlantStorage 00:31 0.00	179.539	8	316.422	15	3

-

÷

Outfall Loading Summary *******

Outfall Node	Flow Freq. Pcnt.	Avg. Flow GPM	Max. Flow GPM
(PLANT)	98.82	4554.57	6000.00
System	98.82	4554.57	6000.00

(1A)000A	0	CONDUIT	3540.94	3	07:09	5.53	0.18
U.29 (12)000B	U	CONDUTT	3541 00	з	07.08	3 20	030
0.43	0	COMDOTT	3341.00	5	07.00	5.29	0.55
(1A)001	-	CONDUIT	3541.08	0	07:30	1.44	1.08
0.95	4170						
(1A)002	6.5	CONDUIT	6951.62	1	06:51	2.81	1.08
1.UU (17)002	6/	CONDUTE	7160 20	1	07.05	4 20	0 67
0.60	0	CONDULT	/100.20	T	07:05	4.30	0.07
(1A)004	Ŭ	CONDUIT	7162.46	1	07:04	3.55	0.85
0.71	0						
(1A)005	0	CONDUIT	7160.20	1	07:02	3.95	0.75
U.65 (17)006	0	CONDUTT	7164 10	1	07.01	1 96	0 56
0.53	0	CONDULT	/104.10	T	07:01	4.90	0.50
(1A)007	-	CONDUIT	7168.40	1	07:00	4.79	0.58
0.55	0						
(1A)008	0	CONDUIT	4739.47	1	17 : 14	4.34	0.38
(1A)009	0	CONDITT	1716 70	1	17.13	3 1 2	0 60
0.56	0	CONDOIT	1/10./0	T	I/.IJ	J. 12	0.00
(1A)010		CONDUIT	4734.81	1	17:12	4.18	0.40
0.44	0						
(1A)011	042	CONDUIT	4730.92	1	07:09	1.95	1.08
(1A)012	94Z	CONDITT	5228 20	1	07.10	2 13	1 08
0.95	666	00112011	3220.20	-	0,.10	2:13	±.00
(1A)013		CONDUIT	9957.57	1	06:56	4.04	1.08
0.95	198	0010117	10160 00	-		4 9 9	1 0 0
(1A) U14	121	CONDULT	12163.88	T	06:37	4.93	1.08
(1A)015	121	CONDUIT	4532.40	1	10:13	4.45	0.35
0.41	0						
(1A)016	0	CONDUIT	4528.67	1	10 : 13	3.09	0.57
(13) 017	0	CONDITT	4521 70	1	10.11	2 61	0 71
0.62	0	CONDULT	4551.70	T	10:11	2.01	0.71
(1A)018	-	CONDUIT	3774.29	1	00:21	3.99	0.41
0.45	0						
(1A)019	1021	CONDUIT	3778.87	1	00:20	1.85	1.08
(1A)020	4031	CONDUTT	5126 58	0	20.11	4 57	0 51
0.51	0	0000011	0120.00	0	20.11	1.07	0.01
(1A)021		CONDUIT	5129.30	2	08:25	4.08	0.60
0.56	0	20110117	5107 07	-	00.05	4 97	0.46
(IA)022	0	CONDULT	5127.07	2	20:06	4.97	0.46
(1A)023	0	CONDUIT	5133.80	2	21:45	3.94	0.63
0.57	0						
(1A)024	-	CONDUIT	5133.35	2	08:23	4.67	0.51
U.51 (17)0247	U		5100 17	2	20.04	0 E 0	1 00
0.95	1959	CONDULT	JIZ0.1/	Z	20:04	2.52	T.08
(1A)025		CONDUIT	10069.65	1	06:38	13.95	0.28
0.36	0						
(1A)026	100	CONDUIT	10068.26	1	06:38	4.94	1.08
0.90	τυq						

ſ

. . . .

all a strategies and the strategies to the strategies of the strat

(1A)027		CONDUIT	11443.23	1	07:19	5.60	1.08
0.96 (1A)028	61	CONDUIT	4316.28	3	08:26	2.74	0.79
0.67	0	CONDUTT	1316 17	з	08.24	3 80	0 52
0.51	0	CONDOLI	4010.47	5	00:24	5.00	U.JZ
(1A)030 0 70	0	CONDUIT	4316.51	3	08:23	2.64	0.83
(1A)031	°	CONDUIT	4316.76	3	08:21	3.26	0.64
0.58 (1A)032	0	CONDUIT	4316.97	3	08:19	3.06	0.69
0.61	0	CONDUTT	1317 20	з	08.17	3 1 3	0 67
0.60	0	CONDOLI	4317.20	J	00.17	5.15	0.07
(1A)034 0.72	0	CONDUIT	4318.09	2	22:36	2.55	0.87
(1A)035	0	CONDUIT	4322.60	3	08:53	3.54	0.58
(1A)035A	U	CONDUIT	4323.08	2	09:17	2.63	0.84
0.70 (1A)036	0	CONDUTT	4320.49	0	08:35	4.00	0.49
0.49	0	CONDUTE	1000 07	0	00.00	2.01	0.07
(IA)037 0.60	0	CONDULT	4329.97	Z	22:33	3.21	0.67
(1A)038 0 95	1992	CONDUIT	4319.39	0	08:09	2.13	1.08
(1A)039		CONDUIT	6791.30	1	13:10	4.23	0.82
0.69 (1A)040	0	CONDUIT	6781.11	1	06:14	3.33	1.08
0.95	507	CONDUTT	7078 84	1	05.51	3 17	1 08
0.95	478	CONDOLI	1010.04	1	05.51	5.47	1.00
(1A)042 0.95	251	CONDUIT	11685.46	1	06:17	3.98	1.08
(1B)001	0	CONDUIT	1400.21	1	14:49	6.04	0.11
(1B)002	0	CONDUIT	1401.12	1	14:49	2.95	0.29
0.37 (1B)003	0	CONDUIT	1400.27	1	14:49	2.86	0.31
0.38	0	CONDUTT	1200 16	1	15.10	1 0 9	1 00
0.95	608	CONDULI	1333.10	T	13:10	1.00	1.00
(1B)005 1.00	154	CONDUIT	7387.08	1	05:35	5.66	1.08
(1B)006	254	CONDUIT	4972.76	1	11 : 15	3.83	1.08
(1B)009	354	CONDUIT	5090.50	1	05:43	3.91	1.08
0.95 (1B)010	350	CONDUIT	4859.76	1	08:00	5.11	0.74
0.64	0	CONDULT	1700.00	-	11 00	2.62	1 00
(1B)UII 0.95	351	CONDULT	4/98.26	T	11:02	3.69	1.08
(1B)013 0 74	Ο	CONDUIT	5090.05	1	10:50	4.58	0.90
(1B)014	~ ~ ~	CONDUIT	5085.72	1	05 : 57	3.91	1.08
0.95 (1C)001	342	CONDUIT	5324.31	1	05:30	4.08	1.08
1.00	266	CONDITT	4987 15	1	06.03	3 83	1 ∩ 2
0.95	231	CONDOTI	4907.13	T	00.05	J.0J	1.00
(1C)001B		CONDUIT	4573.36	1	07:00	7.76	0.39

Name of

· · ·

-

0.44	0						
(1C)001BO	0	CONDUIT	195.69	1	07:09	2.78	0.02
(1C)001C	0	CONDUIT	4757.27	1	06:10	6.96	0.48
0.49	0	~~~~~~		_			
(1C)001D 0 95	214	CONDUIT	4757.27	1	06:09	3.66	1.08
(1C)001E	211	CONDUIT	5778.59	1	05:46	8.03	0.51
0.51	0	CONDUTE		1		6 40	0 60
0.60	0	CONDUIT	5778.58	T	05:45	6.49	0.08
(1C)001G	0	CONDUIT	195.69	1	07:09	2.61	0.02
(1C)002	0	CONDUIT	1409.27	1	07 : 59	6.44	0.67
0.60 (1C)003	Û	CONDUIT	37.01	0	08:00	0.94	0.11
0.22 (1C)004	0	CONDUIT	22.42	0	08:00	1.23	0.04
0.13 (1C)005	0	CONDUIT	17.60	0	08:01	0.42	0.12
0.23	0			-		•••	• •
(1C)006 0 12	Ο	CONDUIT	17.69	0	08:01	1.06	0.03
(1C)006A	0	CONDUIT	16.07	0	08:00	1.16	0.02
0.11	0	CONDUTT	15 47	Ο	20.31	1 01	0 03
0.11	0	COMPOIL	10.11	Ŭ	20.51	1.01	0.00
(1C)009 0 71	0	CONDUIT	5779.01	1	05:44	5.44	0.85
(1C)010	0	CONDUIT	5786.41	1	05:42	7.10	0.61
(1C)011	U	CONDUIT	5798.76	1	05:42	6.26	0.71
0.62 (1C)012	0	CONDUIT	0.00	0	00:00	0.00	0.00
0.00 (1C)015A	0	CONDUIT	5778.58	1	05:41	4.37	1.08
1.00 (1C)015B	193	CONDUIT	6341.24	1	08:36	5.76	0.88
0.73 (1C)015C	0	CONDUTT	6340 56	1	06.05	5 62	0.91
0.75	0	00110011	0010.00	1	00.00	3.02	0.91
(1C)016	140	CONDUIT	5903.53	1	08:05	4.66	1.06
(1C)016A	142	CONDUIT	5621.75	1	07:06	5.05	0.91
0.75 (1C)016B	0	CONDUTT	5656.56	1	08.08	4 40	1.07
0.94	148			-			100
(1C)016C 0 95	150	CONDUIT	5620.21	1	06:11	4.32	1.08
(1C)017	100	CONDUIT	11.41	0	08:04	2.40	0.00
0.02 (1C)018	0	CONDUIT	11.45	0	08:04	0.91	0.02
0.10	0	00000075	11 01	-	00.01		0 00
(IC)019 0.10	0	CONDUIT	11.24	0	08:01	0.89	0.02
(1C)01D	Ŭ	CONDUIT	6340.56	1	06:04	4.86	1.08
0.95	185	COMPTIT	9 53	Ω	08.00	1 02	0 02
0.09	0	CONDULI		U	00.00	T • 02	0.02
(1C)021	110	CONDUIT	7561.21	1	06:11	5.80	1.08
0.90	$\perp \perp \angle$						

: .

(1C)021A	100	CONDUIT	1754.45	1	08:39	2.41	1.08
(1C)021B	188	CONDUIT	2504.89	1	06:03	3.42	1.08
0.95 (1C)021C	161	CONDUIT	78.46	1	08:02	1.32	0.04
0.13 (1C)021D	0	CONDUIT	78.51	1	08:00	1.28	0.04
0.13	0	CONDUTT	352 31	1	08.00	2 33	0 66
0.60	0	CONDUIT	246.06	1	00.00	2.00	0.00
(1C)023 0.65	0	CONDUTT	346.06	Ţ	08:00	2.07	0.76
(1C)024 0.63	0	CONDUIT	346.08	1	08:00	2.16	0.72
(1C)025	362	CONDUIT	336.39	1	11:22	1.50	1.08
(1C)026	502	CONDUIT	434.44	1	08:00	2.16	0.95
0.// (1C)026A	0	CONDUIT	78.42	1	08:00	2.33	0.02
0.09 (1C)027	0	CONDUIT	495.70	1	05:26	2.20	1.08
0.95	327	CONDITT	492 03	1	06.16	2 19	1.08
0.95	326	CONDUIT	7 51	-	00.10	1 10	0.01
(1C)041 0.07	0	CONDULT	/.51	U	08:00	1.10	0.01
(1C)176 0.96	304	CONDUIT	1365.61	1	10:17	4.22	1.08
(1C)177 0 97	304	CONDUIT	1361.55	1	08:00	4.19	1.08
(1C)178	202	CONDUIT	1354.69	1	05:43	4.16	1.08
(1C)179	303	CONDUIT	1362.38	1	05:49	4.19	1.08
0.95 (1C)179A	262	CONDUIT	1083.97	1	05:34	3.27	1.08
1.00 (1C)180	216	CONDUIT	1358.90	1	08:51	4.19	1.08
0.95	197	CONDITT	1350 70	-	08.45	1 27	1 08
0.95	196	CONDULT	1559.79	Ţ	00:40	4.27	1.00
(1C)181 0.95	197	CONDUIT	1351.41	1	08:48	4.1/	1.08
(1C)182 1.00	197	CONDUIT	1340.88	1	05 : 33	4.12	1.08
(1C)Storad	ge O	CONDUIT	195.56	1	09:06	2.49	0.16
(1D)001	0	CONDUIT	778.02	1	10:09	5.51	0.62
0.57 (1D)002	U	CONDUIT	788.04	1	10:09	3.58	1.06
0.91 (1D)003	292	CONDUIT	748.18	1	05:44	3.84	0.91
0.75 (1D)004	0	CONDUTT	748.18	1	05:43	4.77	0.70
0.62	0		740 10	- 1	05.40	2 22	1 00
0.95	322	CONDUTT	/40.10	Ţ	00:42	J.JJ	1.00
(1D)006 0.62	0	CONDUIT	540.67	1	11:36	3.45	0./0
(1D)007 0.62	0	CONDUIT	540.73	1	11 : 35	3.44	0.71
(1D)008	5	CONDUIT	540.75	1	11:34	3.53	0.71

ř) , , 1

-

1

. . .

0 62	0						
(1D)009	0	CONDUIT	547.32	1	13:11	2.46	1.07
0.94 (1D)010	486	CONDUIT	540.49	1	05:45	2.41	1.08
0.95 (1D)011	512	CONDUIT	574.58	1	10:59	3.95	0.63
0.58	0	CONDUTT	573 00	-	11.00	2 55	1 00
0.95	408	CONDUTT	575.90	T	11:00	2.JJ	1.00
(1D)013 0.52	0	CONDUIT	606.67	1	10:30	4.74	0.54
(1D)014 0.95	353	CONDUIT	605.96	1	05:56	2.70	1.08
(1D)015 0 76	Ο	CONDUIT	471.85	1	08:00	2.42	0.92
(1D)016	510	CONDUIT	466.72	1	08:00	2.09	1.08
(1D)017	810	CONDUIT	461.12	1	13:43	2.06	1.08
0.95 (1D)018	517	CONDUIT	466.12	1	13:36	2.09	1.08
0.95 (1D)019	513	CONDUTT	473.43	1	11:57	2.11	1.08
0.95	398	CONDULT	172 27	-	11.19	2 09	1 08
0.95	398	CONDUIT	472.27	1	11.40	2.09	1.00
(ID)021 0.95	393	CONDULT	4/4.14	1	06:16	2.11	1.08
(1D)022 0.95	390	CONDUIT	470.45	1	06 : 17	2.09	1.08
(1D)023 0 95	388	CONDUIT	470.75	1	11 : 37	2.09	1.08
(1E)001	017	CONDUIT	826.86	1	09:11	2.65	1.06
(1E)002	217	CONDUIT	804.18	1	09:10	2.50	1.08
0.94 (1E)003	227	CONDUIT	787.91	1	06:39	2.49	1.08
0.95 (1E)003A	229	CONDUIT	802.73	1	06:23	2.49	1.08
0.95 (1E)005	227	CONDULT	792 72	1	08•19	2 50	1 08
0.95	198	CONDUIT	102.12	1	00.45	2.50	1 00
(IE)006 0.94	197	CONDULT	803.71	T	08:45	2.52	1.08
(1E)007 0.94	197	CONDUIT	802.86	1	08:38	2.50	1.08
(1E)008 0.95	202	CONDUIT	780.91	1	06:46	2.47	1.08
(1E)009	195	CONDUIT	836.74	1	08:33	2.58	1.08
(1F)001	195	CONDUIT	2739.98	1	06:02	3.75	1.08
0.95 (1F)003	217	CONDUIT	2778.65	1	08:00	5.64	0.45
0.47 (1F)004	0	CONDUIT	2771.39	1	06:13	2.79	1.08
0.95 (1F)005	215	CONDITT	1497 77	٦	07•45	1.50	1.08
0.95	126	CONDUIT	1744 70	± 1	07.01	2.16	
0.71	0		1/44./ð	Ţ	07:21	2.10	0.85
(1F)008 0.80	0	CONDUIT	1729.86	1	07:21	1.90	0.98

(1F)008A		CONDUIT	1718.36	1	06:14	1.73	1.08
0.95 (1F)009	116	CONDUIT	2040.67	1	07:00	3.80	0.50
0.50 (1F)010	0	CONDUIT	2038.32	1	06:11	2.05	1.08
0.95	95	CONDUTE		_	00.00	0.52	0.00
0.03	0	CONDULI	5.14	0	08:00	0.52	0.00
(1F)012 0.00	0	CONDUIT	0.12	0	01:00	0.00	0.00
(1F)012A	0	CONDUIT	38.25	0	08:01	0.90	0.01
(1F)0120	0	CONDUIT	38.02	0	08:02	2.07	0.00
(1F)013	0	CONDUIT	39.01	0	08:00	1.04	0.01
0.08 (1F)014	0	CONDUIT	23.68	0	08:04	0.52	0.03
0.11 (1F)015	0	CONDUIT	24.28	0	08:01	1.10	0.01
0.07 (1F)016	0	CONDUIT	26.07	0	08:00	1.21	0.01
0.07 (1F)017	0	CONDUIT	12004.39	1	08:07	4.10	1.08
0.95 (1F)017A	156	CONDUTT	11916.31	1	05:42	4.06	1.08
1.00 (1E)017B	169	CONDUTT	9350 91	- 1	07.09	3 00	0 93
0.69	0	CONDOIT	JJJJ0.01	1	07.00	5.55	0.05
(1F)017C 0.67	0	CONDUIT	9350.81	1	07:08	4.17	0.79
(1F)017D 1.00	296	CONDUIT	9340.59	1	05:41	3.18	1.08
(1F)017E	170	CONDUIT	11873.94	1	05 : 57	4.12	1.07
(1F)017F	1/3	CONDUIT	589.27	1	12:33	5.34	0.08
0.20 (1F)017G-1		CONDUIT	589.65	1	12:36	5.15	0.09
0.20 (1F)018	0	CONDUIT	593.30	1	12 : 36	2.98	0.20
0.30 (1F)019	0	CONDUIT	601.43	1	12:35	2.75	1.06
0.93 (1F)020	6	CONDUIT	609.62	1	12:31	2.72	1.08
0.91	436	CONDUTT	567 63	-	06.12	2 52	1 08
0.95	510	CONDUIT	140.00	1	00.12	2.52	1.00
(1E)022 0.68	0	CONDULT	440.06	T	08:01	2.48	0.81
(1F)023 0.65	0	CONDUIT	439.69	1	08:00	2.60	0.76
(1F)024 0 10	0	CONDUIT	24.99	1	08:00	2.06	0.02
(1F)025	0	CONDUIT	24.94	0	08:00	2.10	0.02
(1F)026	0	CONDUIT	22.10	0	21:01	2.03	0.02
(1F)026A	U	CONDUIT	22.72	0	08:00	0.95	0.06
0.16 (1F)027	U	CONDUIT	16.62	0	08:00	0.87	0.04
0.13 (1F)028	0	CONDUIT	14.57	0	08:00	0.83	0.03

:

-

e s

0.13	0						
(1F)029		CONDUIT	12.40	0	08:03	0.81	0.03
0.12	0	CONDUTT	10 70	0	09.01	0 0 1	0 03
0.12	0	CONDULT	12.79	0	08:01	0.81	0.03
(1F)030	Ŷ	CONDUIT	14.10	0	08:00	0.98	0.03
0.12	0						
(1G)001	105	CONDUIT	11068.65	1	06:47	3.78	1.08
(1G)001A	TOD	CONDUIT	11986.15	1	06:06	4.10	1.08
1.00	142						
(1G)002	1 4 0	CONDUIT	12122.64	1	07:54	4.12	1.08
(16)003	140	CONDELTT	8534 81	1	06.11	2 91	1.08
0.95	284			-			
(1G)004	0	CONDUIT	6204.94	1	08:00	3.24	0.64
(10)005	U		6201 93	1	07.11	3 87	0 51
0.51	0	00110011	0204.93	1	07.11	5.07	0.51
(1G)006		CONDUIT	6200.31	1	06:09	2.11	1.08
0.95	284	CONDUTT	10728 55	1	08.26	4 80	0 80
0.68	0	CONDOLL	10720.55	T	00.20	4.00	0.00
(1G)008		CONDUIT	10874.41	1	08:24	3.73	1.08
0.95 (1C) 0.8C	163	CONDUTT	10711 89	1	06.07	3 65	1 08
0.95	164	CONDOIT	10/11.00	T	00.07	5.05	1.00
(1G)009	-	CONDUIT	10711.88	1	06:08	5.44	0.67
0.60 (1G)009A	0	CONDITT	12273 91	1	05.46	4 20	1 08
0.97	148	0000011	12273.91	Ť	00.40	1.20	1.00
(1G)009B		CONDUIT	12322.83	1	05:46	4.24	1.08
1.00 (1G)009C	14/	CONDITT	10758 66	1	07.14	4 0 9	0 97
0.80	0	00112011	10/00.00	1	0,.11	1.09	0.91
(1G)009D	5.0	CONDUIT	10885.71	1	06:20	3.89	1.02
0.92 (1G)009E	59	CONDUTT	10743.59	1	06:19	3.66	1.08
1.00	86						
(1G)010	10	CONDUIT	12074.20	1	07 : 10	4.19	1.08
(1G)011	LΖ	CONDUIT	11968.21	1	07:09	4.15	1.07
0.93	10						
(1G)012	16	CONDUIT	11887.47	1	07:08	4.11	1.07
(1G)013	10	CONDUIT	11612.53	1	07:07	4.02	1.07
0.94	22						
(1G)014 0 15	0	CONDUIT	106.20	1	20:05	4.67	0.05
(1G)014A	0	CONDUIT	104.95	1	08:01	1.57	0.22
0.32	0						
(1G)015 0 33	0	CONDUIT	106.34	1	08:00	1.56	0.23
(1G)016	U	CONDUIT	106.80	1	08:00	1.60	0.23
0.32	0		•• · · -	-	0.0		0.15
(IG)01/ 0.29	Ω	CONDUIT	90.45	1	08:00	1.54	0.19
(1G)018	0	CONDUIT	92.56	1	08:00	1.62	0.20
0.29	0	0010077	47 00	-	01 01	1 60	0 07
(IG)UI8A 0.17	0	CONDULT	47.90	T	21:01	Τ.08	0.07
	-						

and a set of the set o

(1G)019		CONDUIT	468.73	1	05:36	4.57	0.40
0.44 (1G)0190	0	CONDUIT	47.95	1	21:01	1.21	0.11
(1G)020	070	CONDUIT	516.56	1	05 : 35	2.28	1.08
(1G)045	970	CONDUIT	536.28	1	07 : 13	3.56	0.67
(1G)046	841	CONDUIT	520.81	1	05 : 57	2.31	1.08
(1G)047	041	CONDUIT	334.56	1	07:11	2.13	0.74
(1G)048	0	CONDUIT	223.58	1	06:33	1.84	0.50
(1G)049	0	CONDUIT	223.57	1	06 : 31	1.79	0.52
(1G)050 0.56	0	CONDUIT	223.60	1	06:30	1.58	0.61
(1G)051 0.56	0	CONDUIT	223.62	1	06:30	1.60	0.60
(1G)052 0.96	705	CONDUIT	223.53	1	06:29	1.55	1.08
(1G)053 0.95	705	CONDUIT	223.85	1	16:45	1.55	1.08
(1G)054 0.96	454	CONDUIT	223.82	1	13 : 14	1.56	1.08
(1G)055 0.96	454	CONDUIT	223.63	1	13:09	1.56	1.08
(1G)056 0.95	454	CONDUIT	223.53	1	07:04	1.55	1.08
(1G)057 0.95	358	CONDUIT	337.50	1	06:20	2.41	1.08
(1G)058 0.95	360	CONDUIT	336.74	1	12:06	2.37	1.08
(1G)059 0.95	390	CONDUIT	336.63	1	06:35	2.35	1.08
(1G)060 1.00	398	CONDUIT	336.30	1	06:20	2.30	1.08
(1G)061 0.95	398	CONDUIT	336.98	1	07 : 15	2.34	1.08
(1G)062 0.95	373	CONDUIT	369.61	1	05 : 33	2.59	1.08
(1G)063 1.00	391	CONDUIT	368.40	1	06:24	2.54	1.08
(1G)064 0.96	389	CONDUIT	369.15	1	06:33	2.60	1.08
(1G)065 0.96	389	CONDUIT	369.15	1	06:29	2.57	1.08
(1G)066 0.96	389	CONDUIT	369.15	1	06:26	2.56	1.08
(1G)067 0.96	389	CONDUIT	369.15	1	06 : 25	2.56	1.08
(1G)068 0.96	389	CONDUIT	369.15	1	06:24	2.57	1.08
(1G)069 0.96	388	CONDUIT	369.32	1	11:43	2.57	1.08
(1G)070 0.96	388	CONDUIT	369.30	1	11:39	2.56	1.08
(1G)071 0.95	387	CONDUIT	369.15	1	05:54	2.55	1.08
(1G)146		CONDUIT	0.00	0	00:00	0.00	0.00

F - - - -

-

-

. T

0.00	0						
(1G)146A	0	CONDUIT	0.00	0	00:00	0.00	0.00
(1G)162	060	CONDUIT	488.46	1	21:13	2.17	1.08
(1G)162A	902	CONDUIT	499.14	1	21:07	2.23	1.08
(1G)162B	956	CONDUIT	501.86	1	21:05	2.27	1.06
(1G)162C	2	CONDUIT	493.85	1	21:03	2.21	1.07
0.92 (1G)162D	958	CONDUIT	490.13	1	21:13	8.79	0.17
0.28 (1G)243	0	CONDUIT	0.00	0	00:00	0.00	0.00
0.00 (1H)001	0	CONDUIT	415.29	1	08:00	2.56	0.73
0.63 (1H)004	0	CONDUIT	71.79	2	23:12	2.65	0.04
0.13 (1H)005	0	CONDUIT	71.85	0	22 : 14	0.35	1.08
0.95 (1H)006	3292	CONDUIT	457.46	1	16:37	2.43	0.88
0.73 (1H)007	0	CONDUIT	457.35	1	16 : 36	2.58	0.82
0.69 (1H)008	0	CONDUIT	457.57	1	16:35	2.51	0.85
0.71 (1H)009	0	CONDUIT	457.25	1	07:00	2.68	0.77
0.66 (1H)010	0	CONDUIT	455.94	1	05:43	2.01	1.08
0.95 (1H)011	706	CONDUIT	1171.03	1	05:33	5.08	1.08
1.00 (1H)038	451	CONDUIT	404.39	1	07:13	3.73	0.43
0.46 (1H)039	0	CONDUIT	397.92	1	17 : 15	4.17	0.36
0.41 (1H)040	0	CONDUIT	397.82	1	06:06	7.90	0.15
0.26 (1H)041	0	CONDUIT	397.82	1	06:06	1.76	1.08
0.95 (1H)042	749	CONDUIT	685.90	1	05:29	4.02	0.48
0.49 (1H)043	0	CONDUIT	685.90	1	05:19	3.02	1.08
1.00 (1H)044	597	CONDUIT	67.09	0	08:00	1.73	0.12
0.23 (1H)045	0	CONDUIT	66.48	0	08:00	1.87	0.12
0.22 (1J)001	0	CONDUIT	12021.46	1	08:04	5.09	0.83
0.70 (1J)002	0	CONDUIT	12021.59	1	08:03	4.52	0.96
0.78 (1J)003	0	CONDUIT	9281.83	1	08:02	4.12	0.79
0.67 (1J)004	0	CONDUIT	9281.64	1	08:01	3.71	0.89
0.74 (1J)005	0	CONDUIT	9282.42	1	08:00	3.56	0.94
0.77	0	CONDITT	9202 00	1	08.00	2 77	0 88
0.73	0	COMPOTI	9202.0U	T	00:00	١١. ٢	0.00

-

- - - - - - -

(1J)007	0	CONDUIT	9255.56	1	10:58	4.02	0.81
0.68 (1J)008	0	CONDUIT	9257.01	1	10:58	4.75	0.66
0.59 (1J)009	0	CONDUIT	9264.07	1	10:58	3.56	0.93
0.77 (1J)010	0	CONDUIT	9258.75	1	10:57	4.08	0.80
0.68 (1,T)011	0	CONDITT	9252 65	1	05.56	3 15	1 08
0.95	345	CONDUIT	11220 10	1	06.10	2 07	1 00
0.95	262	CONDUIT	11017 05	1	00:10	5.07	1.00
(1J)013 0.95	203	CONDULT	11917.35	1	06:05	4.05	1.08
(1J)014 0.93	146	CONDUIT	12906.85	1	08:08	4.58	1.05
(1J)041 0.45	0	CONDUIT	846.88	1	08:02	3.59	0.41
(1J)042	0	CONDUIT	849.76	1	08:02	4.48	0.30
(1J)042A	0	CONDUIT	853.00	1	08:01	4.33	0.32
(1J)042B	0	CONDUIT	856.10	1	08:01	4.81	0.28
0.36 (1J)043	0	CONDUIT	861.55	1	08:00	3.94	0.37
0.42 (1J)044	0	CONDUIT	878.86	1	08:00	2.05	0.94
0.74 (1J)045	0	CONDUIT	616.09	1	08:00	1.84	0.27
0.35 (1J)046	0	CONDUIT	616.93	1	08:00	1.56	0.33
0.40 (1J)047	0	CONDUIT	558.50	1	08:00	1.76	0.24
0.34 (1J)048	0	CONDUTT	560.08	1	08:00	3.37	0.10
0.21	0	CONDUTT	564 74	1	08.00	2 63	0 15
0.26	0	CONDUTT	270 (5	1	22.40	1 67	0.16
(15)050A 0.27	0	CONDULT	370.65	T	22:40	1.57	0.10
(1J)051 0.20	0	CONDUTT	3/1.40	T	22:45	2.40	0.09
(1J)052 0.95	1104	CONDUIT	370.22	1	23:25	0.73	1.08
(1J)053 1.00	523	CONDUIT	1069.13	1	05:23	2.10	1.08
(1J)054 0.36	0	CONDUIT	444.04	1	13:08	2.49	0.28
(1J)054A	0	CONDUIT	443.28	1	07:28	2.44	0.28
(1J)055	E O A	CONDUIT	444.05	1	13:39	0.88	1.08
(1J)056	504	CONDUIT	640.69	1	11 : 25	2.01	0.61
0.56 (1J)057	0	CONDUIT	641.09	1	11:23	1.86	0.68
0.60 (1J)058	0	CONDUIT	641.87	1	11:22	2.08	0.59
0.55 (1J)059	0	CONDUIT	643.97	1	11:21	1.44	0.93
0.76 (1J)060	0	CONDUIT	640.08	1	11:36	1.26	1.08

-

ŗ

0.95	389						
(1K)001 1 00	110	CONDUIT	3780.44	1	05:49	7.43	1.08
(1K)002	110	CONDUIT	610.96	1	07:00	4.51	0.19
0.29 (1K)002A	0	CONDUIT	610.93	1	07:00	4.51	0.19
0.29 (1K)003	0		601 46	1	06.23	2 / 5	0 77
0.66	0	CONDOTI	001.40	T	00.25	2.45	0.77
(1K)004 0.95	353	CONDUIT	601.57	1	11:04	1.86	1.08
(1K)005	000	CONDUIT	233.63	1	08:00	1.71	0.37
0.42 (1K)006	0	CONDUIT	219.01	2	07:10	0.68	1.08
0.95 (1K)007	1541	СОИDПІТТ	676 63	1	12.08	2 10	1 07
0.94	416	CONDUTT	6,61,05	-	12.00	2.10	1.00
(IK)008 0.95	432	CONDULT	667.36	1	06:23	2.05	1.08
(1K)008A	0	CONDUIT	529.58	1	07:09	2.54	0.63
(1K)009	0	CONDUIT	519.15	1	06:25	1.60	1.08
0.95 (1K)010	513	CONDUIT	649.26	1	08:01	2.00	1.08
0.95	457	CONDUTE	607 47	-	00.00	2 22	1 07
0.94	61	CONDOLI	697.47	Ţ	08:00	2.23	1.0/
(1K)012 0 68	Ο	CONDUIT	484.06	1	12:53	1.90	0.81
(1K)013		CONDUIT	481.79	1	13:05	1.49	1.08
0.95 (1K)014	473	CONDUIT	599.00	1	06:09	1.85	1.08
0.95 (1M)000	440	CONDUTT	11461.19	1	07.03	4 41	0.93
0.77	0	00110011	11101.10	-	07.00	7.11	0.55
(IM)000A 0.50	0	CONDULT	11481.16	1	07:02	7.22	0.50
(1M)000B 0 75	Ο	CONDUIT	11481.73	1	07:02	4.54	0.91
(1M)001	0	CONDUIT	11490.19	1	07:01	5.76	0.68
(1M)002	U	CONDUIT	11499.67	1	07:01	4.52	0.92
0.75 (1M)003	0	CONDUTT	11505.87	1	07.00	4 94	0.82
0.69	0	CONDUIT	C00 40	-	0.000		0.10
(1M)010 0.23	0	CONDULT	690.40	T	06:26	2.15	0.12
(1M)011 0.95	687	CONDUIT	690.40	1	06:26	2.13	1.08
(1M)012	0	CONDUIT	1032.63	1	07:59	3.45	0.97
(1M)0120	U	CONDUIT	79.02	1	08:00	1.05	0.26
0.35 (1M)013	0	CONDUIT	608.30	1	08:10	2.07	0.96
0.78	0	20ND112	coo 40	-	00.00		0.05
(1M)UI4 0.78	0	CONDUTT	608.40	Ţ	08:08	2.08	0.95
(1M)015 0 78	\cap	CONDUIT	609.06	1	08:06	2.08	0.95
(1M)016	U -	CONDUIT	610.06	1	08:03	2.07	0.96
υ./8	0						

· · · · · ·

(1M)017		CONDUIT	609.49	1	08:02	3.51	0.49
0.49 (1M)018	0	CONDUIT	609.55	1	08:02	2.18	0.90
0.74 (1M)019	0	CONDUIT	610.78	1	08:01	2.12	0.94
0.77 (1M)020	0	CONDUIT	613.30	1	08:00	2.14	0.94
0.77 (1M)0200	0	CONDUIT	64.83	1	07:59	2.22	0.07
0.18 (1M)021	0	CONDUIT	288.23	0	19:20	1.98	0.63
0.57 (1M)022	0	CONDUIT	288.56	0	19:18	2.05	0.60
0.56 (1M)023	0	CONDUIT	282.94	0	19 : 17	2.05	0.59
0.55 (1M)024	0	CONDUIT	283.02	0	19:16	1.96	0.63
0.57 (1M)024A	0	CONDUIT	283.26	0	19:14	2.00	0.61
0.56 (1M)025	0	CONDUIT	283.89	0	19 : 13	2.00	0.61
0.56 (1M)027	0	CONDUIT	284.25	0	19:11	2.00	0.62
0.57 (1M)028	0	CONDUIT	284.89	0	19:09	2.01	0.62
0.57 (1M)035	0	CONDUIT	85.45	1	08:00	1.35	0.12
0.24 (1M)036	0	CONDUIT	82.75	1	08:00	1.33	0.12
0.23 (1M)037	0	CONDUIT	82.78	1	08:00	1.47	0.17
0.28 (1M)038	0	CONDUIT	79.01	1	08:01	1.44	0.17
0.28 (1M)039	0	CONDUIT	504.68	1	07:05	3.39	0.65
(1M)040	0	CONDUIT	498.80	1	13 : 27	2.35	1.00
(1M)041	U E 1 1	CONDUIT	497.90	1	13 : 26	2.21	1.08
(1M)092	507	CONDUIT	491.61	1	06:04	2.18	1.08
(1M)093	0	CONDUIT	508.56	1	07:00	3.56	0.61
(1M)094	500	CONDUIT	485.07	1	13:23	2.15	1.08
(1M)116	0	CONDUIT	508.80	1	10:48	2.99	0.77
(1M)117 0 72	0	CONDUIT	510.73	1	10:48	2.72	0.87
(1M)118 0.92	335	CONDUIT	514.82	1	10 : 47	2.34	1.06
(1M)119 0.94	344	CONDUIT	504.41	1	10 : 53	2.24	1.08
(1M)120 0.63	0	CONDUIT	495.43	1	10:43	3.04	0.73
(1M)121 0.95	345	CONDUIT	494.65	1	10:43	2.20	1.08
(1M)122 0.95	338	CONDUIT	520.57	1	05:35	2.30	1.08
(1M)123		CONDUIT	107.43	1	08:00	1.55	0.23

* : .

0.33	0						
(1M)124	0	CONDUIT	40.04	0	08:07	1.22	0.09
(1M)125	U	CONDUIT	40.04	0	08:04	1.20	0.09
0.20 (1M)126	0	CONDUIT	40.24	1	08:02	1.25	0.08
0.19	0	CONDUTE	40.00	-	00 01	1 25	0.00
(IM) 127 0.20	0	CONDULT	40.36	U	08:01	1.35	0.09
(1M)128	0	CONDUIT	40.28	1	08:00	1.33	0.08
(1M)129	0	CONDUIT	39.26	0	08:09	2.26	0.09
0.18 (1M)130	0	CONDUIT	30.06	1	08:00	0.29	0.00
0.00 (1M)131	0	CONDUIT	30.32	0	08:00	1.16	0.06
0.17 (1M)132	0	CONDUIT	22.93	0	08:01	1.06	0.05
0.15 (1M)133	0	CONDUTT	16 48	Ο	08,00	1 09	0 04
0.12	0	0000011	10.10	Ū	00.00	1.05	0.01
(1M)161 0.53	0	CONDUIT	337.99	1	15:09	3.98	0.56
(1M)162	622	CONDUIT	336.98	1	06:03	2.33	1.08
(1M)163	622	CONDUIT	336.98	1	06:01	2.34	1.08
0.96 (1M)164	590	CONDUIT	337.45	1	14:59	2.34	1.08
0.96 (1M)165	589	CONDUIT	336.98	1	06:10	2.33	1.08
0.95 (1M)278	589	CONDUIT	6040.29	1	07 : 57	3.96	0.48
0.49 (1M)279	0	CONDUTT	6019.64	1	07:56	3.99	0.47
0.48	0	CONDUT	CO10 C4	- 1	07.50	4 17	0 44
0.47	0	CONDUTT	0019.04	T	07:56	4.1/	0.44
(1M)281 0.43	0	CONDUIT	6019.65	1	07 : 56	4.65	0.39
(1M)281B 1.00	151	CONDUIT	5934.49	1	05:42	4.54	1.08
(1M)282	200	CONDUIT	3698.58	1	06:25	2.84	1.08
(1M)283	290	CONDUIT	4783.09	1	08:39	3.81	1.06
0.92 (1M)284	165	CONDUIT	4204.38	1	08 : 17	3.25	1.08
0.95 (1M)285	157	CONDUIT	4382.93	1	08:17	3.46	1.08
0.92 (1M)285A	153	CONDUIT	4261.39	1	08.15	3,33	1.06
0.93	154	00110011	1201.33	1		0.00	1.00
(IM)286 0.95	158	CONDUIT	41/0.12	1	06:11	3.20	T.08
(1M)287 0.32	0	CONDUIT	979.25	1	08:15	2.50	0.23
(1M)2876A	147	CONDUIT	4665.42	1	06:10	3.59	1.08
(1M)288	14/	CONDUIT	987.29	1	08:14	2.51	0.23
0.32 (1M)288A	0	CONDUIT	987.51	1	08:12	2.56	0.22
0.32	0	_					

(1M)288B		CONDUIT	998.31	1	08:12	2.58	0.23
0.32 (1M)288C	0	CONDUTT	1007 70	1	08.11	2 16	0 25
0.34	0	CONDOIT	1007.72	T	00.11	2.40	0.25
(1N)004	1 7 7	CONDUIT	4574.19	1	08:41	3.61	1.08
1.00 (1N)005	1//	CONDUIT	4616.42	1	08:39	3,63	1.08
0.95	176			_			
(1N)006 0 95	172	CONDUIT	4737.74	1	06:34	3.79	1.08
(1N)007	1/2	CONDUIT	4779.10	1	06:31	3.73	1.08
0.95	171	CONDUTE		-	1 7 1 2	o F 7	0 00
(IN)007D 0.76	0	CONDULT	506.53	T	1/:13	2.57	0.92
(1N)007E	-	CONDUIT	497.21	1	06:05	2.73	0.85
0.71 (1N) 008	0	CONDUTT	197 21	1	06.05	2 21	1 08
0.95	544	CONDULI	-J/.ZI	T	00.00	2•21	1.00
(1N)009	EDO	CONDUIT	510.02	1	14:04	2.29	1.06
(1N)011	238	CONDUIT	494.08	1	14:07	2.19	1.08
0.95	543	~		-			
(IN)UI3 0.95	539	CONDUIT	496.07	1	06:07	2.21	1.08
(1N)014	000	CONDUIT	492.37	1	13:24	2.19	1.08
0.95 (1NL015	491	CONDUTT	515 5 <i>6</i>	1	13.10	2 22	1 06
0.93	476	CONDOIL	515.50	T	13.10	2.52	1.00
(1N)016	100	CONDUIT	498.26	1	13:03	2.22	1.08
(1N)017	486	CONDUIT	498.37	1	13:03	2.21	1.08
0.95	486	~~~~~~		_			
(IN)UI8 0.95	478	CONDUIT	518.54	1	12:52	2.29	1.08
(1N)019	170	CONDUIT	457.95	1	05:49	2.03	1.08
0.95 (1N)020	475	CONDULT	531 92	1	12.30	2 30	1 07
0.91	441	CONDOLI	JJI.02	T	12.30	2.50	1.07
(1N)021	4.00	CONDUIT	496.78	1	12:46	2.20	1.08
(1N)022	462	CONDUIT	496.31	1	06:01	2.21	1.08
0.95	460	~ ~ · · ·		_			
(IN)U23 0.95	373	CONDULT	496.40	T	11:28	2.21	1.08
(1N)024		CONDUIT	494.74	1	11:25	2.20	1.08
0.95 (1N)025	373	CONDUTT	491 91	1	11.20	2 26	1 0.8
0.95	373	00110011		T	11.20	2.20	1.00
(1N)045	0	CONDUIT	506.74	1	17:13	3.55	0.65
(1N)046	0	CONDUIT	519.65	1	17:11	2.36	1.08
0.93	735	CONDUTE	501 00	1	05 5 5		1 0 0
(IN)04/ 0.95	746	CONDULT	501.22	Ţ	05:55	2.55	1.08
(1N)109A		CONDUIT	4210.87	1	08:30	3.27	1.08
U.95 (1N)110	157	CONDITT	4230 15	1	08.15	4 10	0 84
0.70	0	0000011	1200.10	±	~~	0	0.01
(1N)111A 0 95	155	CONDUIT	4277.82	1	08:26	3.33	1.08
(1N)112A	LUU	CONDUIT	4418.00	1	08:19	3.49	1.07

-

0.91	145						
(1N)112B	0	CONDUIT	4194.69	1	08:18	3.83	0.90
0./4 (10)001	0	CONDUIT	285.17	0	07:06	2.08	0.58
0.55 (10)001A	0	CONDUIT	277.99	0	07:05	2.05	0.59
0.55 (10)002	0	CONDUIT	278.09	0	07:04	2.69	0.40
0.44 (10)002A	0	CONDUTT	270.69	0	07:04	2.70	0.38
0.43	0	CONDUTT	270 74	0	07•04	2 05	0 56
0.54	0	CONDUIT	270.74	0	07.02	2.00	0.50
0.54	0	CONDUTT	271.13	0	07:03	2.00	0.57
(10)005A 0.53	0	CONDUL'I	263.92	0	07:02	2.09	0.56
(10)005B 0.36	0	CONDUIT	241.05	2	18:13	2.09	0.28
(10)005C 0.35	0	CONDUIT	241.15	2	18:13	2.22	0.26
(10)005D	0	CONDUIT	242.30	2	18:13	2.25	0.26
(10)005E	0	CONDUIT	0.00	0	00:00	0.00	0.00
(10)010	0	CONDUIT	0.00	0	00:00	0.00	0.00
(10)011	0	CONDUIT	0.00	0	00:00	0.00	0.00
(10)012	U	CONDUIT	0.00	0	00:00	0.00	0.00
0.00 (10)013	0	CONDUIT	0.00	0	00:00	0.00	0.00
0.00 (10)014	0	CONDUIT	0.00	0	00:00	0.00	0.00
0.00 (10)015	0	CONDUIT	0.00	0	00:00	0.00	0.00
0.00 (10)016	0	CONDUIT	0.00	0	00:00	0.00	0.00
0.00 (10)017	0	CONDUIT	0.00	0	00:00	0.00	0.00
0.00 (10)018	0	CONDUIT	0.00	0	00:00	0.00	0.00
0.00 (10)019	0	CONDUIT	0.00	0	00:00	0.00	0.00
0.00 (10)020	0	CONDUTT	0.00	0	00:00	0.00	0.00
(10)021	0	CONDUTT	0 00	0	00.00	0 00	0 00
0.00	0	CONDUIT	1470.20	1	00.00	2 72	0.00
0.36	0	CONDULT	1470.20	T	00:03	2.54	1 00
(10)157 1.00	185	CONDULT	4608.0/	Ţ	05:40	3.54	1.08
(10)300 0.33	0	CONDUIT	1047.73	1	08:10	2.69	0.24
(10)301 0.33	0	CONDUIT	1091.34	1	08:10	2.87	0.24
(10)302 0.34	0	CONDUIT	1157.91	1	08:06	3.08	0.27
(10)303	Ŭ O	CONDUIT	1122.94	1	08:05	3.18	0.26
J • J X	0						

(10)304		CONDUIT	1866.15	1	08:03	7.34	0.45
0.39 (10)304A	0	CONDUIT	1296.81	1	08:33	20.77	0.44
0.49 (10)304B	0	CONDUIT	715.04	1	08:03	3.59	1.04
(10)304C	1.001	CONDUIT	243.59	0	19:02	0.87	1.08
(10) 305	1001	CONDUIT	1184.94	1	17:02	0.91	1.08
(10)305A	, 22	CONDUIT	1253.33	1	07:00	13.01	0.03
(10) 306	280	CONDUIT	4684.71	1	10:09	3.62	1.08
(10)306A 0.95	280	CONDUIT	4684.09	1	10:05	3.62	1.08
(10)307 0.95	279	CONDUIT	4657.70	1	05:48	3.59	1.07
(10)308 0.95	280	CONDUIT	4657.70	1	05:47	3.57	1.08
(10)308A 1.00	181	CONDUIT	4534.34	1	08:40	3.59	1.04
(10)309 1.00	144	CONDUIT	4504.59	1	05:40	3.51	1.08
(1P)003 1.00	439	CONDUIT	1630.85	1	05:11	4.93	1.08
(1P)004 0.95	1238	CONDUIT	1074.32	0	21:22	3.40	1.08
(1P)005 0.73	0	CONDUIT	1161.48	0	21:05	4.35	0.89
(1P)006 0.95	1107	CONDUIT	1159.35	0	21:03	3.59	1.08
(1P)007 0.70	0	CONDUIT	1232.06	1	21:00	4.80	0.84
(1P)008 0.95	1043	CONDUIT	1224.73	0	08:00	3.88	1.08
(1P)008A 0.77	0	CONDUIT	2052.73	1	05:14	7.03	0.94
(1P)009 1.00 (1D)010	382	CONDUIT	2041.64	T	05:14	6.25	1.08
0.61 (1P)011	0	CONDULT	809.44	0	08:07	3.00	0.69
0.59 (1P)012	0	CONDULT	808 09	0	08.07	3.84	0.05
0.59 (1P)013	0	CONDUIT	811 74	0	08.04	3 84	0.66
0.59 (1P)014	0	CONDUIT	817.28	0	08:03	3.87	0.67
0.59 (1P)015	0	CONDUIT	822.99	0	08:02	3.93	0.67
0.59 (1P)016	0	CONDUIT	832.23	0	08:01	3.61	0.78
0.65 (1P)016A	0	CONDUIT	827.86	0	08:01	3.58	0.77
0.66 (1P)017	0	CONDUIT	826.72	0	08:00	3.51	0.77
0.67 (1P)018	0	CONDUIT	805.86	0	08:00	4.07	0.75
0.60 (1P)024	0	CONDUIT	62.00	0	08:00	2.06	0.06

and the second
0.15	0						
(1P)042	0	CONDUIT	583.91	1	11:49	4.74	0.51
(1P)042A	0	CONDUIT	583.99	1	11:48	2.60	1.08
0.95 (1P)043	417	CONDUIT	591.43	1	11:56	2.62	1.08
0.95 (1P)044	415	CONDUIT	0.00	0	00:00	0.00	0.00
0.00	0	CONDIT	12 01	0	00.00	1 1 4	0 02
0.10	0	CONDUIT	12.91	0	08.00	1.14	0.02
(1P)073 0.05	0	CONDUIT	7.73	0	08:00	1.20	0.01
(1P)079 0.05	0	CONDUIT	6.39	0	08:00	1.09	0.01
(2A)001	103	CONDUIT	9664.61	1	08 : 57	3.32	1.08
(2A) 002	100	CONDUIT	9833.11	1	08:50	11.86	0.21
(2A)003	U	CONDUIT	9834.10	1	08:50	5.27	0.63
0.57 (2A)004	0	CONDUIT	9841.85	1	08:50	5.00	0.68
0.60 (2A)005	0	CONDUIT	9867.21	1	08:51	5.04	0.68
0.61 (2A)006	0	CONDITT	9826 94	1	06.37	3 38	1 08
0.95	188	CONDULT	10452 42	1	00.57	2.07	1 00
0.87	3	CONDULT	10405.45	Ţ	08:52	3.87	1.02
(2A)008 0.93	183	CONDULT	10395.05	Ţ	09:00	3.63	1.08
(2A)009 0.93	184	CONDUIT	10324.72	1	08:58	3.59	1.08
(2A)010 0.93	185	CONDUIT	10299.21	1	08:55	3.54	1.08
(2A)011	190	CONDUIT	10021.88	1	08:49	3.44	1.08
(2A)012	105	CONDUIT	10205.11	1	08:47	3.52	1.07
(2A)013	180	CONDUIT	9937.19	1	06:29	3.41	1.08
0.95 (2A)014	190	CONDUIT	12017.61	1	07:02	4.16	1.08
0.97 (2A)015	166	CONDUIT	11396.34	1	08:28	4.15	1.03
0.91 (2A)016	163	CONDUTT	11083 59	1	05•44	3 79	1 0.8
1.00	173	CONDUT	11071 40	1	06.11	4.06	1 00
0.95	167	CONDULT	118/1.40	Ţ	06:11	4.06	1.08
(2A)018 0.95	154	CONDUIT	11068.65	1	06:34	3.82	1.07
(2A)019 0.76	0	CONDUIT	11068.65	1	06:34	4.28	0.93
(2A)020 0.95	155	CONDUIT	11085.53	1	08:16	3.80	1.08
(2A)021	-00	CONDUIT	4248.80	1	07 : 27	4.16	0.27
(2A) 022	U	CONDUIT	4249.39	1	07:26	4.28	0.26
U.35 (2A)023	0	CONDUIT	4250.10	1	07:24	4.32	0.26
0.35	0						

.

the second se

(2A)024		CONDUIT	4250.37	1	07:24	4.54	0.24
0.34 (2A)025	0	CONDUIT	4250.38	1	07:24	4.87	0.22
0.32 (2A)026	0	CONDUIT	4250.36	1	07:23	4.61	0.24
0.33 (2A)027	0	CONDUIT	4250.51	1	07 : 23	3.12	0.41
0.44 (2A)028	0	CONDUIT	4251.84	1	07:22	2.79	0.47
0.48 (2A)029	0	CONDUIT	4252.42	1	07:21	2.98	0.43
0.46 (2A)030	0	CONDUIT	4252.99	1	07:20	3.19	0.40
0.44 (2A)031	0	CONDUIT	4253.53	1	07:19	3.47	0.35
0.41 (2A)032	0	CONDUIT	4255.02	1	07:18	2.93	0.44
0.47 (2A)033	0	CONDUIT	4255.35	1	07:17	3.33	0.37
0.42 (2A)034	0	CONDUIT	4255.75	1	07:17	3.92	0.30
0.37 (2A)035	0	CONDUIT	4254.78	1	07:16	3.94	0.30
0.37 (2A)036	0	CONDUIT	4256.16	. 1	07:15	3.95	0.30
0.37 (2A)037	0	CONDUIT	4257.99	1	07:14	3.75	0.32
0.39 (2A)038	0	CONDUTT	4259.99		07:12	4.00	0.29
0.37 (2A)039	0	CONDULT	4261 78	1	07•11	3 95	0 30
0.37	0	CONDULT	1261 25	1	07.10	3 92	0.30
0.38	0	CONDULT	4204.20	1	07.00	3.96	0.30
0.37	0	CONDULT	4203.40	1	07.03	2.90	0.30
(2A) 042 0.37	0	CONDULT	4262.12	1	07:07	3.90	0.30
(2A)043 0.36	0	CONDUIT	4263.83	Ţ	07:06	4.15	0.28
(2A)044 0.38	0	CONDUIT	4266.23	Ţ	07:05	3.90	0.30
(2A)045 0.38	0	CONDUIT	4270.63	Ţ	07:04	3.81	0.31
(2A)046 0.39	0	CONDULT	42/1.35	1	07:03	3.75	0.32
(2A)047 0.47	0	CONDUIT	4271.71	1	07:02	2.92	0.45
(2A)048 0.47	0	CONDUIT	4275.09	1	07:00	2.90	0.46
(2A)0480 0.58	0	CONDUIT	2138.23	1	07:00	9.99	0.64
(2A)049 0.54	0	CONDUIT	5557.42	1	07:17	3.16	0.57
(2A)050 0.56	0	CONDUIT	5557.50	1	07:15	3.02	0.61
(2A)051 0.43	0	CONDUIT	5557.61	1	07:13	4.28	0.38
(2A)052 0.43	0	CONDUIT	5557.68	1	07:12	4.23	0.39
(2A)053		CONDUIT	5557.76	1	07:11	4.29	0.38

Acres 1

÷

. .

0.43	0						
(2A)054	0	CONDUIT	5557.83	1	07:10	6.24	0.23
(2A)055	0	CONDUIT	5557.87	1	07:09	3.11	0.59
0.55 (2A)056	0	CONDUIT	5558.13	1	07:08	3.10	0.59
0.55	0	CONDUTE		1	07 07	2 70	0.40
0.48	0	CONDULI	5558.48	T	07:07	3.70	0.40
(2A)058 0.47	0	CONDUIT	5009.19	1	07:05	3.45	0.45
(2A) 059	0	CONDUIT	5009.27	1	07:03	3.53	0.70
0.62 (2A)060	U	CONDUIT	5009.35	1	07:02	4.33	0.54
0.52 (2A)061	0	CONDUIT	5009.54	1	07:01	4.05	0.59
0.55	0	CONDUTT	5000 55	1	07.00	1 72	0 4 9
0.49	0	CONDULI	2009.22	T	07:00	4.72	0.49
(2A)063 1.00	319	CONDUIT	4868.40	1	05:42	6.62	1.08
(2A)064		CONDUIT	7503.11	1	07:00	4.88	0.77
(2A)065	0	CONDUIT	5152.13	1	09:01	4.42	0.54
0.52 (2A)066	0	CONDUIT	5146.39	1	09:00	7.83	0.25
0.34	0	CONDUTT	5116 53	1	08.59	1 62	0 51
0.51	0	CONDUTI	5140.55	T	00.59	4.02	0.51
(2A)068 0.52	0	CONDUIT	5148.56	1	08:59	4.49	0.53
(2A)069	0	CONDUIT	551.40	1	09:51	8.85	0.12
(2C)001	0	CONDUIT	550.03	1	09 : 52	1.69	1.08
0.95 (2C)002	303	CONDUIT	556.44	1	05:48	1.71	1.08
0.95	300	CONDUTT	660 58	1	09.37	2 03	1 08
0.95	277	CONDULT	660.00	-	00.51	2.00	1.00
(2C)004 0.92	207	CONDULT	668.24	1	08:51	2.08	1.08
(2C)005 0.87	5	CONDUIT	643.63	1	08:43	2.07	1.02
(2C)006	210	CONDUIT	632.87	1	08:43	1.95	1.08
(2C)007	219	CONDUIT	668.60	1	08:45	2.06	1.08
0.95 (2C)008	211	CONDUIT	677.95	1	08:38	2.11	1.07
0.93	209	CONDUTT	665 88	1	08.40	2 05	1 0.8
0.95	212	CONDUTT	005.00	T	00.40	2.05	1.00
(2C)0090 0.36	0	CONDUIT	141.03	1	07:00	2.80	0.27
(2D)001 0 92	316	CONDUIT	491.97	1	10:47	1.52	1.08
(2D)001A	0 F -	CONDUIT	466.33	1	06 : 53	1.44	1.08
0.95 (2D)002	351	CONDUIT	895.98	1	08:18	2.79	1.08
0.95	88	CONDUTT	008 05	1	07.47	2 00	1 00
0.95	85	COMDULI	200.20	T	01.41	2.00	T.00

* .. .

e e estado e

(2D)004		CONDUIT	311.78	1	08:02	2.12	0.39
0.44	0	CONDUTT	211 07	1	09.01	2 22	0 27
0.42	0	CONDULT	311.87	T	08:01	2.23	0.57
(2D)006		CONDUIT	313.14	1	08:00	2.32	0.35
0.41	0	CONDUTE	220 70	1	00 00	2 01	0 20
0.43	0	CONDULT	289.70	T	08:02	2.01	0.38
(2D)008	Ŭ	CONDUIT	289.82	1	08:00	1.90	0.42
0.45	0	CONDUTE	000 70	-		2 00	0.00
(2D)009 0.59	0	CONDULT	289.73	T	08:00	3.02	0.66
(2D)010	Ū.	CONDUIT	282.89	1	17 : 11	1.93	1.08
0.96	859		010 00		05 00	0.14	1 0 0
(2D)UII 0.95	719	CONDUIT	313.00	Ţ	05:22	2.14	1.08
(2D)012	115	CONDUIT	166.84	0	08:00	2.37	0.49
0.48	0	CONDUTE	1.67 .0.1	0		0.55	0 5 0
(2D)UI3 0.48	0	CONDULT	167.24	0	08:00	2.55	0.50
(2D)014	0	CONDUIT	0.00	0	00:00	0.00	0.00
0.00	0		0 00			0.00	
(2D)015 0.00	0	CONDULT	0.00	0	00:00	0.00	0.00
(2D)016	Ũ	CONDUIT	0.00	0	00:00	0.00	0.00
0.00	0	001101177				0.00	
(20)017	0	CONDULT	0.00	0	00:00	0.00	0.00
(2D)018	ő	CONDUIT	0.00	0	00:00	0.00	0.00
0.00	0	CONDUTE	0 00	0	00 00	0 00	0 00
(2D)019 0.00	0	CONDULT	0.00	U	00:00	0.00	0.00
(2D)020	Ŭ	CONDUIT	0.00	0	00:00	0.00	0.00
0.00	0	CONDUTE	0 00	0	00.00	0 00	0 00
(2D)021	0	CONDULT	0.00	U	00:00	0.00	0.00
(2D)022	-	CONDUIT	0.00	0	00:00	0.00	0.00
0.00	0	CONDUTT	0 00	0	00.00	0 00	0 00
0.00	0	CONDULI	0.00	0	00:00	0.00	0.00
(2D)024		CONDUIT	0.00	0	00:00	0.00	0.00
0.00	0	CONDUTT	0 00	0	00.00	0 00	0 00
0.00	0	CONDULI	0.00	U	00:00	0.00	0.00
(2D)039		CONDUIT	206.15	1	06:53	2.64	0.28
0.36	0	CONDUTT	222 20	1	14.10	1 40	1 00
0.95	546	CONDOLI	552.50	T	14:10	1.49	1.00
(2D)041		CONDUIT	541.60	1	08:17	2.52	1.07
0.92	33	CONDITT	533 00	1	07.12	2 16	1 00
0.94	441	CONDOLI	555.55	T	07.15	2.40	1.00
(2D)043		CONDUIT	541.31	1	08:08	2.50	1.08
(20)044	60	CONDITT	539 62	1	08.01	2 13	1 07
0.91	54	COMPOIN	557+02	T	00.0I	2.70	1 • U /
(2D)045	-	CONDUIT	504.41	1	12:36	2.40	1.00
U.82 (2D)045A	T	CONDUTT	498 42	1	05.37	2 22	1 0.8
0.95	470	00140011	120.42	Ť	53.51	2.22	T .00
(2D)046		CONDUIT	542.45	1	12:06	2.43	1.07

-

· · · · · · · ·

1.1. - 1. E.L.

the face of the match that the the

0.92	419			_			
(2D)046A 0.95	433	CONDUIT	516.27	1	05:45	2.33	1.08
(2D)241	0	CONDUIT	1681.97	1	07:14	4.12	0.52
(2D)242	0	CONDUIT	1691.78	1	07:13	2.80	0.87
0.72 (2D)243	0	CONDUIT	1681.76	1	07:12	2,82	0.87
0.72	0	CONDUTT	1676 50	1	07.10	2 17	0 75
0.65	0	CONDUTI	10/0.52	T	07:10	3.17	0.75
(2D)2440 0.26	0	CONDUIT	206.30	1	06:52	3.98	0.15
(2D)245	20	CONDUIT	1547.71	1	06 : 51	2.16	1.08
(2D)246	29	CONDUIT	1804.26	1	07:06	2.87	0.92
0.76 (2D)247	0	CONDUIT	1812.58	1	07:05	2.86	0.93
(2D)248	0	CONDUIT	1820.28	1	07:03	2.95	0.91
0.74 (2D)249	0	CONDUIT	1827.66	1	07:02	2,88	0.95
0.77	0	CONDUTE	1025 07	-	07.01	2 00	0 00
0.73	0	CONDULT	1833.87	T	07:01	2.99	0.89
(2D)251 0.76	0	CONDUIT	1849.42	1	07:00	2.93	0.93
(2D)252	0	CONDUIT	246.22	1	08 : 15	1.79	0.37
(2D) 253	0	CONDUIT	246.22	1	08:13	1.71	0.12
0.24 (2D)254	0	CONDUIT	246.34	1	08 : 12	1.72	0.12
(2D) 255	0	CONDUIT	246.20	1	08:11	1.72	0.12
0.24 (2D)256	0	CONDUIT	246.07	1	08:08	1.72	0.12
0.24	0	CONDULT	216 03	1	09.07	1 71	0 1 2
0.24	0	CONDOLI	240.05	T	00.07		0.12
(2D)258 0.24	0	CONDUIT	246.32	1	08:06	1.71	0.12
(2D)259 0 24	0	CONDUIT	246.51	1	08:05	1.72	0.12
(2D) 260	0	CONDUIT	247.08	1	08:04	1.72	0.12
0.24 (2D)261	0	CONDUIT	247.08	1	08:03	1.73	0.12
(2D)262	0	CONDUIT	247.39	1	08:02	1.76	0.12
0.24 (2D)263	0	CONDUIT	247.83	1	08:00	1.77	0.13
0.24 (2D)264	0	CONDUIT	236.83	0	08:04	1.76	0.12
0.23 (2D)265	0	CONDUIT	240.36	0	08:02	1.80	0.20
U.3U (2D)266	U	CONDUIT	247.65	0	08:01	1.88	0.20
0.30 (201267	0	CONDITT	265 93	\cap	08.00	2 1 8	0 22
0.29	0		200.00			2.10	0.22
(2E)001 0.95	225	CONDUIT	5146.03	1	06:44	2.54	1.08

: : :

-

÷

е ,

(2E)002		CONDUIT	6560.14	1	08:29	3.24	1.08
0.95 (2E)003	173	CONDUTT	11022 88	1	05.51	5 4 1	1 08
1.00	108	CONDOLI	11022.00	T	03.31	5.41	1.00
(2E)004	0	CONDUIT	3534.79	1	14:23	2.78	0.63
(2E)005	0	CONDUIT	3604.29	1	14:56	1.79	1.07
0.94	545	CONDUTE	2526 26	1	14.50	1 75	1 00
0.95	555	CONDULI	5550.50	T	14:JZ	1.75	1.00
(2E)007	220	CONDUIT	6276.52	1	09:55	3.14	1.08
0.92 (2E)008	230	CONDUIT	5963.78	1	09:52	4.46	0.67
0.60 (2E)009	0	CONDUIT	5975.27	1	09:51	3.62	0.89
0.74 (2E)010	0	CONDUIT	6126.92	1	09:50	3.16	1.08
0.93	251		6063 07	1	00.57	2 07	1 0 9
0.94	253	CONDOLT	0005.07	T	09:07	5.07	1.00
(2E)012	249	CONDUIT	6037.05	1	09:41	3.00	1.07
(2E)013	240	CONDUIT	5931.28	1	09 : 57	2.92	1.08
0.95 (2E)014	204	CONDUIT	5937.41	1	06:25	2.92	1.08
0.95 (2E)043	260	CONDUIT	134.18	0	08:00	2.01	0.16
0.27 (2F)001	0	CONDUIT	5749.12	1	07:48	2.84	1.08
0.96	156	CONDUTT	5818 48	1	08.11	2 89	1 08
0.95	152	COMPOIT	5010.40	T	00.11	2.09	1.00
(2F)003 0.95	150	CONDUIT	5838.51	1	08:03	2.88	1.08
(2F)004	100	CONDUIT	5751.88	1	06:09	2.82	1.08
0.95 (2F)005	153	CONDUIT	4704.12	1	08:00	2.80	0.87
0.72 (2F)006	0	CONDUIT	4573.47	1	12:21	2.78	0.84
0.70 (2F)007	0	CONDUIT	4591.76	1	12:20	2.82	0.85
0.70	0			-		0	0.00
(2F)008 0.74	0	CONDUIT	4546.15	1	12:19	2.68	0.89
(2F)009 1 00	433	CONDUIT	4544.29	1	05 : 32	2.74	1.08
(2F)010	175	CONDUIT	6172.98	1	05:41	8.33	1.08
(2F)011	175	CONDUIT	2032.38	1	05 : 38	2.77	1.08
(2F)012	180	CONDUIT	1459.89	1	08:09	2.57	0.79
0.67 (2F)013	0	CONDUIT	1459.98	1	08:07	2.42	0.86
0.71 (2F)014	0	CONDUIT	1460.10	1	08:04	2.45	0.84
0.70 (2F)015	0	CONDITT	1460 29	1	08.03	2 47	0.83
0.70	0	CONDOLI	1100.20	Ŧ	00.05	2.1/	0.00
(2F)016 0.71	0	CONDUIT	1460.72	1	08:01	2.42	0.86
(2F)017	0	CONDUIT	1461.91	1	08:00	2.42	0.86

- -

0.71	0						
(2F)018	0	CONDUIT	1445.66	1	08:44	2.44	0.84
(2F)019	U	CONDUIT	1445.82	1	08:43	2.44	0.84
0.70 (2F)020	0	CONDUIT	1445.04	1	08:37	2.40	0.86
0.71 (2F)021	0	CONDUIT	1447.22	1	08:37	2.43	0.85
0.71 (2F)022	0	CONDUIT	1447.14	1	08:36	2.84	0.70
0.61 (2F)023	0	CONDUIT	649.49	1	05:14	1.97	1.08
1.00 (2F)024	209	CONDUTT	212 06	1	11.10	1 63	0 34
0.40	0	CONDULT	210.70	1	11.35	0.67	1 08
0.95	383	CONDUIT	210.70	T	11:55	0.07	1.00
(2F)026 0.45	0	CONDUTT	87.83	0	22:01	0.58	0.42
(2F)027 0.45	0	CONDUIT	87.97	0	21:46	0.58	0.42
(2F)028 0 45	0	CONDUIT	88.37	0	21:36	0.59	0.43
(2F)029	0	CONDUIT	88.73	0	21:29	0.59	0.43
(2F) 030	0	CONDUIT	90.16	0	08:21	0.60	0.43
0.46 (2F)031	0	CONDUIT	93.68	1	08:00	0.62	0.45
0.46 (2F)032	0	CONDUIT	95.54	1	08:05	0.64	0.46
0.46 (2F)033	0	CONDUIT	107.82	1	08:00	0.75	0.52
0.45 (2G)001	0	CONDUIT	816.46	3	08:11	2.56	1.08
0.94 (2G)002	1462	CONDUIT	795.54	0	21:06	2.44	1.08
0.96 (2G)002A	1511	CONDULT	806 68	1	05.25	2.47	1.08
0.96	1321	CONDULT	637 29	-	08.00	2 38	0.86
0.71	0	CONDOIT	037.29	1	00.00	2.50	0.00
(2G)004 0.71	0	CONDUTT	640.69	1	08:00	2.43	0.86
(2G)005 0.68	0	CONDUIT	598.15	1	08:03	2.47	0.80
(2G)006 0 92	60	CONDUIT	612.25	1	08:01	2.75	1.08
(2G)007	50	CONDUIT	593.95	1	08:00	2.70	1.06
(2G)008	50	CONDUIT	513.60	1	05:02	2.25	1.08
1.00 (2G)009	623	CONDUIT	638.01	1	05:25	2.82	1.08
0.95 (2G)010	477	CONDUIT	402.88	3	07:25	2.49	0.73
0.64 (2G)011	0	CONDUIT	406.17	3	07 : 25	2.60	0.72
0.62 (2G)012	0	CONDUIT	399.31	0	21:20	1.79	1.08
0.92 (2G)012A	757	CONDITT	378 25	2	19.21	2 59	0 64
0.58	0	COMPOTI	510.25	2	1 / • C I	2.57	J. J.

a the second | (2G)013 | | CONDUIT | 378.48 | 0 | 19:16 | 2.73 | 0.60 |
|------------------|------|---------|---------|---|----------------|-------|-------|
| 0.56 | 0 | CONDUTT | 379 00 | 0 | 19.16 | 3 23 | 0 47 |
| 0.49 | 0 | COMPOIL | 575.00 | 0 | 19.10 | 5.25 | 0.17 |
| (2G)014
0 52 | 0 | CONDUIT | 352.84 | 2 | 21:19 | 2.81 | 0.54 |
| (2G)015 | 0 | CONDUIT | 349.17 | 0 | 07:09 | 1.57 | 1.08 |
| 1.00 | 1559 | CONDUTE | 200 74 | 0 | 21.02 | 1 76 | 1 0 9 |
| 0.95 | 1221 | CONDULI | 309.14 | 0 | 21:02 | 1.70 | 1.00 |
| (2G)016A | 607 | CONDUIT | 365.98 | 1 | 05:18 | 1.61 | 1.08 |
| (2G)018 | 627 | CONDUIT | 393.83 | 1 | 05:44 | 1.75 | 1.08 |
| 0.95 | 598 | CONDUTE | 202 40 | 1 | | 1 70 | 1 0 0 |
| (2G)019
0.95 | 591 | CONDULT | 383.49 | T | 05:52 | 1.70 | 1.08 |
| (2G)020 | | CONDUIT | 384.07 | 1 | 11:44 | 1.73 | 1.08 |
| 0.95
(2G)021 | 430 | CONDUIT | 386.55 | 1 | 06:09 | 1.72 | 1.08 |
| 0.95 | 428 | | | | | | |
| (2G)022
0.95 | 426 | CONDUIT | 386.49 | 1 | 12:03 | 1.72 | 1.08 |
| (2G)023 | | CONDUIT | 386.23 | 1 | 06:02 | 1.72 | 1.08 |
| 0.95
(2G)024 | 424 | CONDUTT | 384.19 | 1 | 05:39 | 1.71 | 1.08 |
| 0.95 | 422 | | 001123 | - | | | |
| (2G)025
1.00 | 357 | CONDUIT | 605.28 | 1 | 05:03 | 2.68 | 1.08 |
| (2G)026 | | CONDUIT | 866.92 | 1 | 05:42 | 3.84 | 1.08 |
| 0.95
(2G)040 | 255 | CONDUIT | 988.20 | 1 | 06:12 | 3.05 | 1.08 |
| 0.95 | 470 | | | _ | | | |
| (2G)041
0.70 | 0 | CONDUIT | 260.92 | 0 | 08:18 | 1.04 | 0.84 |
| (2G)042 | | CONDUIT | 262.20 | 0 | 08:13 | 1.06 | 0.85 |
| 0.70
(2G)043 | 0 | CONDUTT | 263.81 | 1 | 08:08 | 1.07 | 0.85 |
| 0.70 | 0 | | | _ | | | |
| (2G)043A
0.70 | 0 | CONDUIT | 265.85 | 0 | 08:04 | 1.06 | 0.86 |
| (2G)044 | - | CONDUIT | 271.89 | 1 | 08:02 | 1.09 | 0.88 |
| 0./1
(2G)045 | 0 | CONDUIT | 296.58 | 1 | 08:00 | 1.24 | 0.96 |
| 0.68 | 0 | | 201 21 | 1 | 06.05 | 2 7 4 | 1 0.0 |
| 0.95 | 328 | CONDUIT | 391.31 | Ţ | 06:25 | 1./4 | 1.08 |
| (2H)001 | 0 | CONDUIT | 2490.23 | 1 | 11:01 | 2.99 | 0.88 |
| (2H)002 | U | CONDUIT | 2530.38 | 1 | 11:00 | 2.57 | 1.08 |
| 0.94 | 337 | CONDUTE | 2472 11 | 1 | 10.57 | 0 E 1 | 1 00 |
| 0.95 | 339 | CONDUIT | 24/3.11 | T | 10:57 | 2.51 | 1.00 |
| (2H)005 | 227 | CONDUIT | 2507.52 | 1 | 10 : 52 | 2.54 | 1.08 |
| (2H)006 | 331 | CONDUIT | 2501.16 | 1 | 10:48 | 2.51 | 1.08 |
| 0.95 | 336 | | 2766 02 | 1 | 05.50 | 0 70 | 1 00 |
| (2H)UU/
0.95 | 325 | CONDUTT | 2100.03 | T | 00:58 | 2.10 | 1.U8 |
| (2H)008 | 0 | CONDUIT | 2910.80 | 1 | 09:45 | 3.71 | 0.81 |
| (2H)009 | U | CONDUIT | 2910.04 | 1 | 09:44 | 3.47 | 0.88 |

<u>_</u>____

. مريد ک the second se

0.73	0						
(2H)010	0	CONDUIT	2911.93	1	09:44	3.39	0.90
0.74 (2H)011	0	CONDUIT	2918.42	1	09:44	3.68	0.83
0.69 (2H)012	0	CONDUIT	2906.23	1	05 : 53	2.92	1.08
0.95 (2H)013	291	CONDUIT	2679.54	1	07:22	2.69	1.08
0.95 (2H)014	114	CONDUIT	1465.88	1	07:59	3.16	0.61
0.57 (2H)015	0	CONDUIT	1463.47	1	08:01	2.78	0.72
0.63 (2H)016	0	CONDUIT	1463.50	1	08:00	2.13	1.00
0.82 (2H)017	0	CONDUIT	1460.42	1	08:00	4.40	0.39
0.44 (2H)017A	0	CONDUIT	1460.67	1	08:00	2.74	0.73
0.64 (2H)018	0	CONDUIT	1454.06	1	08:00	2.62	0.77
0.66 (2H)019	0	CONDUIT	1454.19	1	08:00	2.68	0.75
0.65 (2H)020	0	CONDUIT	1450.06	1	07:54	2.57	0.79
0.67 (2H)021	0	CONDUIT	1448.98	1	08:00	2.83	0.70
0.62 (2H)022	0	CONDUIT	1008.88	1	10:07	3.41	0.55
0.53 (2H)023	0	CONDUIT	1008.67	1	10:06	3.46	0.54
0.52 (2H)024	0	CONDUIT	1010.18	1	10:06	3.23	0.60
0.56 (2H)025	0	CONDUIT	1008.27	1	10:16	2.00	1.08
0.95 (2H)026	310	CONDUIT	441.51	1	08:00	2.96	0.40
0.44 (2H)027	0	CONDUIT	439.71	1	08:03	2.25	0.57
0.54 (2H)028	0	CONDUIT	439.79	1	08:02	2.28	0.57
0.54 (2H)029	0	CONDUIT	439.99	1	08:01	2.32	0.56
0.53 (2H)030	U	CONDUIT	440.94	1	08:00	2.07	0.64
0.58 (2H)031	0	CONDUIT	428.33	1	11:54	1.32	1.08
0.95 (2H)032	395	CONDUIT	541.79	1	05:26	1.66	1.08
(2H)033	196	CONDUIT	2137.18	1	06:30	7.85	0.87
0.72 (2H)034	0	CONDUIT	420.37	1	08:00	2.21	0.56
U.53 (2H)036	U	CONDUIT	420.45	1	08:00	2.25	0.54
U.5∠ (2H)037	U	CONDUIT	417.18	1	11 : 37	2.42	0.49
0.49 (2H)038	Û	CONDUIT	417.26	1	11:33	2.25	0.54
U.52 (2H)039	0	CONDUIT	417.24	1	11:32	2.40	0.49
0.50	0						

(2H)040	_	CONDUIT	417.25	1	11:31	1.91	0.67
0.60 (2H)041	0	CONDUIT	417.27	1	11:29	2.25	0.54
0.52 (2H)042	0	CONDUIT	417.33	1	11:28	2.66	0.43
0.46 (2H)043	0	CONDUIT	417.59	1	11:27	1.95	0.65
0.59 (2H)044	0	CONDUIT	417.40	1	11:26	2.11	0.58
0.55 (2H)045	0	CONDUIT	417.49	1	11:25	2.13	0.58
0.55 (2H)046	0	CONDUIT	417.74	1	11:25	2.25	0.54
0.52 (2H)047	0	CONDUIT	417.10	1	11:31	1.29	1.08
0.95 (2H)048	384	CONDUIT	739.15	1	06:26	4.03	0.53
0.52 (2H)049	0	CONDUIT	740.13	1	09:44	2.28	1.08
0.95 (2H)050	276	CONDUTT	360.45	-	11:01	1.74	0.63
0.57 (2H)051	0	CONDUTT	360.54	-	10:58	1.71	0.64
0.58 (2H)051A	0	CONDUTT	361.36	- 1	10:57	1.95	0.54
0.52 (2H)052	0	CONDUIT	361.52	-	10:57	2 24	0.45
0.47 (2H)053	0	CONDUTT	360 24	1	11.09	1 14	1 08
0.95 (2H)054	365	CONDUIT	553 61	1	06.18	2 49	1 08
1.00 (2H) 054A	218	CONDUIT	553 84	1	06.12	2.40	1 09
0.96 (24)055	218		554 62	1	05.42	2.47	1 <u>00</u>
0.96	218	CONDUIT	554.05	1	05:42	2.49	1.00
(2H) 055A 0.96	218	CONDULT	554.64	1	05:42	2.46	1.08
(2H) 056 0.97	217	CONDUIT	554.64	Ţ	05:42	2.50	1.08
(2H) 057 0.94	216	CONDUIT	554.64	Ţ	05:45	2.47	1.08
(2H)058 1.00	216	CONDUIT	553.52	1	05:19	2.47	1.08
(2H)285 0.93	294	CONDUIT	511.39	1	09:59	2.31	1.06
(2H)286 0.95	298	CONDUIT	496.39	1	05:40	2.20	1.08
(2H)287 0.95	126	CONDUIT	495.41	1	07:46	2.25	1.08
(2H)288 0.95	126	CONDUIT	495.27	1	07:42	2.25	1.08
(2H)289 0.95	127	CONDUIT	494.18	1	07 : 39	2.24	1.08
(2H)290 0.95	121	CONDUIT	498.43	1	07:31	2.22	1.08
(2I)001 1.00	280	CONDUIT	1419.61	1	05:09	2.78	1.08
(2I)001A 0.95	309	CONDUIT	1017.06	1	10:12	2.01	1.08
(21)002		CONDUIT	1639.08	1	07:13	4.65	0.69

.

144 F - 1

, ,

0.61	0						
(2I)003 0 95	259	CONDUIT	1625.67	1	05:50	3.20	1.08
(21)004	235	CONDUIT	1566.96	1	05 : 15	3.08	1.08
1.00 (2I)005	249	CONDUIT	1633.82	1	09:14	3.22	1.08
0.95 (2T)006	244	CONDUTT	1654 45	1	09.02	2 27	1 00
0.94	150	CONDULI	1034.43	T	08:02	5.27	1.00
(2I)008 0.95	150	CONDUIT	1626.05	1	08:00	3.21	1.08
(2I)009	0	CONDUIT	1397.47	1	07:46	3.08	0.95
(2I)010	0	CONDUIT	1393.19	1	07:45	3.16	0.91
0.75 (2I)011	0	CONDUIT	1394.25	1	07:45	3.12	0.93
0.76	0	CONDUTT	1388 60	1	07•44	3 1 3	0 92
0.76	0	CONDUTT	1300.00	T	07.44	J.IJ	0.52
(2I)013 0.77	0	CONDUIT	1391.66	1	07:44	3.10	0.94
(2I)014	120	CONDUIT	1385.97	1	06:02	2.73	1.08
(2I)015	139	CONDUIT	0.00	0	00:00	0.00	0.00
0.00 (2I)016	0	CONDUIT	0.00	0	00:00	0.00	0.00
0.00 (2T)017	0	CONDUTT	0.00	0	00:00	0.00	0.00
0.00	0	CONDUTT	704 22	1	11.11	0.00	1 00
0.95	368	CONDULI	104.33	T	11:11	2.17	1.08
(2I)019 0.57	0	CONDUIT	863.46	1	10:49	2.68	0.62
(2I)020 0.95	350	CONDUIT	862.71	1	10:54	2.66	1.08
(21)021	0.00	CONDUIT	768.76	1	06:10	2.36	1.08
0.95 (2I)021A	263	CONDUIT	1139.34	1	05 : 35	2.59	1.07
1.00 (2I)021B	159	CONDUIT	1141.61	1	06:02	2.58	1.08
0.95	159	CONDUTT	618 78	1	05,38	1 40	1 0.8
0.95	336	CONDOLI		1	00.00	1.40	1.00
(21)022 0.64	0	CONDULT	768.19	1	10:30	2.36	0.74
(2I)023 0.95	321	CONDUIT	765.33	1	10:30	2.40	1.08
(21)024	201	CONDUIT	764.11	1	10:26	2.38	1.08
0.95 (2I)025	321	CONDUIT	765.04	1	10:22	2.37	1.08
0.95 (2I)025A	320	CONDUIT	759.11	1	05:44	2.34	1.08
0.95	321		782 67	-	09.06	2 51	1 06
0.92	2	CONDOIT	102.01	1	09.00	2.J1	T.00
(21)027 0.92	232	CONDUIT	768.03	1	09:05	2.41	1.08
(2I)028 1 00	220	CONDUIT	728.13	1	05:14	2.23	1.08
(21)029	200	CONDUIT	791.16	1	05:16	2.42	1.08
1.00	227						

. . . .

-

·

1

(21)044	1.0	CONDUIT	1374.63	1	09:06	4.38	1.06
0.93 (2I)045	19	CONDUIT	1392.70	1	08:54	4.36	1.07
1.00 (2I)046	233	CONDUIT	1403.65	1	09:05	4.36	1.08
0.95	232	CONDUTE	1401 75	-	00.55	4 4 2	1 00
0.95	233	CONDULI	1401.75	4.	08:22	4.4∠	1.08
(2I)048 0.95	233	CONDUIT	1400.38	1	05:44	4.33	1.08
(2I)049	223	CONDUIT	1400.38	1	05:09	4.29	1.08
(2I)050	233	CONDUIT	886.16	1	09:24	2.80	1.08
0.93 (2I)051	250	CONDUIT	885.68	1	05:16	2.73	1.08
0.95 (2I)052	249	CONDUIT	879.27	1	05:16	2.74	1.07
1.00	249	CONDUTT	997 17	1	06.01	2 75	1 0 9
0.96	248	COMDOTT	007.47	T	00.01	2.75	1.00
(2I)054 0.95	248	CONDUIT	889.05	1	09:15	2.74	1.08
(2I)055 0 95	205	CONDUIT	887.47	1	05:49	2.78	1.08
(2I)056	200	CONDUIT	887.47	1	06 : 14	2.81	1.08
0.96 (2I)057	203	CONDUIT	887.67	1	08:27	2.75	1.08
0.96 (2I)058	203	CONDUIT	887.47	1	06:15	2.76	1.08
0.96 (2T)059	203	CONDUTT	888.51	1	08:31	2.78	1.08
0.95	203	CONDUTE	1102 14	- 1	11.14	2 10	0 00
0.72	0	CONDULI	4103.14	T	11:14	2.10	0.00
(2J)002 0.95	346	CONDUIT	4177.86	1	11:35	2.59	1.08
(2J)003 0 94	343	CONDUIT	4150.08	1	10:02	2.60	1.06
(2J)004	247	CONDUIT	4153.24	1	10:01	2.57	1.08
(2J)005	347	CONDUIT	4259.24	1	11:28	2.78	0.99
0.81 (2J)006	0	CONDUIT	4248.52	1	11:28	2.64	1.08
0.95 (2J)007	341	CONDUTT	4208.91	1	11:25	2.58	1.08
0.96	342	CONDUTE	4207 00	-	11.05	0 50	1 00
0.95	344	CONDUTI	4207.00	T	11:05	2.58	1.08
(2J)009 0.66	0	CONDUIT	3995.82	1	11:19	3.20	0.78
(2J)010 0 66	Ω	CONDUIT	4012.43	1	11:19	3.25	0.77
(2J)011	0	CONDUIT	3954.59	1	11:18	4.07	0.78
(2J)012	U	CONDUIT	4000.30	1	11:00	3.14	1.08
0.93 (2J)013	326	CONDUIT	3927.13	1	11:15	3.04	1.08
0.94 (2.T)014	330	CONDITT	3919 25	1	11.01	2 23	1 05
0.90	5	0000011	JJ7J.2J	±	TT.AT	J.2J	1.00
(2J)015		CONDUIT	3901.93	1	±1:00	3.03	1.07

. . . .

ł

. .

0.92	321						
(2J)016 0 82	0	CONDUIT	3697.82	1	08:03	3.04	1.00
(2J)017	0	CONDUIT	3697.80	1	08:02	3.24	0.93
0.76 (2J)018	0	CONDUIT	3699.77	1	11.02	3.01	1.00
0.82	0			-			1.00
(2J)019 0.45	0	CONDUIT	1217.59	1	12:41	2.56	0.43
(2J)020	1000	CONDUIT	83.13	0	01:53	0.43	1.08
(2J)021	4900	CONDUIT	363.84	1	08:00	3.75	0.50
0.50 (2J)022	0	CONDUIT	357.53	1	05:06	1.94	1.08
1.00 (2.T) 023	1007	CONDUTT	390 91	1	18.03	1 73	1 08
0.96	980	CONDOLI	550.51	T	10.05	1.75	1.00
(2J)024 1.00	368	CONDUIT	831.44	1	05:34	3.67	1.08
(2J)0250	0	CONDUIT	122.46	1	07:59	7.53	0.03
(2J) 026	U	CONDUIT	482.18	1	11 : 16	2.15	1.08
0.95 (2J)027	376	CONDUIT	491.84	1	10:06	2.21	1.08
0.94 (2J)028	296	CONDUIT	479.02	1	09:59	2.12	1.08
0.95	298	CONDUTE	400 70	-	06.06	2.10	1 00
0.95	295	COMDUTT	492.12	Ţ	06:06	2.19	1.08
(2J)030 0 91	250	CONDUIT	327.94	1	09:44	2.34	1.08
(2J)031	230	CONDUIT	316.96	1	09:42	2.20	1.08
(2J)032	275	CONDUIT	303.41	1	06:09	2.11	1.08
0.95 (2J)033	279	CONDUIT	0.00	0	00:00	0.00	0.00
0.00 (2J)040	0	CONDUIT	481.92	1	07:59	2.84	0.81
0.68 (2.T)041	0	CONDUTT	487 11	1	13.14	2 22	1 08
0.94	478		107.11	-	10.11	~	1.00
(2J)042 0.95	483	CONDUIT	479.90	1	13:10	2.13	1.08
(2J)043 0.82	0	CONDUIT	475.08	1	07:12	2.28	1.00
(2J)044	100	CONDUIT	468.26	1	05:16	2.07	1.08
0.95 (2J)045	488	CONDUIT	487.47	1	12:37	2.25	1.06
0.91 (2J)045A	450	CONDUIT	460.25	1	05:36	2.05	1.08
0.95	487	CONDUTE	477 00	-	10.57	0.15	1 0 0
(2J)046 0.94	465	CONDULT	477.03	Ţ	12:57	2.15	1.06
(2J)047 0.95	473	CONDUIT	470.06	1	06:02	2.08	1.08
(2J)048	0	CONDUIT	326.85	1	08:00	1.99	0.74
0.64 (2J)049	U	CONDUIT	314.19	1	20:06	2.38	0.55
0.53 (2J)050	0	CONDUTT	314.61	1	20:06	2.03	0.70
0.61	0	001.0011		-		~ • V V	

r rain tr

. *:

(2J)051		CONDUIT	314.43	1	20:05	2.02	0.72
0.62 (2J)052	0	CONDUIT	316.99	1	20:05	2.21	1.08
0.93	917	CONDUTE	305 55	1	20.00	2 10	1 09
0.97	938	CONDULI	202.00	T	20:00	2.10	1.00
(2J)054 0 95	901	CONDUIT	310.81	1	06:10	2.15	1.08
(2J)055	070	CONDUIT	313.63	1	05 : 46	2.17	1.08
0.95 (2J)056	879	CONDUIT	314.46	1	05:31	2.16	1.08
0.95 (2.T)057	877	CONDULT	71 21	0	00.00	1 50	0 25
0.34	0	CONDULT	11.51	0	00.00	1.50	0.25
(2J)058 0.34	0	CONDUIT	76.07	0	08:00	1.82	0.28
(2K)001	4 5 4	CONDUIT	1213.86	1	12 : 56	1.22	1.08
(2K)002	454	CONDUIT	1310.04	1	08:00	5.40	0.42
0.45 (2K)003	0	CONDUTT	1271.53	1	08:00	2,90	0.90
0.74	0	CONDUTT	10.00 00	-	10.00	2.50	0.90
(2K)004 0.81	0	CONDULT	1269.33	Ţ	10:02	2.66	0.99
(2K)005 0 81	0	CONDUIT	1269.34	1	10:02	2.68	0.98
(2K)006	0	CONDUIT	1269.74	1	09:57	2.72	0.97
0.80 (2K)007	0	CONDUIT	1270.09	1	09:57	3.08	0.84
0.70	0	CONDUTT	1269 70	1	09.56	2 75	0 97
0.79	0	CONDOLI	1209.70	T	09.00	2.15	0.97
(2K)009 0.77	0	CONDUIT	1273.65	1	09:57	2.83	0.94
(2K)010	1	CONDUIT	1275.74	1	09:56	2.70	1.00
(2K)011	Ţ	CONDUIT	1270.94	1	09:57	2.51	1.08
0.95 (2K)012	306	CONDUIT	1374.05	1	09:40	2.93	0.98
0.80	0	CONDUTE	1200 01	- 1	05.54	2.60	1 00
0.95	289	CONDULT	1368.91	T	05:54	2.69	1.08
(2K)014 0.95	305	CONDUIT	929.21	1	05:31	2.84	1.08
(2K)015	400	CONDUIT	696.37	1	05:56	2.15	1.08
0.95 (2K)016	423	CONDUIT	860.24	1	10:19	2.81	1.03
0.87 (2K)017	4	CONDUTT	862 12	1	10.19	2 71	1 06
0.91	310	COMPOIT	002.12	Ţ	10.19	2.71	1.00
(2K)018 0.95	400	CONDUIT	820.06	1	05:55	2.52	1.08
(2K)018A	351	CONDUIT	864.04	1	05:12	2.65	1.08
(2K)019	JJL	CONDUIT	945.34	1	05:31	2.89	1.08
0.95 (2K)020	305	CONDUIT	716.75	1	11:53	2.77	0.85
0.71	0	CONDUTT	714 10	-	05.10	0 10	1 00
(2K)UZI 1.00	408	CONDULT	/14.16	T	05:12	2.18	1.08
(2K)022		CONDUIT	864.42	1	10:10	2.96	0.98

and the second
0.79	0						
(2K)022A	200	CONDUIT	874.87	1	10:09	2.78	1.06
(2K)023	299	CONDUIT	860.25	1	10:08	2.66	1.08
0.94 (2K)024	312	CONDUTT	842.01	1	10:07	2.92	0.96
0.79	0	0000011	012.01	-	10.07	2.92	0.90
(2K)024A 1.00	346	CONDUIT	840.34	1	05:09	2.54	1.08
(2K)025	2.0.1	CONDUIT	913.37	1	05:54	2.81	1.08
0.95 (2K)026	291	CONDUIT	653.11	1	11:30	2.35	0.91
0.75 (2K)027	0	CONDUIT	666.72	1	11:41	7.66	0.19
0.30	0	CONDUTE		1	11.41	2 05	1 00
(2K)028 0.94	394	CONDULT	662.96	T	11:41	2.05	1.08
(2K)029 0 95	396	CONDUIT	652.01	1	06:31	2.02	1.08
(2K)030	2.44	CONDUIT	659.74	1	11:08	2.08	1.08
0.95 (2K)031	341	CONDUIT	657.11	1	11:05	2.09	1.08
0.96 (2K)032	340	CONDUTT	662 86	1	10.58	2 09	1 0.8
0.95	340	CONDOLI	002.00	T	10.50	2.05	1.00
(2K)033 0.95	342	CONDUIT	653.27	1	06:49	2.07	1.08
(2K)033A	212	CONDUIT	635.43	1	06:51	2.00	1.08
(2K)034	JTJ	CONDUIT	645.51	1	10:33	2.00	1.08
0.97 (2K)035	310	CONDUIT	678.05	1	10:33	2.12	1.08
0.92	301	CONDITT	663 10	1	10.32	2 07	1 0.9
0.94	308	CONDUTI	005.19	T	10.52	2.07	1.00
(2K)037 0.95	313	CONDUIT	648.37	1	10:22	2.05	1.08
(2K)038	206	CONDUIT	648.27	1	10:26	2.01	1.08
(2K)039	200	CONDUIT	648.06	1	05:47	2.05	1.08
0.96 (2K)040	306	CONDUIT	648.06	1	05:47	2.02	1.08
0.96	305	CONDUTT	619 06	1	05.47	2 03	1 0 9
0.96	305	CONDULI	640.00	T	05:47	2.03	1.00
(2K)042 0.95	304	CONDUIT	649.12	1	10:11	2.00	1.08
(2K)043	226	CONDUIT	649.02	1	09:31	2.11	1.08
(2K)044	236	CONDUIT	648.02	1	05:59	2.09	1.08
0.96 (2K)045	236	CONDUTT	648.56	1	09:24	2.10	1.08
0.96	236	CONDUTT	C10 0C	-	05.50	2 00	1 00
(∠K)U46 0.96	237	CONDUTT	648.U6	T	U5:56	2.09	T.08
(2K)047 0 96	236	CONDUIT	648.06	1	05:54	2.08	1.08
(2K)048	007	CONDUIT	648.18	1	09:13	2.08	1.08
0.96 (2K)049	231	CONDUIT	648.06	1	05:54	2.07	1.08
0.96	237						

and the second sec

(

(2K)050		CONDUIT	648.82	1	09:05	2.05	1.08
0.96	237			_			
(2K)051	0.05	CONDUIT	648.06	1	05:54	2.04	1.08
0.96	235	CONDUTE	C10 0C	1	0.0.05	2 4 4	1 00
(ZK)05Z	226	CONDUTT	648.06	T	06:05	3.44	1.08
(28)314	230	CONDUTT	117 56	1	15.06	2 57	0 73
0 63	0	CONDULI	417.30	T	10.00	2.51	0.75
(2K) 315	Ū	CONDUTT	416 01	1	06.31	1 85	1 08
0.95	619	00110011	110.01	-	00.01	1.00	1.00
(2K) 316	019	CONDUIT	503.62	1	14:31	2.25	1.07
0.94	563	00112022	000000	-	11101	3.111	
(2K)317		CONDUIT	497.63	1	05:31	2.19	1.08
0.95	567						
FordedMain	2	CONDUIT	148.78	0	10:10	0.98	1.08
0.93	4981						
Line2ToPla:	nt	CONDUIT	3540.80	3	07:10	3.67	0.32
0.39	0						
NorthEnid		CONDUIT	0.00	0	00:00	0.00	0.00
0.00	0						
1	_	CONDUIT	1632.03	1	05 : 12	15.02	0.26
0.35	0						
PUMPI@(2A)	000-(PLANI	') PUMP	6000.00	T	06:03		1.00
289		DUMD	1000 00	1			1 00
ForcedMain		POMP	1200.00	T	05:08		1.00
Overflow	~~~	DIMD	1000 00	1	05.53		1 00
3/1	шр	FOME	4000.00	T	03.33		1.00
(TO) 304C-O		ORTRICE	1780 84	1	17.16		
0.00	0	ORITION	1,00.04	Ŧ	1/.10		
WETR1@(1A)		OR WEIR	0.00		0 00:00		
0.00	0						
(10)304-1		WEIR	1863.50	1	08:29		
0.00	0						

-

.

Routing	Time	Step	Summary			
******	* * * * * *	*****	******			
Minimum	Time	Step		:	30.00	sec
Average	Time	Step		:	29.65	sec
Maximum	Time	Step		:	30.00	sec
Percent	in St	eady	State	:	0.00	
Average	Itera	ations	per Step	:	1.17	

Analysis begun on: Mon Aug 11 13:58:14 2008 Analysis ended on: Mon Aug 11 13:58:36 2008 Total elapsed time: 00:00:22

TM 2-7

FEBRUARY 2007 EVALUATION OF SANITARY SEWER PIPELINE EXTENSION FOR THE OKLAHOMA ETHANOL PLANT

EVALUATION OF SANITARY SEWER PIPELINE EXTENSION

OKLAHOMA ETHANOL PLANT

FEBRUARY 2007

C.A. 1960—Expiration Date 06/30/08 06169-00-OEG

TABLE OF CONTENTS

1.	PREFACE1.							
2.	INTRO	DDUCTION						
3.	BASIS OF SANITARY SEWER ALIGNMENT OPTIONS							
	3.1	Option 1 - Washington Street2.						
	3.2	Option 2 - Elm Street						
	3.3	Option 3 - 30^{TH} Street2.						
	3.4	Option 4 - 42 ND Street2.						
	3.5	Option 5 - 54 TH Street2.						
4.	ΟΡΤΙΟ	ON ANALYSIS						
	4.1	Option 1 - Washington Street Analysis						
	4.2	Option 2 - Elm Street Analysis						
	4.3	Option 3 - 30 [™] Street Analysis						
	4.4	Option 4 - 42^{ND} Street Analysis						
	4.5	Option 5 - 54 TH Street Analysis8.						
5.	CON	CLUSIONS AND RECOMMENDATIONS						
LIST OF	FIGURES:							
	FIGURE FIGURE FIGURE FIGURE FIGURE	 OKLAHOMA ETHANOL PLANT SANITARY SEWER OPTIONS OKLAHOMA ETHANOL PLANT SANITARY SEWER ACCESS PLAN VIEW - WASHINGTON AVENUE OPTION 1 PROFILE - WASHINGTON AVENUE OPTION 1 LAYOUT PLAN - WASHINGTON AVENUE OPTION 1 						

FIGURE 5.	LAYOUT PLAN - WASHINGTON AVENUE OPTION T
FIGURE 6.	PLAN VIEW - ELM STREET OPTION 2
FIGURE 7.	PROFILE - ELM STREET OPTION 2
FIGURE 8.	LAYOUT PLAN - ELM STREET OPTION 2
FIGURE 9.	PLAN VIEW - 30 TH STREET OPTION 3
FIGURE 10.	PROFILE - 30 TH STREET OPTION 3
FIGURE 11.	LAYOUT PLAN - 30 TH STREET OPTION 3
FIGURE 12.	PLAN VIEW - 42 ND STREET OPTION 4
FIGURE 13.	PROFILE - 42 ND STREET OPTION 4
FIGURE 14.	ALTERNATE 42 ND STREET OPTION

LIST OF TABLES:

TABLE 1.	COST ESTIMATE - WASHINGTON AVENUE OPTION 1
TABLE 2a	COST ESTIMATE - 16 TH STREET OPTION 2 (TRENCH AND BORE)
TABLE 2b.	COST ESTIMATE - 16 TH STREET OPTION 2 (TRENCH)
TABLE 3a.	COST ESTIMATE - 30 TH STREET OPTION 3 (ALL-GRAVITY FLOW)
TABLE 3b.	COST ESTIMATE - 30 TH STREET OPTION 3 (PUMP AND GRAVITY)
TABLE 4.	COST ESTIMATE - 42 ND STREET OPTION 4
TABLE 5.	SUMMARY OF COST ESTIMATES FOR OPTIONS 1 THROUGH 4

LIST OF APPENDICES:

APPENDIX A.

SANITARY SEWER FLOW CALCULATIONS

ii

1. PREFACE

The original concept for sanitary sewer service to the proposed Oklahoma Ethanol Plant was based on the possibility of connecting to the nearest available existing sanitary sewer pipeline. This was presented to ENVIROTECH ENGINEERING & CONSULTING, INC. early in the proposal process as a lift station at the plant on 16TH Street that would pump through a force main into the existing 8-in.-dia. sanitary sewer pipeline just east of 11TH Street. The associated construction cost estimate presented by the City was approximately \$450,000.00. Subsequent to further evaluation, ENVIROTECH discovered that the existing 8-in.-dia. sanitary sewer line was fed by businesses north and south of Willow Road westward to 4TH Street and the neighborhood northeast of Willow Road and 4TH Street. This line then entered a 10-in.-dia. line that extends south on 4TH Street to a larger collector south. Since the design requirement for 300,000-gpd requires nearly all of an 8-in.-dia. line, it was determined that the existing 8-in.-dia. line was already at full capacity. At this point, the City began to search for alternate routes to convey the sanitary sewer flow from the Oklahoma Ethanol Plant into the existing sanitary sewer collection system.

To implement the referenced search for alternate routes, an evaluation for using the existing 24-in.-dia. collectors at the intersections of Washington Street and Willow Road as well as Elm and 16TH Streets (referred to as Options 1 and 2, respectively) was conducted. Utilizing this process, additional prospective alignments that could include other existing and future businesses in the NE/quadrant of Enid were analyzed. These additional alignments evaluated in this report include the 30TH Street Option 3, 42ND Street Option 4, and 54TH Street Option 5. This report summarizes the results of these evaluations and provides a recommended alignment as well as estimated costs for all options ranging from \$867,700.00 to \$3,044,200.00.

2. INTRODUCTION

ENVIROTECH ENGINEERING & CONSULTING, INC., evaluated several alternative routes for a proposed sanitary sewer pipeline for the new Oklahoma Ethanol Plant to be constructed on north 16TH Street (approximately 1,000-ft. north of Willow Avenue) in Enid, Oklahoma. An overview of the plant location and sanitary sewer pipeline routing is graphically depicted on *Figure 1*. It is our understanding that the sanitary sewer flow *initial* design requirement is a 144,000-gpd capacity, but the design will encompass a *future* maximum flow of 300,000-gpd. In addition, this capacity shall be limited to 85% maximum capacity of the selected sanitary sewer pipeline. It has also been proposed that the site may require construction of a sanitary sewer lift station, if necessary.

The Oklahoma Ethanol Plant sanitary sewer flow shall be collected at a common point on-site within the road easement of 16TH Street within a paved section along the east side of the proposed facility. The plant facility will be comprised of several buildings and it is anticipated that the main service connection location (or lift station) will be approximately 800- to 1,000-ft. north of Willow Avenue. The plant site is a triangular-shaped piece of property abutting the City boundary on the north edge (i.e. 1/2-mi. north) of Willow Avenue and abutting the ADM grain elevators on the south edge that runs northwest. For purposes of this analysis, a sanitary sewer service is estimated to originate at the mash/prep buildings at a grade of 1,244-ft. It is assumed a sanitary sewer service line will exit the

1

building at 1,240-ft. and slope 2% to the west edge of 16TH Street, resulting in an invert of 1,236-ft. This will be the starting point for purposes of analyzing either a gravity flow or forced main flow into the Enid sanitary sewer system, as graphically depicted on *Figure 2*

3. BASIS OF SANITARY SEWER ALIGNMENT OPTIONS

The several alignment options considered would terminate in a larger existing main trunk line in Enid. This evaluation will provide necessary information to the City of Enid for determining the sanitary sewer line construction that affords the most cost-effective solution while providing a maximum contribution to current and future development potential. All options evaluated in this report shall commence at the proposed Oklahoma Ethanol Plant site and proceed down the west side of 16TH Street and pass under three (3) sets of railroad tracks that service the ADM grain elevators. No new railroad tracks are anticipated at this location. From the point at 16TH Street and Willow Road, the various sanitary sewer alignment options will proceed as outlined below and graphically depicted on *Figure 2*.

- **3.1 Option 1 Washington Street.** Proceed along Willow Avenue approximately 9,000-ft. to the west where it would connect to an existing 24-in.-dia. sanitary sewer main collector at Washington Street.
- **3.2 Option 2 Elm Street.** Proceed south on 16TH Street approximately 8,450-ft. where it would pass under the Burlington Northern 22-track switching yard before terminating at the 24-in.-dia. main collector on Elm Street.
- **3.3 Option 3 30TH Street.** Proceed east along the north side of Willow Avenue and pass under one (1) set of railroad tracks and 30TH Street before turning south under Willow Avenue. The pipeline would then proceed along the east side of 30TH Street and cross several pipelines and three (3) railroad tracks before turning southeast under U.S. Highway 412 and terminating at the existing 33-in. main collector near Market and 30th Streets. The length of this pipeline is estimated to be 16,500-ft.
- **3.4 Option 4 42ND Street.** Proceed east along the north side of Willow Avenue and pass under one (1) set of railroad tracks and 30TH Street before turning south along the west bank of Skeleton Creek. At this point, the pipeline would intersect 42ND Street and pass south to the main sewer collector north of the wastewater treatment plant (WWTP) for a total estimated length of 20,300-ft.
- **3.5 Option 5 54TH Street.** Proceed east from 16TH Street along the north side of Willow Avenue and pass under one (1) set of railroad tracks and 30TH Street before turning south along 30TH Street, east on Chestnut Avenue, and south on 42ND Street, terminating at the existing 33-in. sewer main north of East Market Avenue for a total estimated length of 20,700-ft.

4. OPTION ANALYSES

The following option analyses includes all general obstacles and perceived pros and cons as well as cost estimates for each option. In addition, each route was analyzed for possible use of a gravity line versus a lift station, even though a gravity line may be fairly deep in some cases. Primary obstacles are state highways, pipelines, and railroad tracks that must be bored under and require steel casing, with the exception of casing for pipelines.

Sanitary sewer line information for invert elevations was obtained from the Enid Sanitary Sewer Atlas and other "As-Built" information provided by the City of Enid's engineering department. Flow calculations of pipe sizes used in the following analysis are provided in *Appendix A*. These calculations clearly show that the pipe sizes evaluated will carry the required design flows and the capacity of existing collector mains.

The required design flow is 300,000 or 208-gpm at 85% flow of the selected sanitary sewer pipe diameter. For instance, a 10-in.-dia. pipe with a 2-fps (0.004 ft/ft) flow would convey 1.1-cfs or .711-mgd. At 85%, this pipe size would convey 0.604-mgd, or twice the required 0.3-mgd. Similarly, an 8-in.-dia. pipe would convey at least 383-mgd that would meet the design requirements. The minimum pipe slopes allowed by the Oklahoma Department of Environmental Quality (ODEQ) were used to minimize depth-of-sewer as well as provide a profile within the limits of the elevation at the Ethanol Plant and the City's existing receiving manhole. In some instances, a larger pipe diameter than needed has been proposed to minimize the slope due to obstacles or depth of excavation. Only the lowest slope pipe within a proposed option will be elaborated on with regard to flow capacity.

Pipe Diameter (in.)	Area (sf)	Q(mgd) 85%	Q(mgd)	Slope (ft/ft)
8	.35	.450	.383	0.004
10	.55	.711	.604	0.0029
12	.79	1.02	.867	0.0022
15	2.45	1.58	1.343	0.0017
18	1.77	2.28	1.938	0.0015
24	3.14	4.10	3.485	0.0012

For information purposes, the following flows were estimated based on the minimum slope allowed by ODEQ.

4.1 Option 1 - Washington Street Analysis. The alignment to the west of 16TH Street for an approximate total length of 9,000-ft. will pass underneath the Union Pacific railroad tracks west of 10TH Street. The pipeline would then proceed to Manhole No. IM288C that connects to the existing 24-in. sanitary sewer collector that flows south on Washington Street, as graphically depicted on *Figure 3*. The vertical alignment (i.e., profile) graphically depicted on

···· ··· ··· ····

Figure 4 shows that installation of a gravity sewer pipeline from 16TH Street at the maximum percent slope of 0.30% (0.29% allowed by ODEQ for a 10-in. line) would terminate approximately 17-ft. below the flow line invert of the 24-in. sanitary sewer line at Washington Street. The ground level at that point rises approximately 12-ft. higher westward which accounts for such a deep gravity flow line connection.

Therefore, an alternative alignment, graphically depicted on *Figure 4*, utilizes a 10-in. gravity line starting at the Washington Street invert elevation of 1,239.17-ft. and proceeding upward and easterly along Willow Avenue to a point approximately 1,700-ft. east and approximately 3-ft. below grade. Although it could be more practical to use an 8-in.-dia. line, it would intercept the Washington Street manhole at a lower depth. The remaining pipeline to the ethanol plant would be comprised of a force main and lift station at the plant, as graphically depicted on *Figure 4*. Due to an existing water main and improvements at Willow Avenue, it is likely that construction of a sanitary sewer pipeline would be more appropriate on the north side of the road. A layout plan graphically depicted on *Figure 5* reflects the final proposed sanitary sewer pipeline. Both railroad and Oklahoma Department of Transportation (ODOT) permits would be required for this route as well as several main intersection crossings.

The flow capacity of an 8-in. line graphically depicted on *Figure 4* corresponds to a 0.29% slope that could convey .383-gpm of sanitary sewer flow (at 85% capacity) that exceeds the design requirement of 300,000-gpd for the ethanol plant sanitary sewer pipeline. The existing 24-in. sanitary sewer main collector at Washington Street and Willow was constructed in the past few years to alleviate inflow and infiltration problems, afford additional service to that area, and provide some capacity for future development in that vicinity of the City. The flow capacity for the 24-in.-dia. line is estimated to be approximately 3.6-mgd. Channeling an additional 300,000-gpd from the east side of the City certainly reduces, and could jeopardize the capacity, of that line. Upgrading that system later would most likely outweigh the benefit and cost to construct the needed sewer pipeline for the ethanol plant in a different location. Furthermore, the Washington Street option would result in routing the sanitary sewer flow an additional 2-mi. in the wrong direction from the WWTP. The estimated cost for this option is \$ 867,700.00, as summarized in *Table 1*.

4.2 Option 2 - Elm Street Analysis. Aligning a sanitary sewer pipeline directly south on 16TH Street to the existing 24-in. collector at Elm Street is graphically depicted on *Figure 6*. A series of approximately 22 railroad tracks would need to be bored under. In addition, the remaining portion of 16TH Street is fairly narrow and traverses a residential area. There is an existing waterline along the west side of 16TH Street and waterline crossings at all streets that must be avoided. Furthermore, the first block north of Elm Street will require replacement of an existing manhole and 10-in. line to achieve the depth needed for flow. Power poles exist directly south of Chestnut Avenue behind the curb on both sides of the street. It is most likely that a sanitary sewer pipeline may need to be bored almost the entire length of the residential area. Comparative cost estimates are provided for trenching the entire job or boring the residential area and trenching the remainder. Both railroad and Oklahoma

Ś,

1

Table 1

City of Enid Oklahoma Ethanol Sewer Extension Preliminary Engineers Cost Estimate

Option 1 - Washington Ave.

December 18, 2006

No.	Item	Unit	Quantity	Rate	Total
1	Mobilization	Ea	1	\$6,000.00	\$6,000.00
2	4" FM Sanitary Sewer bore and pipe, complete	LF	1200	\$50.00	\$60,000.00
3	12" steel casing w/4" FM waterline, bored	LF	800	\$100.00	\$80,000.00
4	4" FM Sanitary Sewer trench, complete	LF	6100	\$30.00	\$183,000.00
5	8" D.I.P. Sanitary Sewer bore and pipe, deep, complete	LF	1700	\$200.00	\$340,000.00
6	14" steel casing w/8" DIP waterline, bored	LF	300	\$300.00	\$90,000.00
7	4 ft dia Sanitary Sewer Manhole 8 ft deep complete	Ea	25	\$3,000.00	\$75,000.00
8	Additional depth for 4 ft dia. Manhole	Ft	200	\$30.00	\$6,000.00
10	Concrete/asphalt repair (bore pits, etc)	SF	1500	\$7.00	\$10,500.00
11	Project sign, complete, in place	Ea.	2	\$600.00	\$1,200.00
12	Traffic control, complete, in place	L.S.	1	\$1,000.00	\$1,000.00
13	Lift Station w/ Telemetry	L.S.	1	\$150,000.00	\$150,000.00
	Subtotal Construction Cost				\$1,002,700.00

Department of Transportation (ODOT) permits would be required for this route as well as several main intersection crossings.

The vertical alignment (profile) graphically depicted on *Figure 7* indicates that the pipeline could possibly be constructed as gravity flow. The number of manholes and final location of existing utilities may nonetheless necessitate a lift station. The flow capacity of the 8-in. line depicted on *Figure 7* corresponds to a slope of .0038-ft/ft. that could convey .39-mgd of sanitary sewer flow (at 85% capacity) that exceeds the design requirement of 300,000-gpd for the ethanol plant sanitary sewer line. It is proposed to use a larger 10-in.-dia. pipe to reduce construction costs by decreasing the trenching depth.

However, the issue of flow pertains to the receiving 24-in. pipeline constructed in the 1997 time frame to relieve flow the Phillips Tributary. The existing 24-in. collector at Elm Street was constructed at the minimal grade of 0.0025-ft/ft between Elm Street and the City's 30-in. collector on Owen K. Garriott Road. Based on our calculations, the 24-in. pipe has the capacity to accommodate 5.4-mgd (3,750-gpm) at that slope and at 85%, normal sewage flow has been observed to half fill this pipe. Flow measurements are being pursued to obtain actual storm flow conditions that may provide evidence that the 24-in. pipeline does not have the capacity to accommodate an additional 300,000-gal. of flow.

Since there is a 500,000-gal. storage tank at 19TH and Randolph Streets to assist in dissipating storm surge flow, it is possible that the 24-in. sanitary sewer relief pipeline may be a likely candidate for accepting the additional 300,000-gpd flow anticipated from the sanitary sewer pipeline extending to the Oklahoma Ethanol Plant.

Again, the existing 24-in. sanitary sewer main at Elm Street was constructed to alleviate inflow and infiltration problems, afford additional service to that area, and provide some capacity for future development in that vicinity of the City. Channeling an additional 300,000-gpd to the east side of the City certainly reduces, and could jeopardize the capacity, of that line. Upgrading that system at a later date would most likely outweigh the benefit and cost to construct the needed sanitary sewer pipeline for the ethanol plant in a different location.

A layout plan graphically depicted on *Figure 8* shows the final proposed sewer line. The estimated cost for trenching and boring is \$1,148,800.00, as summarized in *Table 2a*. An alternative cost of \$1,069,800.00 for trenching the entire job is provided in *Table 2b*.

4.3 Option 3 - 30TH Street Analysis. Routing a sanitary sewer pipeline along 30TH Street could possibly be accomplished with a 16,500-ft.-long gravity line connecting to the existing 33-in. main feeder to the WWTP, as graphically depicted on *Figure 9*. The profile (vertical alignment) is graphically depicted on *Figure 10* that shows varying slopes of sanitary sewer pipeline in order to minimize the pipe size and line depth. Several pipeline markings that cross this route would need to be verified before final acceptance of the alignment. The Magellan Company surveyor was on-site in November 2006 and reported that the two (2) northernmost pipelines were 2.5- to 3-ft. below the edge of the road, as graphically depicted

Table 2a

City of Enid Oklahoma Ethanol Sewer Extension Preliminary Engineers Cost Estimate

Option 2 - Elm St

"TRENCH-AND-BORE" METHOD

December 18, 2006

No.	ltem	Unit	Quantity	Rate	Total
1	Mobilization	Ea	1	\$6,000.00	\$6,000.00
2	8" D.I.P. Sanitary Sewer, trench and pipe, complete	LF	3500	\$70.00	\$245,000.00
3	8" D.I.P. Sanitary Sewer bore and pipe, complete	LF	4100	\$150.00	\$615,000.00
4	14" steel casing w/8" DIP waterline, bored	LF	850	\$250.00	\$212,500.00
5	4 ft dia Sanitary Sewer Manhole 8 ft deep complete	Ea	23	\$3,000.00	\$69,000.00
6	Additional depth for 4 ft dial Manhole	Ft	120	\$30.00	\$3,600.00
7	Concrete/asphalt repair (bore pits, etc)	SF	4000	\$7.00	\$28,000.00
8	Remove & replace 4" pavement, complete, in place	SF	1000	\$10.00	\$10,000.00
9	Project sign, complete, in place	Ea.	2	\$600.00	\$1,200.00
10	Traffic control, complete, in place	L.S.	1	\$1,000.00	\$1,000.00
	Subtotal Construction Cost				\$1,191,300.00

Table 2b

City of Enid Oklahoma Ethanol Sewer Extension Preliminary Engineers Cost Estimate

Option 2 - Elm St

"ALL TRENCH" METHOD

December 18, 2006

No.	Item	Unit	Quantity	Rate	Total
1	Mobilization	Ea	1	\$6,000.00	\$6,000.00
2	8" D.I.P. Sanitary Sewer, trench and pipe, complete	LF	7600	\$70.00	\$532,000.00
3	Compaction	CY	3700	\$20.00	\$74,000.00
4	14" steel casing w/8" DIP waterline, bored	LF	850	\$250.00	\$212,500.00
5	Pressure/Vacuum Relief Valves	LS	1	\$3,000.00	\$3,000.00
6	4 ft dia Sanitary Sewer Manhole 8 ft deep complete	Ea	23	\$3,000.00	\$69,000.00
7	Additional depth for 4 ft dial Manhole	Ft	120	\$30.00	\$3,600.00
8	Concrete/asphalt repair	SF	20000	\$10.00	\$200,000.00
9	Remove & replace 4" pavement, complete, in place	SF	1000	\$10.00	\$10,000.00
10	Project sign, complete, in place	Ea.	2	\$600.00	\$1,200.00
11	Traffic control, complete, in place	L.S.	1	\$1,000.00	\$1,000.00
	Subtotal Construction Cost				\$1,112,300.00

OZ

ſſ

on *Figure 10.* Since the sanitary sewer pipeline reaches deeper depths as the line proceeds south, it is anticipated that the issue of pipelines may be overcome. Again, these would need to be surveyed and otherwise accurately located for depth before proceeding further with this option. An advantage of a deeper sanitary sewer pipeline is that it would allow for better access for facilities located farther east from 30TH Street. Both railroad and Oklahoma Department of Transportation (ODOT) permits would be required for this route as well as several main intersection crossings.

As previously mentioned, an "all-gravity" option would encompass a 12-in.-dia. pipe along Willow Road with a minimum flow of 0.9-mgd to serve existing and future development on both sides of Willow Road. The minimum slope of 0.12% shown on a portion of the profile (for a 24-in. pipe) is required to reduce depth of the overall excavation. The flow afforded by the 24-in.-dia. pipe would be 3.5-mgd at 85% capacity. Upon further analysis of sanitary sewer loading for this line, the sewer size could be increased or reduced which would also change the minimum slope.

An alternative option of "pump and gravity" could reduce the overall cost. This would encompass a lift station and force main along Willow Road and a 12-in.-dia. line south to the Oklahoma Ethanol Plant with an 18-in.-dia. line to the existing 33-in. sewer main near 30TH and Market Streets.

In addition, the actual depth and final slope would be dictated by the number of manholes required by ODEQ, which is typically every 400-ft. This would account for an additional drop of 0.1-ft./manhole, or several feet that could be adjusted by using an appropriate minimum pipe diameter.

This option could offer sanitary sewer service to facilities along 30^{TH} Street to include the Hamm & Phillips facility on the NE/corner of 30^{TH} Street and Willow Avenue; the Johnson Grain Elevators with an existing septic system; and other possible connections along both sides of 30^{TH} Street to Highway 412. This could eliminate the lift station at the Hamm & Phillips facility and reduce maintenance and operating costs for the City of Enid. Due to the number of actual service connections required, the final sanitary sewer design may be deeper than shown and possibly require a sanitary sewer lift station at the Oklahoma Ethanol Plant. For instance, the "As-Built" plans for the 1994 Halliburton 4-in. sanitary sewer force main on the east side of 30^{TH} Street to Chestnut Avenue indicate that pipe crossings are more shallow than the proposed pipe profile graphically depicted on *Figure 10*. The existing lift station invert is at 1,215.46-ft. and the proposed sanitary sewer is shown at almost the same elevation. While it would be impractical to lower the main sanitary sewer much deeper than that along 30^{TH} Street and Willow Road, and the remaining 1-mi. of force main could be deleted.

A layout plan graphically depicted on *Figure 11* shows the final proposed sanitary sewer pipeline. The actual pipeline impact would need to be more accurately ascertained. The

cost to bore and case under four (4) railroad crossings, drainage ditches, and Highway 412 and associated exit ramps will add to the fee significantly.

The extension of the sanitary sewer pipeline along the 30TH Street route will capitalize the 2-mi. of sanitary sewer construction otherwise considered on 16TH Street. This will include the additional cost for 1-mi. of sanitary sewer pipeline along Willow Avenue and the additional distance imposed by a line length equal to the distance from Elm Street to Manhole No. 1A016 on the existing 33-in. main sanitary sewer trunk. The primary emphasis will be to provide access for industry along Willow Road and the 30TH Street corridor.

This alignment would also facilitate future expansion of the collection system by constructing a separate branch pipeline from the south end of the proposed 30^{TH} Street pipeline to a possible future WWTP expansion. The estimated cost for the Option 3 "all-gravity" flow alternative is \$2,388,700.00, as summarized in *Table 3a*. The estimated cost for the Option 3 "pump and gravity" alternative is \$1,680,950.00, as summarized in *Table 3b*.

4.4 Option 4 - 42ND Street Analysis. This route, graphically depicted on *Figure 12*, must traverse the west bank of Skeleton Creek until it intersects 42ND Street and travels south to the existing 33-in. pipeline. The vertical alignment (profile), graphically depicted on *Figure 13*, indicates the possibility of an approximate 0.0030% pipe slope between the 30TH Street and Willow Road intersection to the point of entrance into the existing 33-in. sewer main at 30th and Market Streets. Due to the length of this alignment, the required pipe size may need to be increased to 18-in. at the south end to convey, at minimum, 2-mgd at 85% flow. The pipeline depth is approximately 10-ft., but reaches 26-ft. at the railroad. The west bank of the creek is uneven and could result in exposed lines unless they are deepened or set back at the top of the bank. In addition, this route encompasses two (2) railroad crossings as well Highway 412. Both railroad and Oklahoma Department of Transportation (ODOT) permits would be required for this route as well as several main intersection crossings.

This alignment, as shown, would obviously not provide service along the 30^{TH} Street corridor. Such service would need to either access existing sanitary sewer pipelines in the residential area to the west of 30^{TH} Street or stretch east to the 42^{ND} Street alignment that could result in long service lines. Another alternative would be to consider combining the 30^{TH} Street Option 3 to Chestnut Avenue and construct a sewer line east to the 42^{ND} Street alignment, as graphically depicted on *Figure 14*. At this point, the connection at 30^{TH} Street would be approximately 20-ft.-deep (El. 1,212). This would need to pass under the BNS&F and Skeleton Creek at 1,190-ft. and tie to the 42^{ND} Street line at 1,170-ft. This constitutes an approximate 0.01% slope.

Further evaluation of the 42^{ND} Street collector will need to be supported with additional information concerning possible development in this area. The possibility of flow from 54^{TH} Street to 42^{ND} Street along Chestnut Avenue is explained in the following Option 5.

Table 3a

City of Enid Oklahoma Ethanol Sewer Extension Preliminary Engineers Cost Estimate

Option 3 - 30th St

"ALL GRAVITY" FLOW

December 18, 2006

No.	ltem	Unit	Quantity	Rate	Total
1	Mobilization	Ea	1	\$6,000.00	\$6,000.00
2	12" D.I.P. Sanitary Sewer, trench and pipe, complete	LF	5500	\$80.00	\$440,000.00
3	12" D.I.P. Sanitary Sewer bore and pipe, complete	LF	250	\$200.00	\$50,000.00
4	20" steel casing w/ 12" DIP waterline, bored	LF	450	\$350.00	\$157,500.00
5	18" D.I.P. Sanitary Sewer, trench and pipe, complete	LF	10400	\$150.00	\$1,560,000.00
6	18" D.I.P. Sanitary Sewer bore and pipe, complete	LF	200	\$250.00	\$50,000.00
7	26" steel casing w/ 18" DIP waterline, bored	LF	800	\$400.00	\$320,000.00
8	Sanitary Sewer Manhole 8 ft deep complete	Ea	47	\$3,000.00	\$141,000.00
9	Additional depth for 4 ft dial Manhole	Ft	150	\$30.00	\$4,500.00
10	Remove & replace 4" pavement, complete, in place	SF	1000	\$10.00	\$10,000.00
11	Project sign, complete, in place	Ea.	2	\$600.00	\$1,200.00
12	Traffic control, complete, in place	L.S.	1	\$1,000.00	\$1,000.00
	Subtotal Construction Cost				\$2,741,200.00

Table 3b

City of Enid Oklahoma Ethanol Sewer Extension Preliminary Engineers Cost Estimate

Option 3 - 30th St

"PUMP-AND-GRAVITY" METHOD

December 18, 2006

"PUMP-AND-GRAVITY" METHOD

No.	Item	Unit	Quantity	Rate	Total
1	Mobilization	Ea	1	\$6,000.00	\$6,000.00
2	4" FM Sanitary Sewer, trench and pipe, complete	LF	5500	\$20.00	\$110,000.00
3	4" FM Sanitary Sewer bore and pipe, complete	LF	250	\$50.00	\$12,500.00
4	12" steel casing w/ 4" DIP waterline, bored	LF	450	\$100.00	\$45,000.00
5	12" D.I.P. Sanitary Sewer, trench and pipe, complete	LF	2700	\$80.00	\$216,000.00
6	20" steel casing w/12"DIP waterlline, bored	LF	300	\$350.00	\$105,000.00
7	18" D.I.P. Sanitary Sewer, trench and pipe, complete	LF	7800	\$150.00	\$1,170,000.00
8	18" D.I.P. Sanitary Sewer bore and pipe, complete	LF	100	\$250.00	\$25,000.00
9	26" steel casing w/ 18" DIP waterline, bored	LF	500	\$300.00	\$150,000.00
10	Sanitary Sewer Manhole 8 ft deep complete	Ea	32	\$3,000.00	\$96,000.00
11	Lift Station complete	LS	1	\$150,000.00	\$150,000.00
12	Additional depth for 4 ft dial Manhole	Ft	150	\$30.00	\$4,500.00
13	Remove & replace 4" pavement, complete, in place	SF	1000	\$10.00	\$10,000.00
14	Project sign, complete, in place	Ea.	2	\$600.00	\$1,200.00
15	Traffic control, complete, in place	L.S.	1	\$1,000.00	\$1,000.00
	Subtotal Construction Cost				\$2,102,200.00

The estimated cost for this option, graphically depicted on *Figure 13*, is \$3,044,200.00, as summarized in *Table 4*.

4.5 Option 5 - 54TH Street Analysis. Based on the results of a summary evaluation of routing the sanitary sewer pipeline to 54TH Street along Willow Road, it has been determined that this option is not feasible due to the crossing of Skeleton Creek west of 42ND Street that precludes flow upward on the east side.

However, there is a possibility of directing sewage from 54TH Street and Chestnut Avenue west to the 42ND Street Option 4 alignment. Reducing the slope of the sewer south of Chestnut on 42ND Street to 0.12% or 0.15% would provide the depth needed at 42ND Street and Chestnut Avenue to allow sewage flow from 54TH Street, as graphically depicted on *Figure 14*. This is based on an approximate sewer depth of 6- to 7-ft. at 54TH and Chestnut. Since the actual sewer depth at this intersection is 15-ft., this option would only be useful for new connections in this area. This helps demonstrate a backbone for sanitary sewer collection for the greater area of northeast Enid.

This line would cost approximately \$600,000.00 more than the 30TH Street "all-gravity" Option 3 for a total estimated cost of \$3,000,000.00. This would encompass approximately 22,000-ft. of sanitary sewer line from the Oklahoma Ethanol Plant to the 33-in. main trunk line at Market Street.

5. CONCLUSIONS AND RECOMMENDATIONS

Based on current information regarding maximum capacity, Options 1 and 2 for Washington Street and Elm Street routing, respectively, may impact the usefulness and purpose of the 24-in. collector pipelines. In addition, Option 1 requires reverse routing of sanitary sewer flows.

Based on the analyses and associated cost estimates, the most likely candidates for routing and conveying flows up to 300,000-gpd from the future Oklahoma Ethanol sanitary sewer collection pipeline appear to be Options 2 and 3 (16TH Street and 30TH Street, respectively.) Although Option 2 (16TH Street) is less expensive, it may impact the capability of the existing 24-in. collector line to less than acceptable levels.

The 30TH Street Option 3 should provide the necessary capacity for several existing facilities as well as future development. The length of Hamm & Phillips' force main could be reduced to a short segment to 30TH Street. In addition, this option offers the flexibility of adding a branch line east along Chestnut Avenue as well as a separate feeder at the 33-in. pipeline.

It appears that an evaluation of the developmental possibilities of Option 4 (42ND Street corridor) need to be further studied in order to determine the advantage of constructing a sanitary sewer collector along this route. However, this option presents an opportunity to combine it with Option 3 plus a cross-link on Chestnut Avenue to provide another method of access to future developers along Chestnut Avenue. In addition, it could afford an opportunity to redirect sanitary sewer flow from

8

Table 4

City of Enid Oklahoma Ethanol Sewer Extension Preliminary Engineers Cost Estimate

Option 4 - 42nd St

December 18, 2006

No.	Item	Unit	Quantity	Rate	Total
1	Mobilization	Ea	1	\$6,000.00	\$6,000.00
2	12" D.I.P. Sanitary Sewer, trench and pipe, complete	LF	4250	\$80.00	\$340,000.00
3	12" D.I.P. Sanitary Sewer bore and pipe, complete	LF	650	\$100.00	\$65,000.00
4	20" steel casing w/ 12" DIP waterline, bored	LF	400	\$200.00	\$80,000.00
5	18" D.I.P. Sanitary Sewer, trench and pipe, complete	LF	12300	\$150.00	\$1,845,000.00
6	18" D.I.P. Sanitary Sewer bore and pipe, complete	LF	2700	\$250.00	\$675,000.00
7	26" steel casing w/ 18" DIP waterline, bored	LF	400	\$300.00	\$120,000.00
8	4 ft dia Sanitary Sewer Manhole 8 ft deep complete	Ea	55	\$3,000.00	\$165,000.00
9	Additional depth for 4 ft dial Manhole	Ft	100	\$30.00	\$3,000.00
10	Remove & replace 4" pavement, complete, in place	SF	1000	\$10.00	\$10,000.00
11	Compaction, complete, in place	CY	100	\$20.00	\$2,000.00
12	Project sign, complete, in place	Ea.	2	\$600.00	\$1,200.00
13	Traffic control, complete, in place	L.S.	1	\$1,000.00	\$1,000.00
14	Lift Station w/ Telemetry	L.S.	1	\$150,000.00	\$150,000.00
	Subtotal Construction Cost				\$3,463,200.00

3

54TH Street by gravity and therefore, reduce the demand and need to upgrade the 54TH Street pump station.

Option 5 (54TH Street) is not a probable candidate due to the creek depression west of 42ND Street and an uphill slope eastward.

Therefore, it is ENVIROTECH'S recommendation that further consideration be given to **Option 3** to provide an overall solution for sanitary sewer collection requirements for current and future development of the northeast portion of Enid. Option 4 should be further evaluated as part of other 54TH Street sanitary sewer line issues. Investment in Option 2 could diminish the capability of the existing 24-in. collector and result in unanticipated upgrade costs in the future. In order to finalize a decision for Option 3, further investigation is recommended to determine exact locations of utilities, drainage, and other physical obstacles existing on this route.

A summary of the estimated costs for Options 1 through 4 is presented in Table 5.

Table 5

City of Enid Oklahoma Ethanol Sewer Extension Preliminary Engineers Cost Estimate

Summary of Options

December 18, 2006

Description	Method	Table	Est. Cost
Option 1 - Washington Ave.	"PUMP-AND-GRAVITY"	1	\$867,700.00
Option 2 - Elm St	"Gravity - TRENCH-AND-BORE"	2a	\$1,148,800.00
Option 2 - Elm St	"Gravity - ALL TRENCH"	2b	\$1,069,800.00
Option 3 - 30th St	"ALL GRAVITY" FLOW	3a	\$2,388,700.00
Option 3 - 30th St	"PUMP-AND-GRAVITY"	3b	\$1,680,950.00
Option 4 - 42nd St	"PUMP-AND-GRAVITY"	4	\$3,044,200.00

÷

APPENDIX A.

SANITARY SEWER FLOW CALCULATIONS

Project DescriptionProject Filex:\projects\eng\2006\oklaho~1\pipefl~1.fm2Worksheet36"Flow ElementCircular ChannelMethodManning's FormulaSolve ForDischarge

0.016	
0.0040	00 ft/ft
10.00	in
	0.016 0.0040 10.00

Input Dat	a			
	Minimum	Maximum	Increment	
Depth	0.0	10.0	1.0 in	

Rating Table			
Depth (in)	Discharge (cfs)	Velocity (ft/s)	
0.0	0.00	0.00	
1.0	0.02	0.83	
2.0	0.10	1.27	
3.0	0.22	1.60	
4.0	0.38	1.86	
5.0	0.56	2.06	
6.0	0.76	2.21	
7.0	0.94	2.31	
8.0	1.10	2.35	
9.0	1.20	2.32	
10.0	1.13	2.06	

1.20 cfs = 538. 6 gallain = 775 580 gullday

Washingtoon -Elm st. optrom 3044 St option

Project Description	
Project File	x:\projects\eng\2006\oklaho~1\pipefl~1.fm2
Worksheet	36"
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Constant Data		
Mannings Coefficient	0.016	
Channel Slope	0.00290	00 ft/ft
Diameter	10.00	in

Input Dat	a			
	Minimum	Maximum	Increment	
Depth	0.0	10.0	1.0 in	

_	Rating Table			
-	Depth (in)	Discharge (cfs)	Velocity (ft/s)	
	0.0	0.00	0.00	
	1.0	0.02	0.71	
	2.0	0.08	1.08	
	3.0	0.19	1.36	
	4.0	0.32	1.59	
	5.0	0.48	1.76	
	6.0	0.64	1.88	
	7.0	0.80	1.97	
	8.0	0.94	2.00 ->>	. 604 MED
	9.0	(1.02)	1.98	
	10.0	0.96	1.76	

1 02 cfs = 457.8q=1/min = 659243 gel/day

Ł

È

Project Description]
Project File	x:\projects\eng\2006\oklaho~1\pipefl~1.fm2
Worksheet	36"
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

24" COLLECTOR

Constant Data		
Mannings Coefficient	0.016	
Channel Slope	0.000800 ft/ft	
Diameter	24.00 in	

input Data			
	Minimum	Maximum	Increment
Depth	0.0	24.0	1.0 in

	Rating	Table
--	--------	-------

Depth	Discharge	Velocitv
(in)	(cfs)	(ft/s)
0.0	0.00	0.00
1.0	0.02	0.38
2.0	0.07	0.59
3.0	0.17	0.76
4.0	0.31	0.91
5.0	0.49	1.04
6.0	0.71	1.16
7.0	0.96	1.26
8.0	1.25	1.36
9.0	1.56	1.45
10.0	1.89	1.52
11.0	2.24	1.59
12.0	2.60	1.65
13.0	2.97	1.71
14.0	3.34	1.76
15.0	3.71	1.80
16.0	4.08	1.83
17.0	4.42	1.86
18.0	4.74	1.88
19.0	5.03	1.89
20.0	5.27	1.89
21.0	5.46	1.87
22.0	5.57	1.85
23.0	5.57	1,80
24.0	5.20	1.65

<u>ن</u>.

7

ţ

Project Description	ר <u>ר</u>
Project File	x:\projects\eng\2006\oklaho~1\pipefl~1.fm2
Worksheet	36"
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

30" MAIN COLLECTON OPT 2

÷

Constant Data		
Mannings Coefficient	0.016	
Channel Slope	0.00100	D0 ft/ft
Diameter	30.00	in

Input Dat	a			
	Minimum	Maximum	Increment	
Depth	0.0	30.0	1.0 in	

Rating Table

-

×

Depth (in)	Discharge (cfs)	Velocity (ft/s)
0.0	0.00	0.00
0.0	0.00	0.00
1.0	0.02	0.42
2.0	0.09	0.00
3.0	0.22	1.02
4.0	0.40	1.03
5.0	0.04	1.10
0.0 7.0	1.92	1.52
7.0	1.20	1.45
8.0	2.04	1.50
9.0	2.00	1.07
11.0	2.00	1.70
12.0	3.02	1.00
12.0	3.33	2.01
14.0	4.10	2.01
14.0	4.00	2.00
15.0	5.27	2.10
10.0	5.67 6.49	2.20
19.0	0.40 7.09	2.20
10.0	7.00	2.30
19.0	7.00	2.34
20.0	0.20	2.30
21.0	8.82	2.40
22.0	9.30	2.43
23.0	9.85	2.44
24.0	10.30	2.45

Rating Table		
Depth	Discharge	Velocity
(in)	(cfs)	(ft/s)
25.0	10.69	2.45
26.0	11.01	2.44
27.0	11.23	2.41
28.0	(11.33)	2.38
29.0	11.25	2.32
30.0	10.54	2.15

Table Rating Table for Circular Channel

11.33 cfs = 5085.26 jal/min = 7.32 x10" gal/day

33" MANN COLLECTO

Project Description	
Project File	x:\projects\eng\2006\oklaho~1\pipefl~1.fm2
Worksheet	36"
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Constant Data		
Mannings Coefficient	0.016	
Channel Slope	0.00100	0 ft/ft
Diameter	33.00	in

Input Da	ta			· · · ·
	Minimum	Maximum	Increment	
Depth	0.0	33.0	1.0 in	

Rating Table

Depth (in)	Discharge (cfs)	Velocity (ft/s)
0.0	0.00	0.00
1.0	0.00	0.00
2.0	0.10	0.67
3.0	0.23	0.86
4.0	0.42	1.04
5.0	0.67	1.19
6.0	0.98	1.33
7.0	1.34	1.46
8.0	1.75	1.57
9.0	2.21	1.68
10.0	2.71	1.79
11.0	3.26	1.88
12.0	3.84	1.97
13.0	4.45	2.05
14.0	5.09	2.12
15.0	5.76	2.19
16.0	6.45	2.26
17.0	7.14	2.32
18.0	7.85	2.37
19.0	8.56	2.42
20.0	9.27	2.46
21.0	9.97	2.50
22.0	10.65	2.53
23.0	11.31	2.56
24.0	11.94	2.58

10/05/06 09:59:59 AM

Rating Table			
Depth	Discharge	Velocity	
(in)	(cfs)	(ft/s)	
25.0	12.53	2.60	
26.0	13.08	2.61	
27.0	13.57	2.61	
28.0	13.98	2.60	
29.0	14.31	2.59	
30.0	14.54	2.56	
31.0	14.62	2.52	
32.0	14.48	2.46	
33.0	13.59	2.29	

10.00

÷

Project DescriptionProject Filex:\projects\eng\2006\oklaho~1\pipefl~1.fm2Worksheet36"Flow ElementCircular ChannelMethodManning's FormulaSolve ForDischarge

Constant Data		
Mannings Coefficient	0.016	
Channel Slope	0.00100	0 ft/ft
Diameter	36.00	in

Input Dat	а			
	Minimum	Maximum	Increment	
Depth	0.0	36.0	1.0 in	

10/05/06 09:59:34 AM

36"MANN COLLECTOR

		Та	ble	
Rating	Table	for	Circular	Channel

Rating Table			
Depth	Discharge	Velocity	
(in)	(CIS)	(ft/s)	
25.0	14.20	2.71	
26.0	14.93	2.73	
27.0	15.63	2.75	
28.0	16.27	2.76	
29.0	16.86	2.76	
30.0	17.38	2.76	
31.0	17.82	2.75	
32.0	18.16	2.74	
33.0	18.38	2.71	
34.0	(18.43)	2.67	
35.0	18.23	2.60	
36.0	17.14	2.42	

18.43 As = 8271.96 gellain = 1.19 × 10 jal/day

• •

÷

t

.

Project Description	
Project File	c:\program files\academic\fmw\project2.fm2
Worksheet	Elm Street Option 2
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

24"MAIN CILLECTOR OPT 2 ELM ST.

Constant Data	
Mannings Coefficient	0.016
Channel Slope	0.002500 ft/ft
Diameter	24.00 in

Input Dat	а			
	Minimum	Maximum	Increment	
Depth	0.0	24.0	2.0 in	

Rating Table

Depth (in)	Discharge (cfs)	Velocity (ft/s)	
0.0	0.00	0.00	
0.0	0.00	0.00	
2.0	0.13	1.04	
4.0	0.55	1.61	
6.0	1.26	2.05	
8.0	2.20	2.40	
10.0	3.34	2.69	
12.0	4.59	2.93	
14.0	5.91	3.11	
16.0	7.20	3.24	5,4 MGD => 3750 gpm
18.0	8.38	3.32	$\rightarrow 85\%$ -(1)> -/
20.0	9.32	3.33	
22.0	9.85	3.27 -	-> -1.55 cfs/mgd => 6.4MGU
24.0	9.19	2.93	
			=> 4413.9PM

Culvert Calculator Report NOC Sewer Run at Elm

Solve For: Discharge

Culvert Summary						
Allowable HW Elevation	23.00	ft	Headwater Depth/ Height	1.50		
Computed Headwater Elev	ation 23.00	ft	Discharge	13.705	cfs	р. Ры
Inlet Control HW Elev	22.11	ft	Tailwater Elevation	20.00	ft	
Outlet Control HW Elev	23.00	ft	Control Type	Outlet Control		-
Grades						-
Upstream Invert	20.00	ft	Downstream Invert	19.00	ft	
Length	400.00	ft	Constructed Slope	0.002500	ft/ft	
Hydraulic Profile		- <u>-</u>		<u> </u>		_
Profile (CompositeM2Pressure		Depth, Downstream	1.33	ft	
Slope Type	Mild		Normal Depth	N/A	ft	
Flow Regime	Subcritical		Critical Depth	1.33	ft	
Velocity Downstream	6.16	ft/s	Critical Slope	0.007954	ft/ft	
Section			······			
Section Shape	Circular		Mannings Coefficient	0.015		
Section Material	Concrete		Span	2.00	ft	
Section Size	24 inch		Rise	2.00	ft	
Number Sections	1					
					~	
	23.00	π	Entrance Loss	0.30	π ft	
	0.00			0.13		
Inlet Control Properties						
Inlet Control HW Elev	22.11	ft	Flow Control	Unsubmerged		
Inlet Type Sc	quare edge w/headwall		Area Full	3.1	ft²	
К	0.00980		HDS 5 Chart	1		
М	2.00000		HDS 5 Scale	1		
С	0.03980		Equation Form	1		
Y	0.67000					

2

Culvert Calculator Report NOC Sewer Run at Elm

÷

Solve For: Discharge

Culvert Summary					
Allowable HW Elevation	22.00	ft	Headwater Depth/ Height	1.00	
Computed Headwater El	evation 22.00	ft	Discharge	10.375	cfs
Inlet Control HW Elev	21.73	ft	Tailwater Elevation	20.00	ft
Outlet Control HW Elev	22.00	ft	Control Type	Outlet Control	
Grades		<u> </u>			
Upstream Invert	20.00	ft	Downstream Invert	19.00	ft
Length	400.00	ft	Constructed Slope	0.002500	ft/ft
Hydraulic Profile					
Profile	M2		Depth, Downstream	1.15	ft
Slope Type	Mild		Normal Depth	1.77	ft
Flow Regime	Subcritical		Critical Depth	1.15	ft
Velocity Downstream	5.53	ft/s	Critical Slope	0.007013	ft/ft
Castian	*=**** ********************************			······································	
Section					
Section Shape	Circular		Mannings Coefficient	0.015	
Section Material	Concrete		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1			· · · · · · · · · · · · · · · · · · ·	
Outlet Control Properties	· · ·				
Outlet Control HW Elev	22.00	ft	Upstream Velocity Head	0.21	ft
Ke	0.50		Entrance Loss	0.10	ft
Intot Control Proportion					
Inlet Control HW Elev	21.73	ft	Flow Control	Unsubmerged	
Inlet Type	Square edge w/headwall		Area Full	3.1	ft²
К	0.00980		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	1	
C	0.03980		Equation Form	1	
Υ	0.67000				

Culvert Calculator Report NOC Sewer Run at Elm

Solve For: Discharge

Culvert Summary					
Allowable HW Elevation	22.00	ft	Headwater Depth/ Height	1.00	
Computed Headwater Eleva	ation 22.00	ft	Discharge	9.176	cfs
Inlet Control HW Elev	21.60	ft	Tailwater Elevation	21.00	ft
Outlet Control HW Elev	22.00	ft	Control Type	Outlet Control	
Grades	*****			<u></u>	
Upstream Invert	20.00	ft	Downstream Invert	19.00	ft
Length	400.00	ft	Constructed Slope	0.002500	ft/ft
Hydraulic Profile	. <u> </u>				
Profile	M1		Depth, Downstream	2.00	ft
Slope Type	Mild		Normal Depth	1.54	ft
Flow Regime	Subcritical		Critical Depth	1.08	ft
Velocity Downstream	2.92	ft/s	Critical Slope	0.006743	ft/ft
Section				. <u> </u>	
Section Shape	Circular		Mannings Coefficient	0.015	·····
Section Material	Concrete		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1	······		······································	
Outlet Control Properties					
Outlet Control HW Elev	22.00	ft	Upstream Velocity Head	0.15	ft
Ke	0.50		Entrance Loss	0.08	ft
Inlet Control Properties					
Inlet Control HW Elev	21.60	ft	Flow Control	Unsubmerged	
Inlet Type Sq	uare edge w/headwall		Area Full	3.1	ft²
К	0.00980		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

5.9MGD

Page 1 of 1

Culvert Calculator Report NOC Sewer Run

Solve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	1,190.00 ft	Headwater Depth/ Height	0.72		
Computed Headwater Elev	ation 1,176.28 ft	Discharge	1,900 g	gal/min	2.7M
Inlet Control HW Elev	1,176.09 ft	Tailwater Elevation	1,176.09 f	ť	-
Outlet Control HW Elev	1,176.28 ft	Control Type	Outlet Control		
Grades	<u></u>	<u> </u>			
Upstream Invert	1,174.85 ft	Downstream Invert	1,174.09 f	īt	
Length	265.00 ft	Constructed Slope	0.002868 f	t/ft	
Hydraulic Profile					
Profile	M1	Depth, Downstream	2.00 f	t	
Slope Type	Mild	Normal Depth	0.88 f	ft	
Flow Regime	Subcritical	Critical Depth	0.72 f	ft	
Velocity Downstream	1.35 T/S		0.005995 f		
Section			······································		•
Section Shape	Circular	Mannings Coefficient	0.015		
Section Material	Concrete	Span	2.00 f	ft	
Section Size	24 inch	Rise	2.00 f	ft	
Number Sections	1				
Outlet Control Properties		· · · · · · · · · · · · · · · · · · ·	, t = ==t		,
Outlet Control HW Elev	1,176.28 ft	Upstream Velocity Head	0.05 1	ft	
Ke	0.50	Entrance Loss	0.03 1	ft	
Inlet Control Properties	<u></u>	· · · · · · · · · · · · · · · · · · ·			
Inlet Control HW Elev	1,176.09 ft	Flow Control	Unsubmerged		
Inlet Type S	quare edge w/headwall	Area Full	3.1	ft²	
К	0.00980	HDS 5 Chart	1		
Μ	2.00000	HDS 5 Scale	1		
С	0.03980	Equation Form	1		
Y	0.67000				

c:\program files\academic\cvm\project1.cvm Academic Edition 12/14/06 11:37:22 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666

Project Engineer: ROB STALLINGS CulvertMaster v1.0 Page 1 of 1 ÷

Culvert Calculator Report NOC Sewer Run

÷

Solve For: Discharge

Culvert Summary					
Allowable HW Elevation	1,176.85 ft		Headwater Depth/ Height	1.00	·
Computed Headwater Elev	ation 1,176.85 ft		Discharge	4,190	gal/min
Inlet Control HW Elev	1,176.47 ft		Tailwater Elevation	1,176.09	ft
Outlet Control HW Elev	1,176.85 ft		Control Type	Outlet Control	
Crades	, <u>, , , , , , , , , , , , , , , , </u>		<u> </u>		
Grades		• • • • •			
Upstream Invert	1,174.85 ft		Downstream Invert	1,174.09	ft
Length	265.00 ft		Constructed Slope	0.002868	ft/ft
Hydraulic Profile		<u> </u>	*		
Profile	M1		Depth, Downstream	2.00	ft
Slope Type	Mild		Normal Depth	1.47	ft
Flow Regime	Subcritical		Critical Depth	1.09	ft
Velocity Downstream	2.97 ft	/s	Critical Slope	0.006777	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.015	
Section Material	Concrete		Snan	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Central Broportion	- /r , /t, · , ·, ·/· -····		· · · · · · · · · · · · · · · · · · ·		
Outlet Control HW Elev	1,176.85 ft	t	Upstream Velocity Head	0.16	ft r
Ke	0.50	*****		0.08	Ħ
Inlet Control Properties					
Inlet Control HW Elev	1,176.47 ft	t	Flow Control	Unsubmerged	
Inlet Type S	quare edge w/headwall		Area Full	3.1	ft²
К	0.00980		HDS 5 Chart	1	
M	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Υ	0.67000				

ELMSt. opt 2

Project Description	
Project File	x:\projects\eng\2006\oklaho~1\pipefl~1.fm2
Worksheet	36"
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Constant Data		
Mannings Coefficient	0.016	
Channel Slope	0.00400)0 ft/ft
Diameter	8.00	in

Input Da	ta			
	Minimum	Maximum	Increment	
Depth	0.0	8.0	1.0 in	

Rating	Table
--------	-------

D	epth (in)	Discharge (cfs)	Velocity (ft/s)	
	0.0	0.00	0.00	
	1.0	0.02	0.82	
	2.0	0.09	1.25	
	3.0	0.19	1.55	
	4.0	0.31	1.78	
	5.0	0.44	1.93	
	6.0	0.57	2.02	
	7.0	0.65	2.01	
	8.0	0.62	1 78	

APPENDICES

APPENDIX TM 3-1

COST ANALYSIS WORKSHEETS

CAPITAL COST ESTIMATES

OPTION 1A: 14 MGD NEW PLANT, CONVENTIONAL ACTIVATED SLUDGE PROCESS

Unit Description	Unit Size/	Number	Estimated
	Design Capacity	of Units	Cost in
1			2006 Donars
Improvements at 2010	T	<u> </u>	000.000
Mobilization	-	-	860,800
Sitework	-	-	2,458,400
Headworks	00.000		F40.400
Screening	28 MGD	-	510,400
Grit Removal	28 MGD	-	783,100
Parshal Flume	28 MGD	-	240,500
Liftstation	28 MGD	-	1,383,900
Primary Clarifiers	90 ft. Dia	. 2	1,794,600
Aeration Basin	200' L x 50' W x 16.5' D	4	8,115,200
Secondary Clarifiers	100 ft. Dia	3	3,322,900
Nitrification Basin	14 MGD	-	4,643,300
Tertiary clarifiers	100 ft. Dia	3	3,322,900
Disinfection system	28 MGD	-	1,382,000
Electrical	-	-	2,519,600
Instrumentation & Controls	-	-	1,339,400
Piping	-	-	3,739,100
Influent / Effluent outfall	2300 LF, 36"	-	750,000
SUB TOTAL			37,166,100
Non-Construction Cost (15%)			5,575,000
Contingency (15%)			5,575,000
TOTAL			48,316,100
Improvements at 2020			
Makilization			200.000
	-	-	200,000
Sitework	-	-	300,000
Aerobic Digesters		2	1,295,800
Dewatering System	4 MGD	-	1,200,300
Electrical		-	250,000
Instrumentation & Controls	-	-	150,000
Piping		-	400,000
SUB TOTAL			3,796,100
Non-Construction Cost (15%)			569,500
			4 935 100

TABLE 1 Sep-06

CAPITAL COST ESTIMATES

TABLE 2 Sep-06

OPTION 1B: 14 MGD NEW PLANT, SBR (SEQUENTIAL BATCH REACTOR) PROCESS

Unit Description	Unit Size/	Number	Estimated
	Design Capacity	of Units	Cost in
			2006 Dollars
Improvements at 2010			-
Mobilization	-	-	860,800
Sitework	-	-	2,458,400
Headworks			
Screening	28 MGD	-	510,400
Grit Removal	28 MGD	-	783,100
Parshal Flume	28 MGD	-	240,500
Liftstation	28 MGD		1,383,900
SBR Reactors	140' L x 98' W x 22' D	8	18,960,200
Sludge Holding Basins	70' L x 35' W x 12' D	2	1,174,100
Disinfection System	40 MGD	-	1,975,300
Electrical	-	-	2,519,600
Instrumentation & Controls	-	-	1,339,400
Piping	-	-	2,875,600
Influent / Effluent outfall	2300 LF, 36"	-	750,000
SUB TOTAL			35,831,300
Non-Construction Cost (15%)			5,374,700
Contingency (15%)			5,374,700
TOTAL			46,580,700
Improvements at 2020			.
Mobilization	-	-	200,000
Sitework	-	-	300,000
Aerobic Digesters	60 ft. Dia	2	1,295,800
Dewatering System	4 MGD	-	1,200,300
Electrical	-	-	250,000
Instrumentation & Controls	-	-	150,000
Piping	-		400,000
SUB TOTAL			3,796,100
Non-Construction Cost (15%)			569,500
Contingency (15%)			569,500
TOTAL			4,935,100

CAPITAL COST ESTIMATES

TABLE 3 Sep-06

OPTION 3A: 12 MGD NEW PLANT, CONVENTIONAL ACTIVATED SLUDGE PROCESS WITH EXPANSION TO 14 MGD CAPACITY

Unit Description	Unit Size/	Number	Estimated		
	Design Capacity	of Units	Cost in		
			2006 Dollars		
Improvements at 2010					
Mobilization	-	-	773,900		
Sitework	-	-	2,220,600		
Headworks		ļ			
Screening	28 MGD	-	510,400		
Grit Removal	28 MGD	-	783,100		
Parshal Flume	28 MGD	· -	240,500		
Liftstation	28 MGD	-	1,383,900		
Primary Clarifiers	90 ft. Dia	2	1,794,600		
Aeration Basin	180' L x 45' W x 17.20' D	4	6,852,200		
Secondary Clarifiers	90 ft. Dia		2,691,900		
Nitrification Basin	12 MGD	-	4,085,500		
Tertiary clarifiers	90 ft. Dia	3	2,691,900		
Disinfection System	28 MGD	-	1,382,000		
Electrical	-	-	2,251,500		
Instrumentation & Controls	-	-	1,187,700		
Piping	-	-	3,320,600		
Influent / Effluent outfall	2300 LF, 36"	-	750,000		
SUB TOTAL			32,920,300		
Non-Construction Cost (15%)			4,938,100		
Contingency (15%)			4,938,100		
TOTAL			42,796,500		
Improvements at 2020					
Mobilization	-	-	224,800		
Sitework	-	-	680,600		
Aeration Basin	180' L x 30' W x 17.20' D	4	1,142,100		
Secondary Clarifiers	80 ft. Dia	1	709,000		
Nitrification Basin	2 MGD	-	821,400		
Tertiary clarifiers	80 ft. Dia	1	709,000		
Aerobic Digesters	60 ft. Dia	2	1,295,800		
Dewatering System	4 MGD	-	1,200,300		
Electrical	-	-	608,800		
Instrumentation & Controls	-	-	293,600		
Piping	-	-	835,700		
SUB TOTAL			8,521,100		
Non-Construction Cost (15%)			1,278,200		
Contingency (15%)			1,278,200		
TOTAL			11,077,500		

CAPITAL COST ESTIMATES

TABLE 4 Sep-06

OPTION 3B: 12 MGD NEW PLANT, SBR (SEQUENTIAL BATCH REACTOR) PROCESS WITH EXPANSION TO 14 MGD CAPACITY

Unit Description	Unit Size/	Number	Estimated
	Design Capacity	of Units	Cost in
		of Units	2006 Dollars
Improvements at 2010			
Mobilization	-	-	773,900
Sitework	-	-	2,220,600
Headworks			
Screening	28 MGD	-	510,400
Grit Removal	28 MGD	-	783,100
Parshal Flume	28 MGD	-	240,500
Liftstation	28 MGD	-	1,383,900
SBR Reactors	140' L x 98' W x 22' D	7	16,590,200
Sludge Holding Basins	70' L x 35' W x 12' D	2	1,174,100
Disinfection System	40 MGD	-	1,975,300
Electrical	-	-	2,251,500
Instrumentation & Controls	-	-	1,187,700
Piping	-	-	2,560,000
Influent / Effluent outfall	2300 LF, 36"	-	750,000
SUB TOTAL			32,401,200
Non-Construction Cost (15%)			4,860,200
Contingency (15%)			4,860,200
TOTAL			42,121,600
Improvements at 2020		1	224 800
	-	-	224,000
Sitework	-	-	080,600
SBR Reactors	140° L X 98° W X 22° D		2,370,100
Aerobic Digesters		Ζ.	1,295,800
Dewatering System	4 MGD	-	1,200,300
Electrical	-	-	608,800
	-	-	293,600
Piping	-	-	580,000
SUB TOTAL			7,254,000
Contingency (15%)			1 088 100
TOTAL			9,430.200

•

CAPITAL COST ESTIMATES

TABLE 5 Sep-06

OPTION 4A: USING EXISTING TREATMENT FACILITY AND BUILDING A 7 MGD NEW PLANT, CONVENTIONAL ACTIVATED SLUDGE PROCESS WITH EXPANSION TO 14 MGD CAPACITY

Unit Description	Unit Size/	Number	Estimated			
	Design Capacity	of Units	Cost in			
			2006 Dollars			
Improvements at 2010						
Mobilization	-	-	533,600			
Sitework	-	-	1,555,900			
Headworks						
Screening	28 MGD	-	510,400			
Grit Removal	28 MGD	-	783,100			
Parshal Flume	28 MGD	-	240,500			
Liftstation	28 MGD	-	1,383,900			
Primary Clarifiers	70 ft. Dia	2	1,085,700			
Aeration Basin	150' L x 75' W x 15' D	2	4,149,900			
Secondary Clarifiers	90 ft. Dia	2	1,794,600			
Nitrification Basin	7 MGD	· - ···	2,721,100			
Tertiary clarifiers	90 ft. Dia	2	1,794,600			
Disinfection System	28 MGD	-	882,000			
Improvements to Existing WWTP	-	-	2,737,700			
Electrical	-	-	1,519,000			
Instrumentation & Controls	-	-	780,000			
Piping	-	-	2,192,700			
Influent / Effluent outfall	2300 LF, 36"	-	750,000			
SUB TOTAL			25,414,700			
Non-Construction Cost (15%)			3,812,300			
Contingency (15%)			3,812,300			
TOTAL			33,039,300			
Improvements at 2020						
Mobilization	-	-	533,600			
Sitework	-	-	1,555,900			
Primary Clarifiers	70 ft. Dia	2	1.085.700			
Aeration Basin	150' L x 75' W x 15' D	2	4,149,900			
Secondary Clarifiers	90 ft. Dia	2	1,794,600			
Nitrification Basin	7 MGD	-	1.921.700			
Tertiary clarifiers	90 ft. Dia	2	1,794,600			
Disinfection System	-	-	500.000			
Aerobic Digesters	60 ft Dia	2	1,295,800			
Dewatering System	4 MGD	-	1,200,300			
Electrical	-	-	1,519,000			
Instrumentation & Controls	-	_	780 000			
Piping	-	-	2,192,700			
SUB TOTAL			20.323.800			
Non-Construction Cost (15%)			3,048,600			
Contingency (15%)			3,048,600			
TOTAL			26,421,000			

CAPITAL COST ESTIMATES

TABLE 6

Sep-06

OPTION 4B: USING EXISTING TREATMENT FACILITY AND BUILDING A 7 MGD NEW PLANT, SBR (SEQUENTIAL BATCH REACTOR) PROCESS WITH EXPANSION TO 14 MGD CAPACITY

Unit Description	Unit Size/	Number	Estimated
	Design Capacity	of Units	Cost in
			2006 Dollars
Improvements at 2010			
Mobilization	-	-	533,600
Sitework	-	-	1,555,900
Headworks			
Screening	28 MGD	-	510,400
Grit Removal	28 MGD	-	783,100
Parshal Flume	28 MGD	-	240,500
Liftstation	28 MGD	-	1,383,900
SBR Reactors	140' L x 98' W x 22' D	4	9,480,100
Sludge Holding Basins	70' L x 35' W x 12' D	1	587,100
Disinfection System	40 MGD	-	1,975,300
Improvements to Existing WWTP	-	-	2,737,700
Electrical	-	-	1,519,000
Instrumentation & Controls	-	-	780,000
Piping	-	-	1,725,300
Influent / Effluent outfall	2300 LF, 36"	-	750,000
SUB TOTAL			24,561,900
Non-Construction Cost (15%)			3,684,300
Contingency (15%)			3,684,300
TOTAL			31,930,500
Improvomente et 2020			
Mobilization	_	_	553 600
Sitework			1 555 900
SBR Reactors	140' L x 98' W x 22' D	Δ	9 480 100
Sludge Holding Basins	70' L x 35' W x 12' D	1	587 100
	60 ft Dia	2	1 295 800
Dewatering System	4 MGD	-	1,200,300
Electrical	-	_	1,200,000
Instrumentation & Controls	_	-	780.000
Piping	-	-	1,510,000
SUB TOTAL	· · · · · · · · · · · · · · · · · · ·		18,481,800
Non-Construction Cost (15%)	······································		2,772,300
Contingency (15%)			2,772,300
TOTAL			24,026,400

Dperations & Maintenance Costs									
		-							September-
				Ann	ual Operations C	osts			
Unit Component	Base Year Labor Rate	Operations		Maintenance	Maintenance	Additional Er	nerav	Materials and	Total Annual
	(Sihr)	Labor ⁺ OI (man-hours)	berations Labor La (\$)	abor" (man- hours)	Labor (S)	Costs (\$)	}	Supply Costs** (\$)	Costs (\$)
DETION 1 A		-	-	Rohuson '	040 - 2020				
nfluent Pumping	11.00	\$ 002	7,700	600	\$ 6,600	122	2,400 \$	12,300	\$ 149.00
Preliminary treatment	11.00	2700 \$	29,700	1300	\$ 14,300	\$	69 1	17,100	\$ 61,10
Primary sedimentation	11.00	. 1300 \$	14,300	002	\$ 7,700	\$	•	9,800	\$ 31,80
Activated sludge Process	11.00	4300 \$	47,300	2800	\$ 30,800	\$ 42	4,200 \$	34,200	\$ 536,50
Secondary Clarifiers	11.00	1800 \$	19,800	1000	\$ 11,000	\$	ري ۱	17,600	\$ 48,40
vitrification Basin	11.00	3500 \$	38,500	2100	\$ 23,100	\$ 228	8,500 \$	34,200	\$ 324,30
ertiary claritiers	11.00	1800 \$	19,800	1000	\$ 11,000	¢	\$ 9 1	17,600	\$ 48,40
Jesintection	11.00	140 \$	1,540	140	\$ 1,540	\$	8,600 \$	18,000	\$ 89,68
olgestion	11.00	1800 \$	19,800	1300	\$ 14,300	\$ 13(0,600 \$	24,500	\$ 189,20
Dewatering	11.00	6000 \$	66,000	200	\$ 7,700	\$	ده ۱	165,600	\$ 239,30
							To	otal:	\$ 1,717,68
DPTION 1A				Between 2	020 - 2030*				
Digestion 5	11.00	1000 \$	11,000	600	\$ 6,600	\$ 2	2,900 \$	12.300	\$ 52.80
Dewatering	11.00	3000 \$	33,000	400	\$ 4,400	¢	69 1	80,600	\$ 118,00
							T	otal:	\$ 1,888,48
JPTION 1B				Between	2010 - 2020				
nfluent Pumping	11.00	\$ 001	1,700	600	\$ 6,600	\$ 12:	2,400 \$	12,300	\$ 149,00
reliminary treatment \$	11.00	2700 \$	29,700	1300	\$ 14,300	\$.	17,100	\$ 61,10
Sequential Batch Reactor \$	11.00	5500 \$	60,500	3600	\$ 39,600	\$ 546	8,200 \$	34,200	\$ 682,50
Sludge Holding Basin	11.00	1000 \$	11,000	550	\$ 6,050	\$	ک ۲	14,200	\$ 31,25
Desinfection \$	11.00	140 \$	1,540	140	\$ 1,540	\$ 60	8,600 \$	18,000	\$ 89,68
Jigestion \$	11.00	1800 \$	19,800	1300	\$ 14,300	\$ 13(0,600 \$	24,500	\$ 189,20
Dewatering 5	11.00	6000 \$	66,000	200	\$ 7,700	\$	\$ 1	165,600	\$ 239,30
							Te	otal:	\$ 1,442,03
JELION 1B				Between 2	:020 - 2030*				
Digestion \$	11.00	1000 \$	11,000	600	\$ 6,600	\$ 22	2,900 \$	12,300	\$ 52,80
Jewatering \$	11.00	3000 \$	33,000	400	\$ 4,400	\$	ر ي •	80,600	\$ 118,00
							- To	otal:	\$ 1,612,83

T t

.

-

· · · · ·

CITY OF ENID WASTEWATER F	ACILITY PLAN									TABLE 8
Operations & Maintenance Costs	jan.			i Ar	nual Operatio	ns Costs				September-06
Unit Component	base Year Labor Rate (\$/hr)	Operations Labor* Oper man-hours)	ations Labor 1 (\$)	Maintenance Labor⁺ (man hours)	Maintenar Labor (\$)	ce Addit	ional Energy Costs (\$)	Materials an Supply Costs (5)	7	otal Annual Costs (5)
OPTION 3A				Betwee	n 2010 - 2020					
Influent Pumping	\$ 11.00	650 \$	7,150	550	\$ 0	,050 \$	81,600	56	300 \$	104.100
Preliminary treatment	\$ 11.00	2300 \$	25,300	1100	0 \$ 1	2,100 \$		\$ 14.7	200	52,100
Primary sedimentation	\$ 11.00	1200 \$	13,200	650	\$,150 \$	1	\$ 10,0	200 \$	30,350
Activated sludge Process	\$ 11.00	4000 \$	44,000	2500) \$ 2	,500 \$	359,000	\$ 29,5	300 \$	459,800
Secondary Clarifiers	\$ 11.00	1700 \$	18,700	850	\$,350 \$,	\$ 13,2	200 \$	41,250
Nitrification Basin	5 11.00	3000 \$	33,000	2000	5	,000 \$	195,800	\$ 29,3	300 \$	280,100
lemary clariners	\$ 11.00	1700 \$	18,700	850	\$,350 \$		\$ 13,2	200 \$	41,250
Desimection		120 \$	1,320	120	8	,320 \$	58,800	\$ 15,4	\$ 00	76,840
Description	\$ 11.00	1800 \$	19,800	1300	1	,300 \$	130,600	\$ 24,5	200 \$	189,200
пемацегид	\$ 11.00	6000 \$	66,000	. 200	8	,700 \$	1	\$ 165,6	500 \$	239,300
								Total:	\$	1,514,290
OPTION 3A		-		Betweer	1 2020 - 2030*					
								Total:	\$	1,888,480
OPTION 3B				Betweel	n 2010 - 2020					
Influent Pumping	\$ 11.00	650 \$	7,150	550	\$ 0	,050 \$	81,600	\$ 6'3	300 \$	104,100
Preliminary treatment	\$ 11.00	2300 \$	25,300	1100	5 1:	,100 \$		\$ 14,7	\$ 002	52,100
Sequential Batch Reactor	\$ 11.00	5000 \$	55,000	3000	ю Ф	3,000 \$	479,700	\$ 29,3	300 \$	597,000
Sludge Holding Basin	\$ 11.00	1000 \$	11,000	550	\$,050 \$	-	\$ 14,2	200 \$	31,250
Desintection	\$ 11.00	120 \$	1,320	120	\$,320 \$	58,800	\$ 15,4	\$ 00t	76,840
Digestion	\$ 11.00	1800 \$	19,800	1300	1	,300 \$	130,600	\$ 24,5	200 \$	189,200
Dewatering	\$ 11.00	6000 \$	66,000	200	\$,700 \$	-	\$ 165,6	300 \$	239,300
								Total:	\$	1,289,790
OPTION 3E				Betweer	1 2020 - 2030*					
								Total:	\$	1,612,830
* O&M Costs for the period 2020 - 2030 include:	s annual O&M costs esti	mated for the neriod 201	0 - 2020 nhis ad	ditional O&M costs r	resulting from ev	00 ui unisner	00			

ñ · · · ·

.

. ...

CITY OF ENID WASTEWATER FA	CILITY PLAN										TA	BLE 9
Operations & Maintenance Costs											Septe	ember-06
				A	nnual Operatio	ns Cos	ts					
Unit Component	Base Year Labor Rate (\$/hr)	Operations Labor* Ope	trations Labor	Maintenance Labor [*] (mar	Maintenar I- Labor	Ice /	Additional Cos	Energy ts	Materia Supply (IIs and Costs**	Total A Cos	nnual ts
		(man-hours)	(\$)	hours)	(\$)		(\$)		(\$	((\$))
OPTION 4A				Betwee	in 2010 - 2020							
Influent Pumping	\$ 11.00	650 \$	7,150	25	0 \$	6,050		81,600	s	9,300	69	104.100
Preliminary treatment	\$ 11.00	2300 \$	25,300	110	0 \$ 1	2,100		•	\$	14,700	6	52,100
Primary sedimentation	\$ 11.00	1100 \$	12,100	60	0 \$	6,600		•	\$	10,800	6	29,500
Activated sludge Process	\$ 11.00	4500 \$	49,500	290	с \$ 0	1,900		339,400	\$	44,500	5	465,300
Secondary Clarifiers	\$ 11.00	1850 \$	20,350	166	0 \$	0,890	6		\$	17,400	5	48,640
Nitrification Basin	\$ 11.00	4100 \$	45,100	280(C \$ 0	0,800	4	244,800	Ş	44,500	5	365,200
Tertiary clarifiers	\$ 11.00	2250 \$	24,750	118(0 \$ 1	2,980	4	,	s	20,000	6	57,730
Desinfection	\$ 11.00	120 \$	1,320	12(0 \$	1,320		58,800	\$	15,400	5	76,840
Digestion	\$ 11.00	1800 \$	19,800	130(\$	4,300	6	130,600	\$	24,500	6	189,200
Dewatering	\$ 11.00	6000 \$	66,000	10/	\$	7,700		1	\$	165,600	6	239,300
									Total:		5	627,910
OPTION 4A				Betwee	n 2020 - 2030*							
A STATE OF A									Total:			888.480
OPTION 4B				Betwee	n 2010 - 2020							
nfluent Pumping	\$ 11.00	. 650 \$	7,150	55(\$ 0	6,050		81,600	s	9,300	\$	104,100
Preliminary treatment	\$ 11.00	2300 \$	25,300	110	1 \$ 1	2,100	4	,	\$	14,700		52,100
Primary sedimentation	\$ 11.00	650 \$	7,150	35(0 \$	3,850		•	ŝ	4,400	5	15,400
Activated sludge Process	\$ 11.00	2500 \$	27,500	150(5	6,500		195,800	\$	20,000	\$	259,800
Secondary Clarifiers	\$ 11.00	\$ 006	006'6	20(\$	5,500		•	Ś	7,400	\$	22,800
Nitrification Basin	\$ 11.00	2600 \$	28,600	170(1	8,700		130,600	\$	20,000		197,900
lemary clamers	\$ 11.00	1300 \$	14,300	02	8	2,700		•	÷	10,800		32,800
Sequential Batch Reactor	\$ 11.00	3600 \$	39,600	210(0 \$	3,100		274,100	ŝ	24,500	6	361,300
Sludge Holding Basin	\$ 11.00	750 \$	8,250	35(\$	3,850		•	÷	13,700	\$	25,800
Desinfection	\$ 11.00	120 \$	1,320	12(\$	1,320		58,800	\$	15,400	\$	76,840
Digestion	\$ 11.00	1800 \$	19,800	130(5	4,300		130,600	\$	24,500	\$	189,200
Dewatering	\$ 11.00	6000 \$	66,000	70(0 \$	7,700		,	\$	165,600	\$	239,300
									Totai:		\$ 1	677,340
OPTION 4E				Betweel	n 2020 - 2030*							
									Total:		1	612,830
· O&M Costs for the period 2020 - 2030 includes	annual O&M costs e	stimated for the period 20	010 - 2020 plus ac	Iditional O&M costs	resulting from ex	pansion	in 2020					

TABLE 10 Sep-06

CITY OF ENID WASTEWATER FACILITY PLAN

PRESENT WORTH COST ANALYSIS

OPTION	DESCRIPTION	CAPITAL CC	IST 🗽 👘	O & M CO	ST	PRESENT
		2010	2020	2010 - 2020	2020 - 2030	WORTH COST AT 2006
14	14 MGD New Plant Conventional Activated Sludge Process	\$ 48,316,100	\$ 4,935,100	\$ 1,717,680	\$ 1,888,480	\$ 62,646,975
18	14 MGD New Plant SBR Process	\$ 46,580,700	\$ 4,935,100	\$ 1,442,030	\$ 1,612,830	\$ 58,184,959
3A	12 MGD New Plant Conventional Activated Sludge Process W/ Expansion to 14 MGD	\$ 42,796,500	\$ 11,077,500	\$ 1,514,290	\$ 1,888,480	\$ 59,985,628
3B	12 MGD New Plant SBR Process W/ Expansion to 14 MGD	\$ 42,121,600	\$ 9,430,200	\$ 1,289,790	\$ 1,612,830	\$ 55,862,804
4A	7 MGD New Plant Conventional Activated Sludge Process W/ Expansion to 14 MGD	\$ 33,039,300	\$ 26,421,000	\$ 1,627,910	\$ 1,888,480	\$ 60,842,593
4B	7 MGD New Plant SBR Process W/ Expansion to 14 MGD	\$ 31,930,500	\$ 24,026,400	\$ 1,577,340	\$ 1,612,830	\$ 57,106,473

Þ

-